def determineResidualUtility(compromisedComponents,rD,debug=True): rMax = addRisksToLogic(rD) maxUtility = sumAllUtilities() print(("Maximum Utility with No Vulnerabilities: " + str(sumAllUtilities()))) #query = "worstCasePathFromSource[SourceService,TotalC]" #utilitiesByAttackerCapability = pyDatalog.ask(query).answers combos = compromisedCombos(compromisedComponents) expectedValue = 0 for combo,p in combos: print("Evaluating compromise combination:" + str(combo)) for ccs in combo: #ccs is the component stripped out of the list #print "ccs:" + str(ccs) #Add in compromised components to logic #+ componentCompromisedWithAttributes('vpn',0.1,False,False,False) pyDatalog.assert_fact("componentCompromisedWithAttributes",str(ccs),str(p),"False","False","False") if debug: print("Probability for this combination: " + str(p)) #query = "cToWithPrivileges(IntermediateService1,TargetService,VulnType,C)" #print("Connections in Graph:") #pprint.pprint(pyDatalog.ask(query).answers) #print("Probability for this combination: " + str(p)) #query = "consumesPath(FunctionA,TargetService,Data,P)" #print("Consumption Paths in Graph:") #pprint.pprint(pyDatalog.ask(query).answers) expectedValue += determineResidualUtilityHelper(rD,maxUtility) * p for ccs in combo: #Remove compromised components from logic pyDatalog.retract_fact("componentCompromisedWithAttributes",str(ccs),str(p),"False","False","False") print("Final Expected Value:" + str(expectedValue)) return expectedValue
def retractAll(pname, arity): """ retract all facts of given predicate name and arity from the LogKB. """ vnames = ["V" + str(x) for x in range(0,arity)] varlist = "(" + ",".join(vnames) + ")" query = pname + varlist ans = pyDatalog.ask(query) for r in ans.answers: pyDatalog.retract_fact(pname,*list(r))
def retractAll(pname, arity): """ retract all facts of given predicate name and arity from the LogKB. """ vnames = ["V" + str(x) for x in range(0, arity)] varlist = "(" + ",".join(vnames) + ")" query = pname + varlist ans = pyDatalog.ask(query) for r in ans.answers: pyDatalog.retract_fact(pname, *list(r))
def retractPatient(self, name): Logic(self.first) #Método para olvidar el paciente, recupera sus datos de la base de conocimiento y lo elimina returnvalue = '' try: tq1 = "age(" + name + ",Y)" tq2 = "sick_of(" + name + ",Y)" q1 = pyDatalog.ask(tq1) q2 = pyDatalog.ask(tq2) pyDatalog.retract_fact('age', name, q1.answers[0][0]) pyDatalog.retract_fact('sick_of', name, q2.answers[0][0]) return 'retracted' except: returnvalue = "NOPATIENT" return returnvalue
def eliminar(nombre): W = pyDatalog.ask("is_person('" + nombre + "')") if (str(W) == 'None'): print("Este nombre no lo conozco") else: pyDatalog.retract_fact('is_sport_person', nombre) pyDatalog.retract_fact('is_person', nombre) pyDatalog.retract_fact('is_exited', nombre, '3', '600') pyDatalog.retract_fact('has_interest_in_sports', nombre, '4', '800')
def retractpreferences(self): Logic(self.first) returnvalue = '' try: db = self.con.conexion() coleccion = db['sensor_temp'] query = {"activo": "t"} req = list(coleccion.find(query))[0] tq1 = "prefer_temperature(" + req['enfermedad'] + "," + req[ 'stage'] + ",X)" q1 = pyDatalog.ask(tq1) pyDatalog.retract_fact('prefer_temperature', req['enfermedad'], req['stage'], q1.answers[0], [0]) pyDatalog.assert_fact('prefer_temperature', req['enfermedad'], req['stage'], req['temp_pref']) return 'retracted' except: returnvalue = "NOPATIENT" return returnvalue
def main(): r = RedisManager(host=RedisConfig['host'], port=RedisConfig['port'], db=RedisConfig['db'], password=RedisConfig['password'], decodedResponses=RedisConfig['decodedResponses']) sub = r.getRedisPubSub() sub.subscribe(RedisConfig['VocalChannel']) learn() while True: newMsg = sub.get_message() if newMsg: if newMsg['type'] == 'message': now = getTimestamp() msgContent = newMsg['data'].decode() print("Vocal Result: " + str(newMsg)) # Test facialRes = getAverageEmotionsFromRedisQueue(r, queue=RedisConfig['FacialQueue'], emotions=DMAConfig['emotions']) if msgContent == str(RedisConfig['voidMsg']): facialVocal = facialRes else: vocalRes = ast.literal_eval(msgContent) facialVocal = facialVocalCompare(facialRes, vocalRes, emotions=DMAConfig['emotions'], facialW=DMAConfig['facialWeight'], vocalW=DMAConfig['vocalWeight']) print("FACIAL VOCAL:" + str(facialVocal)) # Test if facialVocal: sortedEmotions = {k: v for k, v in sorted(facialVocal.items(), key=lambda item: item[1])} print(sortedEmotions) # Test sortedEmoList = list(sortedEmotions.items()) firstEmotion = sortedEmoList[-1] secondEmotion = sortedEmoList[-2] topEmotions = dict([firstEmotion, secondEmotion]) decisionWithPer = firstEmotion diff = 0 for k in topEmotions: diff -= topEmotions[k] diff = abs(diff) attitude = getAverageAttitudeFromRedisQueue(r, queue=RedisConfig['PoseQueue']) print("DATA: " + str(firstEmotion) + ", " + str(secondEmotion) + ", " + str(attitude)) if diff <= DMAConfig['poseTestThreshold']: if attitude: pyDatalog.assert_fact('firstEmoPercept', firstEmotion[0]) pyDatalog.assert_fact('secondEmoPercept', secondEmotion[0]) pyDatalog.assert_fact('poseAttitudePercept', attitude) decision = str(pyDatalog.ask("takeDecision(D)")).replace("{('", "").replace("'", "").split(",")[0] decisionWithPer = (decision, str(topEmotions[decision])) pyDatalog.retract_fact('firstEmoPercept', firstEmotion[0]) pyDatalog.retract_fact('secondEmoPercept', secondEmotion[0]) pyDatalog.retract_fact('poseAttitudePercept', attitude) r.setOnRedis(key=RedisConfig['DecisionSet'], value=str(decisionWithPer)) r.publishOnRedis(channel=RedisConfig['newDecisionPubSubChannel'], msg=str(decisionWithPer)) print("Decision: " + str(decisionWithPer)) # Test r.deleteRedisElemsByKeyPatternAndTimestamp(RedisConfig['imageHsetRoot'] + '*', now, DMAConfig['timeThreshold']) r.deleteRedisElemsByKeyPatternAndTimestamp(RedisConfig['audioHsetRoot'] + '*', now, DMAConfig['timeThreshold'])
def determineResidualUtility(debug=False): rMax = riskDistribution.maxRisk() #Uncomment this after debugging #Time hog? #if debug: print "Calculating attack scenarios..." costsPlus = pyDatalog.ask("allAttackerPathsCostPlus(SourceService,TargetService,P,E,F,U,TotalC," + str(rMax) + ")") #if debug: print "Scenarios calculated." #if debug: # print "Query: " + "allAttackerPathsCostPlus(SourceService,TargetService,P,E,F,U,TotalC," + str(rMax) + ")" #costsPlus = pyDatalog.ask("allAttackerPathsCostPlus(SourceService,TargetService,P,E,F,U,TotalC," + str(1) + ")") if costsPlus != None: costsPlusSorted = sorted(costsPlus.answers, key=itemgetter(5)) if debug: print "No attack traces" else: costsPlusSorted = [] if debug: print "Attack traces:" pprint.pprint(costsPlusSorted) #qFs = pyDatalog.ask("functionQuestionable(FuncName,Util)") #print("Questionable functions:") #print(qFs.answers) compromisedComponents = pyDatalog.ask("probCompromised(SourceService,Prob)") if compromisedComponents != None: #if debug: # print "Compromised Components x:" # print compromisedComponents.answers combos = getCombinations(compromisedComponents.answers,debug) else: #if debug: print "Nothing compromised" sumOverCombos = 0 compromisedAllPossibleAnswer = pyDatalog.ask("compromised(SourceService)").answers compromisedAllPossible = [] #List of all possible compromised components if compromisedAllPossibleAnswer != None: for c in compromisedAllPossibleAnswer: compromisedAllPossible.append(c) #Loop over each possible combination of compromised components #print "Combos: " + str(combos) for compromiseCombo in combos: compromisedComponents = compromiseCombo[0] prob = compromiseCombo[1] if debug: print "Compromised Components:" print compromisedComponents print "Prob:" print prob #New Code to remove from database things that aren't compromised this iteration #There are probably better ways to do this for performance for cc in compromisedAllPossible: if cc[0] not in compromisedComponents: if debug: print "Remove " + str(cc[0]) pyDatalog.retract_fact("compromised",str(cc[0])) #Was this right to comment out? #costsPlus = pyDatalog.ask("allAttackerPathsCostPlus(SourceService,TargetService,P,E,F,U,TotalC," + str(rMax) + ")") #End New Code costsPlusSortedLimited = costsPlusSorted #These are just the attack traces with the currently compromised components #print costsPlusSorted #possibleConnections = itertools.ifilter(lambda connectionPair: connectionDoesNotExist(connectionPair),allPossibleConnections) #print CostPlusSorted[0][0] costsPlusSortedLimited = [trace for trace in costsPlusSorted if trace[0] in compromisedComponents] if debug: print "CostPlusSorted Length: " print len(costsPlusSorted) print len(costsPlusSortedLimited) #Find the worst case scenario for any given level of attacker capability riskUtilDict = {} if debug: fDict = {} #print "BROKEN CONNECTIONS:" #pprint.pprint(pyDatalog.ask("transitiveConnectionBroken(SourceService,TargetService)").answers) #print "RTU CONNECTIONS" #pprint.pprint(pyDatalog.ask("transitiveConnects('rtus',TargetService)").answers) downOrCompUtil = 0 if False: downFunctions = pyDatalog.ask("functionDown(FunctionA,U)") # Required connections are down compromisedFunctions = pyDatalog.ask("functionCompromised(FunctionA,U)") if downFunctions != None: downUtils = downFunctions.answers #if debug: print "Down Utilities:" print downUtils #for [f,u] in downUtils: #print u #downUtil += u if compromisedFunctions != None: compromisedFs = compromisedFunctions.answers #if debug: print "Compromised Utilities:" print compromisedFs #Time hog? #if debug: print "Calculating Down and Compromised Functions" downOrCompromisedFunctions = pyDatalog.ask("functionDownOrCompromised(FunctionA,U)") #if debug: print "Down and Compromised Functions Calculated" if downOrCompromisedFunctions == None: if debug: print "Nothing Down or Compromised" fDict[0] = "" riskUtilDict[0] = 0 else: downOrCompromisedUtils = downOrCompromisedFunctions.answers if debug: print "Down or Compromised Utilities:" print downOrCompromisedUtils #fDict[0] = for [f,u] in downOrCompromisedUtils: downOrCompUtil += u riskUtilDict[0] = downOrCompUtil for funcUtilRisk in costsPlusSortedLimited: #Limited to just ones starting from specific compromises #u is the questionable utility, not the residual utility if debug: f = funcUtilRisk[4] u = funcUtilRisk[5] r = funcUtilRisk[6] if r in riskUtilDict: #If this is a new worst case scenario for that level of attacker capability if u > riskUtilDict[r]: riskUtilDict[r] = u if debug: fDict[r] = f #This is the first time seeing this level of risk else: riskUtilDict[r] = u if debug: fDict[r] = f if debug: print "Worst case scenarios by attacker capability:" print riskUtilDict print fDict riskUtilDictAdjusted = {} sum = 0 worstQuestionableU = downOrCompUtil #To track the worst case so far for r in range(0,maxRisk+1): if r in riskUtilDict: questionableU = riskUtilDict[r] if questionableU > worstQuestionableU: worstQuestionableU = questionableU if debug: riskUtilDictAdjusted[r] = worstQuestionableU #Adjust the compromised components here to reflect the particular #combination under evaluation sum += (maxUtility - worstQuestionableU) * riskDistribution.probabilityOfRisk(r) #print("Residual utility: " + str(sum)) if debug: print "Adjusted worst case scenarios:" print riskUtilDictAdjusted print "Sum: " + str(sum) print "Prob: " + str(prob) sumOverCombos += sum * prob #New code to put back in compromised components for next loop iteration for cc in compromisedAllPossible: if cc[0] not in compromisedComponents: if debug: print "Add back " + str(cc[0]) pyDatalog.assert_fact("compromised",str(cc[0])) #End new code if debug: print "Residual Utility:" #print sumOverCombos return sumOverCombos
indirect_manager('Sam', Y) resultado = Y.data[1] print("resultado", resultado) # + parent(bill, 'John Adams') pyDatalog.assert_fact('parent', 'bill', 'John Adams') print(pyDatalog.ask('parent(bill,X)')) # specify what an ancestor is pyDatalog.load(""" ancestor(X,Y) <= parent(X,Y) ancestor(X,Y) <= parent(X,Z) & ancestor(Z,Y) """) # prints a set with one element : the ('bill', 'John Adams') tuple W = pyDatalog.ask('parent(bill,X)') print(W.answers[0][0]) # W = pyDatalog.ask('ancestor(bill,X)') print('Bill es ancestro de:', W.answers[0][0]) # - parent(bill, 'John Adams') pyDatalog.retract_fact('parent', 'bill', 'John Adams') W = pyDatalog.ask('parent(bill,X)') if (W.__str__() != 'None'): print(W.__str__()) else: print('No hay resultados')
def cutNetworkConnection(ServiceA, ServiceB,CProvided,IProvided,AProvided): pyDatalog.retract_fact("networkConnectsTo",ServiceA,ServiceB,CProvided,IProvided,AProvided)
def test(): # test of expressions pyDatalog.load(""" + p(a) # p is a proposition """) assert pyDatalog.ask('p(a)') == set([('a',)]) pyDatalog.assert_fact('p', 'a', 'b') assert pyDatalog.ask('p(a, "b")') == set([('a', 'b')]) pyDatalog.retract_fact('p', 'a', 'b') assert pyDatalog.ask('p(a, "b")') == None """unary facts """ @pyDatalog.program() def unary(): +z() assert ask(z()) == set([()]) + p(a) # check that unary queries work assert ask(p(a)) == set([('a',)]) assert ask(p(X)) == set([('a',)]) assert ask(p(Y)) == set([('a',)]) assert ask(p(_X)) == set([('a',)]) assert ask(p(b)) == None assert ask(p(a) & p(b)) == None + p(b) assert ask(p(X), _fast=True) == set([('a',), ('b',)]) + p(b) # facts are unique assert ask(p(X)) == set([('a',), ('b',)]) - p(b) # retract a unary fact assert ask(p(X)) == set([('a',)]) - p(a) assert ask(p(X)) == None + p(a) # strings and integers + p('c') assert ask(p(c)) == set([('c',)]) + p(1) assert ask(p(1)) == set([(1,)]) + n(None) assert ask(n(X)) == set([(None,)]) assert ask(n(None)) == set([(None,)]) # spaces and uppercase in strings + farmer('Moshe dayan') + farmer('omar') assert ask(farmer(X)) == set([('Moshe dayan',), ('omar',)]) # execute queries in a python program moshe_is_a_farmer = pyDatalog.ask("farmer('Moshe dayan')") assert moshe_is_a_farmer == set([('Moshe dayan',)]) """ binary facts """ @pyDatalog.program() def binary(): + q(a, b) assert ask(q(a, b)) == set([('a', 'b')]) assert ask(q(X, b)) == set([('a', 'b')]) assert ask(q(a, Y)) == set([('a', 'b')]) assert ask(q(a, c)) == None assert ask(q(X, Y)) == set([('a', 'b')]) + q(a,c) assert ask(q(a, Y)) == set([('a', 'b'), ('a', 'c')]) - q(a,c) assert ask(q(a, Y)) == set([('a', 'b')]) assert ask(q(X, X)) == None +q(a, a) assert ask(q(X, X)) == set([('a', 'a')]) -q(a, a) """ (in)equality """ @pyDatalog.program() def equality(): assert ask(X==1) == set([(1,)]) assert ask(X==Y) == None assert ask(X==Y+1) == None assert ask((X==1) & (Y==1) & (X==Y)) == set([(1,1)]) assert ask((X==1) & (Y==2) & (X==Y-1)) == set([(1,2)]) #assert ask((X==1) & (Y==2) & (X+2==Y+1)) == set([(1,2)]) assert ask((X==2) & (Y==X/2)) == set([(2,1)]) assert ask((X==2) & (Y==X//2)) == set([(2,1)]) assert ask((X==1) & (Y==1+X)) == set([(1,2)]) assert ask((X==1) & (Y==1-X)) == set([(1,0)]) assert ask((X==1) & (Y==2*X)) == set([(1,2)]) assert ask((X==2) & (Y==2/X)) == set([(2,1)]) assert ask((X==2) & (Y==2//X)) == set([(2,1)]) """ Conjunctive queries """ @pyDatalog.program() def conjuctive(): assert ask(q(X, Y) & p(X)) == set([('a', 'b')]) assert ask(p(X) & p(a)) == set([('a',),('c',),(1,)]) assert ask(p(X) & p(Y) & (X==Y)) == set([('a', 'a'), ('c', 'c'), (1, 1)]) assert ask(p(X) & p(Y) & (X==Y) & (Y==a)) == set([('a', 'a')]) assert ask(q(X, Y)) == set([('a', 'b')]) assert ask(q(X, Y) & p(X)) == set([('a', 'b')]) @pyDatalog.program() def equality2(): assert ask((X==1) & (X<X+1)) == set([(1,)]) assert ask((X==1) & (Y==X)) == set([(1,1)]) assert ask((X==1) & (Y==X+1)) == set([(1,2)]) assert ask((X==1) & (Y==X+1) & (X<Y)) == set([(1,2)]) assert ask((X==1) & (X<1)) == None assert ask((X==1) & (X<=1)) == set([(1,)]) assert ask((X==1) & (X>1)) == None assert ask((X==1) & (X>=1)) == set([(1,)]) # assert ask(X==(1,2)) == set([((1,2), (1,2))]) assert ask(X in (1,)) == set([(1,)]) assert ask((X==1) & (X not in (2,))) == set([(1,)]) assert ask((X==1) & ~(X in (2,))) == set([(1,)]) assert ask((X==1) & (X not in (1,))) == None assert ask((X==1) & ~(X in (1,))) == None @pyDatalog.program() def equality3(): # equality (must be between parenthesis): s(X) <= (X == a) assert ask(s(X)) == set([('a',)]) s(X) <= (X == 1) assert ask(s(X)) == set([(1,), ('a',)]) s(X, Y) <= p(X) & (X == Y) assert ask(s(a, a)) == set([('a', 'a')]) assert ask(s(a, b)) == None assert ask(s(X,a)) == set([('a', 'a')]) assert ask(s(X, Y)) == set([('a', 'a'),('c', 'c'),(1, 1)]) assert pyDatalog.ask('p(a)') == set([('a',)]) """ clauses """ @pyDatalog.program() def clauses(): p2(X) <= p(X) assert ask(p2(a)) == set([('a',)]) p2(X) <= p(X) r(X, Y) <= p(X) & p(Y) assert ask(r(a, a)) == set([('a', 'a')]) assert ask(r(a, c)) == set([('a', 'c')]) r(X, b) <= p(X) assert ask(r(a, b)) == set([('a', 'b')]) - (r(X, b) <= p(X)) assert ask(r(a, b)) == None # TODO more tests # integer variable for i in range(10): + successor(i+1, i) assert ask(successor(2, 1)) == set([(2, 1)]) # built-in assert abs(-3)==3 assert math.sin(3)==math.sin(3) """ in """ pyDatalog.assert_fact('is_list', (1,2)) @pyDatalog.program() def _in(): assert ((X==1) & (X in (1,2))) == [(1,)] _in(X) <= (X in [1,2]) assert ask(_in(1)) == set([(1,)]) assert ask(_in(9)) == None assert ask(_in(X)) == set([(1,), (2,)]) _in2(X) <= is_list(Y) & (X in Y) assert ask(_in2(X)) == set([(1,), (2,)]) assert ask((Y==(1,2)) & (X==1) & (X in Y)) == set([((1, 2), 1)]) assert ask((Y==(1,2)) & (X==1) & (X in Y+(3,))) == set([((1, 2), 1)]) """ recursion """ @pyDatalog.program() def recursion(): + even(0) even(N) <= successor(N, N1) & odd(N1) odd(N) <= ~ even(N) assert ask(even(0)) == set([(0,)]) assert ask(even(X)) == set([(4,), (10,), (6,), (0,), (2,), (8,)]) assert ask(even(10)) == set([(10,)]) assert ask(odd(1)) == set([(1,)]) assert ask(odd(5)) == set([(5,)]) assert ask(even(5)) == None """ recursion with expressions """ # reset the engine pyDatalog.clear() @pyDatalog.program() def recursive_expression(): predecessor(X,Y) <= (X==Y-1) assert ask(predecessor(X,11)) == set([(10, 11)]) p(X,Z) <= (Y==Z-1) & (X==Y-1) assert ask(p(X,11)) == set([(9, 11)]) # odd and even + even(0) even(N) <= (N > 0) & odd(N-1) assert ask(even(0)) == set([(0,)]) odd(N) <= (N > 0) & ~ even(N) assert ask(even(0)) == set([(0,)]) assert ask(odd(1)) == set([(1,)]) assert ask(odd(5)) == set([(5,)]) assert ask(even(5)) == None assert ask((X==3) & odd(X+2)) == set([(3,)]) # Factorial pyDatalog.clear() @pyDatalog.program() def factorial(): # (factorial[N] == F) <= (N < 1) & (F == -factorial[-N]) # + (factorial[1]==1) # (factorial[N] == F) <= (N > 1) & (F == N*factorial[N-1]) # assert ask(factorial[1] == F) == set([(1, 1)]) # assert ask(factorial[4] == F) == set([(4, 24)]) # assert ask(factorial[-4] == F) == set([(-4, -24)]) pass # Fibonacci pyDatalog.clear() @pyDatalog.program() def fibonacci(): (fibonacci[N] == F) <= (N == 0) & (F==0) (fibonacci[N] == F) <= (N == 1) & (F==1) (fibonacci[N] == F) <= (N > 1) & (F == fibonacci[N-1]+fibonacci[N-2]) assert ask(fibonacci[1] == F) == set([(1, 1)]) assert ask(fibonacci[4] == F) == set([(4, 3)]) assert ask(fibonacci[18] == F) == set([(18, 2584)]) # string manipulation @pyDatalog.program() def _lambda(): split(X, Y,Z) <= (X == Y+'-'+Z) assert ask(split(X, 'a', 'b')) == set([('a-b', 'a', 'b')]) split(X, Y,Z) <= (Y == (lambda X: X.split('-')[0])) & (Z == (lambda X: X.split('-')[1])) assert ask(split('a-b', Y, Z)) == set([('a-b', 'a', 'b')]) assert ask(split(X, 'a', 'b')) == set([('a-b', 'a', 'b')]) (two[X]==Z) <= (Z==X+(lambda X: X)) assert ask(two['A']==Y) == set([('A','AA')]) """ negation """ @pyDatalog.program() def _negation(): +p(a, b) assert ask(~p(X, b)) == None assert ask(~p(X, c)) == set([('X', 'c')]) pyDatalog.load(""" + even(0) even(N) <= (N > 0) & (N1==N-1) & odd(N1) odd(N) <= (N2==N+2) & ~ even(N) & (N2>0) """) assert pyDatalog.ask('~ odd(7)', _fast=True) == None assert pyDatalog.ask('~ odd(2)', _fast=True) == set([(2,)]) assert pyDatalog.ask('odd(3)', _fast=True) == set([(3,)]) assert pyDatalog.ask('odd(3)' ) == set([(3,)]) assert pyDatalog.ask('odd(5)', _fast=True) == set([(5,)]) assert pyDatalog.ask('odd(5)' ) == set([(5,)]) assert pyDatalog.ask('even(5)', _fast=True) == None assert pyDatalog.ask('even(5)' ) == None """ functions """ pyDatalog.clear() @pyDatalog.program() def function(): + (f[a]==b) assert ask(f[X]==Y) == set([('a', 'b')]) assert ask(f[X]==b) == set([('a', 'b')]) #TODO remove 'b' from result assert ask(f[a]==X) == set([('a', 'b')]) assert ask(f[a]==b) == set([('a', 'b')]) + (f[a]==c) assert ask(f[a]==X) == set([('a', 'c')]) + (f[a]==a) assert ask(f[f[a]]==X) == set([('a',)]) assert ask(f[X]==f[a]) == set([('a',)]) assert ask(f[X]==f[a]+'') == set([('a',)]) - (f[a]==a) assert ask(f[f[a]]==X) == None + (f[a]==None) assert (ask(f[a]==X)) == set([('a',None)]) + (f[a]==(1,2)) assert (ask(f[a]==X)) == set([('a',(1,2))]) assert (ask(f[X]==(1,2))) == set([('a',(1,2))]) + (f[a]==c) + (f2[a,x]==b) assert ask(f2[a,x]==b) == set([('a', 'x', 'b')]) + (f2[a,x]==c) assert ask(f2[a,x]==X) == set([('a', 'x', 'c')]) g[X] = f[X]+f[X] assert(ask(g[a]==X)) == set([('a', 'cc')]) h(X,Y) <= (f[X]==Y) assert (ask(h(X,'c'))) == set([('a', 'c')]) assert (ask(h(X,Y))) == set([('a', 'c')]) @pyDatalog.program() def function_comparison(): assert ask(f[X]==Y) == set([('a', 'c')]) assert ask(f[a]<'d') == set([('c',)]) assert ask(f[a]>'a') == set([('c',)]) assert ask(f[a]>='c') == set([('c',)]) assert ask(f[a]>'c') == None assert ask(f[a]<='c') == set([('c',)]) assert ask(f[a]>'c') == None assert ask(f[a] in ['c',]) == set([('c',)]) assert ask((f[X]=='c') & (f[Y]==f[X])) == set([('a', 'a')]) assert ask((f[X]=='c') & (f[Y]==f[X]+'')) == set([('a', 'a')]) assert ask((f[X]=='c') & (f[Y]==(lambda X : 'c'))) == set([('a', 'a')]) assert ask(f[X]==Y+'') == None assert ask((Y=='c') &(f[X]==Y+'')) == set([('c', 'a')]) assert ask((Y=='c') &(f[X]<=Y+'')) == set([('c', 'a')]) assert ask((Y=='c') &(f[X]<Y+'')) == None assert ask((Y=='c') &(f[X]<'d'+Y+'')) == set([('c', 'a')]) assert ask((Y==('a','c')) & (f[X] in Y)) == set([(('a', 'c'), 'a')]) assert ask((Y==('a','c')) & (f[X] in (Y+('z',)))) == set([(('a', 'c'), 'a')]) assert ask(f[X]==f[X]+'') == set([('a',)]) @pyDatalog.program() def function_negation(): assert not(ask(~(f[a]<'d'))) assert not(ask(~(f[X]<'d'))) assert ask(~(f[a] in('d',))) """ aggregates """ pyDatalog.clear() @pyDatalog.program() def sum(): + p(a, c, 1) + p(b, b, 4) + p(a, b, 1) assert(sum(1,2)) == 3 (a_sum[X] == sum(Y, key=Z)) <= p(X, Z, Y) assert ask(a_sum[X]==Y) == set([('a', 2), ('b', 4)]) assert ask(a_sum[a]==X) == set([('a', 2)]) assert ask(a_sum[a]==2) == set([('a', 2)]) assert ask(a_sum[X]==4) == set([('b', 4)]) assert ask(a_sum[c]==X) == None assert ask((a_sum[X]==2) & (p(X, Z, Y))) == set([('a', 'c', 1), ('a', 'b', 1)]) (a_sum2[X] == sum(Y, for_each=X)) <= p(X, Z, Y) assert ask(a_sum2[a]==X) == set([('a', 1)]) (a_sum3[X] == sum(Y, key=(X,Z))) <= p(X, Z, Y) assert ask(a_sum3[X]==Y) == set([('a', 2), ('b', 4)]) assert ask(a_sum3[a]==X) == set([('a', 2)]) @pyDatalog.program() def len(): assert(len((1,2))) == 2 (a_len[X] == len(Z)) <= p(X, Z, Y) assert ask(a_len[X]==Y) == set([('a', 2), ('b', 1)]) assert ask(a_len[a]==X) == set([('a', 2)]) assert ask(a_len[X]==1) == set([('b', 1)]) assert ask(a_len[X]==5) == None (a_lenY[X] == len(Y)) <= p(X, Z, Y) assert ask(a_lenY[a]==X) == set([('a', 1)]) assert ask(a_lenY[c]==X) == None (a_len2[X,Y] == len(Z)) <= p(X, Y, Z) assert ask(a_len2[a,b]==X) == set([('a', 'b', 1)]) assert ask(a_len2[a,X]==Y) == set([('a', 'b', 1), ('a', 'c', 1)]) + q(a, c, 1) + q(a, b, 2) + q(b, b, 4) @pyDatalog.program() def concat(): (a_concat[X] == concat(Y, key=Z, sep='+')) <= q(X, Y, Z) assert ask(a_concat[X]==Y) == set([('b', 'b'), ('a', 'c+b')]) assert ask(a_concat[a]=='c+b') == set([('a', 'c+b')]) assert ask(a_concat[a]==X) == set([('a', 'c+b')]) assert ask(a_concat[X]==b) == set([('b', 'b')]) (a_concat2[X] == concat(Y, order_by=(Z,), sep='+')) <= q(X, Y, Z) assert ask(a_concat2[a]==X) == set([('a', 'c+b')]) (a_concat3[X] == concat(Y, key=(-Z,), sep='-')) <= q(X, Y, Z) assert ask(a_concat3[a]==X) == set([('a', 'b-c')]) @pyDatalog.program() def min(): assert min(1,2) == 1 (a_min[X] == min(Y, key=Z)) <= q(X, Y, Z) assert ask(a_min[X]==Y) == set([('b', 'b'), ('a', 'c')]) assert ask(a_min[a]=='c') == set([('a', 'c')]) assert ask(a_min[a]==X) == set([('a', 'c')]) assert ask(a_min[X]=='b') == set([('b', 'b')]) (a_minD[X] == min(Y, order_by=-Z)) <= q(X, Y, Z) assert ask(a_minD[a]==X) == set([('a', 'b')]) (a_min2[X, Y] == min(Z, key=(X,Y))) <= q(X, Y, Z) assert ask(a_min2[Y, b]==X) == set([('a', 'b', 2),('b', 'b', 4)]) assert ask(a_min2[Y, Y]==X) == set([('b', 'b', 4)]), "a_min2" (a_min3[Y] == min(Z, key=(-X,Z))) <= q(X, Y, Z) assert ask(a_min3[b]==Y) == set([('b', 4)]), "a_min3" @pyDatalog.program() def max(): assert max(1,2) == 2 (a_max[X] == max(Y, key=-Z)) <= q(X, Y, Z) assert ask(a_max[a]==X) == set([('a', 'c')]) (a_maxD[X] == max(Y, order_by=Z)) <= q(X, Y, Z) assert ask(a_maxD[a]==X) == set([('a', 'b')]) @pyDatalog.program() def rank(): (a_rank1[Z] == rank(for_each=Z, order_by=Z)) <= q(X, Y, Z) assert ask(a_rank1[X]==Y) == set([(1, 0), (2, 0), (4, 0)]) assert ask(a_rank1[X]==0) == set([(1, 0), (2, 0), (4, 0)]) assert ask(a_rank1[1]==X) == set([(1, 0)]) assert ask(a_rank1[1]==0) == set([(1, 0)]) assert ask(a_rank1[1]==1) == None # rank (a_rank[X,Y] == rank(for_each=(X,Y2), order_by=Z2)) <= q(X, Y, Z) & q(X,Y2,Z2) assert ask(a_rank[X,Y]==Z) == set([('a', 'b', 1), ('a', 'c', 0), ('b', 'b', 0)]) assert ask(a_rank[a,b]==1) == set([('a', 'b', 1)]) assert ask(a_rank[a,b]==Y) == set([('a', 'b', 1)]) assert ask(a_rank[a,X]==0) == set([('a', 'c', 0)]) assert ask(a_rank[a,X]==Y) == set([('a', 'b', 1), ('a', 'c', 0)]) assert ask(a_rank[X,Y]==1) == set([('a', 'b', 1)]) assert ask(a_rank[a,y]==Y) == None # reversed (b_rank[X,Y] == rank(for_each=(X,Y2), order_by=-Z2)) <= q(X, Y, Z) & q(X,Y2,Z2) assert ask(b_rank[X,Y]==Z) == set([('a', 'b', 0), ('a', 'c', 1), ('b', 'b', 0)]) assert ask(b_rank[a,b]==0) == set([('a', 'b', 0)]) assert ask(b_rank[a,b]==Y) == set([('a', 'b', 0)]) assert ask(b_rank[a,X]==1) == set([('a', 'c', 1)]) assert ask(b_rank[a,X]==Y) == set([('a', 'b', 0), ('a', 'c', 1)]) assert ask(b_rank[X,Y]==0) == set([('a', 'b', 0), ('b', 'b', 0)]) assert ask(b_rank[a,y]==Y) == None @pyDatalog.program() def running_sum(): # running_sum (a_run_sum[X,Y] == running_sum(Z2, for_each=(X,Y2), order_by=Z2)) <= q(X, Y, Z) & q(X,Y2,Z2) assert ask(a_run_sum[X,Y]==Z) == set([('a', 'b', 3), ('a', 'c', 1), ('b', 'b', 4)]) assert ask(a_run_sum[a,b]==3) == set([('a', 'b', 3)]) assert ask(a_run_sum[a,b]==Y) == set([('a', 'b', 3)]) assert ask(a_run_sum[a,X]==1) == set([('a', 'c', 1)]) assert ask(a_run_sum[a,X]==Y) == set([('a', 'b', 3), ('a', 'c', 1)]) assert ask(a_run_sum[X,Y]==4) == set([('b', 'b', 4)]) assert ask(a_run_sum[a,y]==Y) == None (b_run_sum[X,Y] == running_sum(Z2, for_each=(X,Y2), order_by=-Z2)) <= q(X, Y, Z) & q(X,Y2,Z2) assert ask(b_run_sum[X,Y]==Z) == set([('a', 'b', 2), ('a', 'c', 3), ('b', 'b', 4)]) assert ask(b_run_sum[a,b]==2) == set([('a', 'b', 2)]) assert ask(b_run_sum[a,b]==Y) == set([('a', 'b', 2)]) assert ask(b_run_sum[a,X]==3) == set([('a', 'c', 3)]) assert ask(b_run_sum[a,X]==Y) == set([('a', 'b', 2), ('a', 'c', 3)]) assert ask(b_run_sum[X,Y]==4) == set([('b', 'b', 4)]) assert ask(b_run_sum[a,y]==Y) == None """ simple in-line queries """ X = pyDatalog.Variable() assert ((X==1) >= X) == 1 assert ((X==1) & (X!=2) >= X) == 1 assert set(X._in((1,2))) == set([(1,),(2,)]) assert ((X==1) & (X._in ((1,2)))) == [(1,)] """ interface with python classes """ class A(pyDatalog.Mixin): def __init__(self, b): super(A, self).__init__() self.b = b def __repr__(self): return self.b @pyDatalog.program() # indicates that the following method contains pyDatalog clauses def _(): (A.c[X]==N) <= (A.b[X]==N) (A.len[X]==len(N)) <= (A.b[X]==N) @classmethod def _pyD_x1(cls, X): if X.is_const() and X.id.b == 'za': yield (X.id,) else: for X in pyDatalog.metaMixin.__refs__[cls]: if X.b == 'za': yield (X,) a = A('a') b = A('b') assert a.c == 'a' X, Y = pyDatalog.variables(2) assert (A.c[X]=='a') == [(a,)] assert (A.c[X]=='a')[0] == (a,) assert list(X.data) == [a] assert X.v() == a assert ((A.c[a]==X) >= X) == 'a' assert ((A.c[a]==X) & (A.c[a]==X) >= X) == 'a' assert ((A.c[a]==X) & (A.c[b]==X) >= X) == None (A.c[X]=='b') & (A.b[X]=='a') assert list(X.data) == [] (A.c[X]=='a') & (A.b[X]=='a') assert list(X.data) == [a] result = (A.c[X]=='a') & (A.b[X]=='a') assert result == [(a,)] assert (A.c[a] == 'a') == [()] assert (A.b[a] == 'a') == [()] assert (A.c[a]=='a') & (A.b[a]=='a') == [()] assert (A.b[a]=='f') == [] assert ((A.c[a]=='a') & (A.b[a]=='f')) == [] """ filters on python classes """ assert (A.b[X]!=Y) == [(a, None), (b, None)] assert (A.b[X]!='a') == [(b,)] assert (A.b[X]!='z') == [(a,), (b,)] assert (A.b[a]!='a') == [] assert list(A.b[b]!='a') == [()] assert ((A.b[b]!='a') & (A.b[b]!='z')) == [()] assert (A.b[X]<Y) == [(a, None), (b, None)] assert (A.b[X]<'a') == [] assert (A.b[X]<'z') == [(a,), (b,)] assert (A.b[a]<'b') == [()] assert (A.b[b]<'a') == [] assert ((A.b[b]<'z') & (A.b[b]!='z')) == [()] assert (A.b[X]<='a') == [(a,)] assert (A.b[X]<='z') == [(a,), (b,)] assert (A.b[a]<='b') == [()] assert (A.b[b]<='a') == [] assert ((A.b[b]<='z') & (A.b[b]!='z')) == [()] assert (A.b[X]>'a') == [(b,)] assert (A.b[X]>='a') == [(a,), (b,)] assert (A.c[X]<='a') == [(a,)] assert (A.c[X]<='a'+'') == [(a,)] assert (A.c[X]._in(('a',))) == [(a,)] assert (A.c[X]._in(('a',)+('z',))) == [(a,)] assert ((Y==('a',)) & (A.c[X]._in(Y))) == [(('a',), a)] # TODO make ' in ' work assert ((Y==('a',)) & (A.c[X]._in(Y+('z',)))) == [(('a',), a)] # TODO make ' in ' work assert (A.c[X]._in(('z',))) == [] # more complex queries assert ((Y=='a') & (A.b[X]!=Y)) == [('a', b)] # order of appearance of the variables ! assert (A.len[X]==Y) == [(b, 1), (a, 1)] assert (A.len[a]==Y) == [(1,)] """ subclass """ class Z(A): def __init__(self, z): super(Z, self).__init__(z+'a') self.z = z def __repr__(self): return self.z @pyDatalog.program() # indicates that the following method contains pyDatalog clauses def _(): (Z.w[X]==N) <= (Z.z[X]!=N) @classmethod def _pyD_query(cls, pred_name, args): if pred_name == 'Z.pred': if args[0].is_const() and args[0].id.b != 'za': yield (args[0].id,) else: for X in pyDatalog.metaMixin.__refs__[cls]: if X.b != 'za': yield (X,) else: raise AttributeError z = Z('z') assert z.z == 'z' assert (Z.z[X]=='z') == [(z,)] assert ((Z.z[X]=='z') & (Z.z[X]>'a')) == [(z,)] assert list(X.data) == [z] try: a.z == 'z' except Exception as e: e_message = e.message if hasattr(e, 'message') else e.args[0] if e_message != "Predicate without definition (or error in resolver): A.z[1]==/2": print(e_message) else: assert False try: (Z.z[a] == 'z') == None except Exception as e: e_message = e.message if hasattr(e, 'message') else e.args[0] if e_message != "Object is incompatible with the class that is queried.": print(e_message) else: assert False assert (Z.b[X]==Y) == [(z, 'za')] assert (Z.c[X]==Y) == [(z, 'za')] assert ((Z.c[X]==Y) & (Z.c[X]>'a')) == [(z, 'za')] assert (Z.c[X]>'a') == [(z,)] assert ((Z.c[X]>'a') & (A.c[X]=='za')) == [(z,)] assert (A.c[X]=='za') == [(z,)] assert (A.c[z]=='za') == [()] assert (z.b) == 'za' assert (z.c) == 'za' w = Z('w') w = Z('w') # duplicated to test __refs__[cls] assert(Z.x(X)) == [(z,)] assert not (~Z.x(z)) assert ~Z.x(w) assert ~ (Z.z[w]=='z') assert(Z.pred(X)) == [(w,)] # not duplicated ! assert(Z.pred(X) & ~ (Z.z[X]>='z')) == [(w,)] assert(Z.x(X) & ~(Z.pred(X))) == [(z,)] assert (Z.len[X]==Y) == [(w, 1), (z, 1)] assert (Z.len[z]==Y) == [(1,)] # TODO print (A.b[w]==Y) """ python resolvers """ @pyDatalog.predicate() def p(X,Y): yield (1,2) yield (2,3) assert pyDatalog.ask('p(X,Y)') == set([(1, 2), (2, 3)]) assert pyDatalog.ask('p(1,Y)') == set([(1, 2)]) assert pyDatalog.ask('p(1,2)') == set([(1, 2)]) """ error detection """ @pyDatalog.program() def _(): pass error = False try: _() except: error = True assert error def assert_error(code, message='^$'): _error = False try: pyDatalog.load(code) except Exception as e: e_message = e.message if hasattr(e, 'message') else e.args[0] # python 2 and 3 if not re.match(message, e_message): print(e_message) _error = True assert _error def assert_ask(code, message='^$'): _error = False try: pyDatalog.ask(code) except Exception as e: e_message = e.message if hasattr(e, 'message') else e.args[0] if not re.match(message, e_message): print(e_message) _error = True assert _error assert_error('ask(z(a),True)', 'Too many arguments for ask \!') assert_error('ask(z(a))', 'Predicate without definition \(or error in resolver\): z/1') assert_error("+ farmer(farmer(moshe))", "Syntax error: Literals cannot have a literal as argument : farmer\[\]") assert_error("+ manager[Mary]==John", "Left-hand side of equality must be a symbol or function, not an expression.") assert_error("manager[X]==Y <= (X==Y)", "Syntax error: please verify parenthesis around \(in\)equalities") assert_error("p(X) <= (Y==2)", "Can't create clause") assert_error("p(X) <= X==1 & X==2", "Syntax error: please verify parenthesis around \(in\)equalities") assert_error("p(X) <= (manager[X]== min(X))", "Error: argument missing in aggregate") assert_error("p(X) <= (manager[X]== max(X, order_by=X))", "Aggregation cannot appear in the body of a clause") assert_error("q(min(X, order_by=X)) <= p(X)", "Syntax error: Incorrect use of aggregation\.") assert_error("manager[X]== min(X, order_by=X) <= manager(X)", "Syntax error: please verify parenthesis around \(in\)equalities") assert_error("(manager[X]== min(X, order_by=X+2)) <= manager(X)", "order_by argument of aggregate must be variable\(s\), not expression\(s\).") assert_error("ask(X<1)", 'Error: left hand side of comparison must be bound: =X<1/1') assert_error("ask(X<Y)", 'Error: left hand side of comparison must be bound: =X<Y/2') assert_error("ask(1<Y)", 'Error: left hand side of comparison must be bound: =Y>1/1') assert_error("ask( (A.c[X]==Y) & (Z.c[X]==Y))", "TypeError: First argument of Z.c\[1\]==\('.','.'\) must be a Z, not a A ") assert_ask("A.u[X]==Y", "Predicate without definition \(or error in resolver\): A.u\[1\]==/2") assert_ask("A.u[X,Y]==Z", "Predicate without definition \(or error in resolver\): A.u\[2\]==/3") assert_error('(a_sum[X] == sum(Y, key=Y)) <= p(X, Z, Y)', "Error: Duplicate definition of aggregate function.") assert_error('(two(X)==Z) <= (Z==X+(lambda X: X))', 'Syntax error near equality: consider using brackets. two\(X\)') assert_error('p(X) <= sum(X, key=X)', 'Invalid body for clause') assert_error('ask(- manager[X]==1)', "Left-hand side of equality must be a symbol or function, not an expression.") assert_error("p(X) <= (X=={})", "unhashable type: 'dict'") """ SQL Alchemy """ from sqlalchemy import create_engine from sqlalchemy import Column, Integer, String, ForeignKey from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker, relationship engine = create_engine('sqlite:///:memory:', echo=False) # create database in memory Session = sessionmaker(bind=engine) session = Session() Base = declarative_base(cls=pyDatalog.Mixin, metaclass=pyDatalog.sqlMetaMixin) Base.session = session class Employee(Base): # --> Employee inherits from the Base class __tablename__ = 'employee' name = Column(String, primary_key=True) manager_name = Column(String, ForeignKey('employee.name')) salary = Column(Integer) def __init__(self, name, manager_name, salary): super(Employee, self).__init__() self.name = name self.manager_name = manager_name # direct manager of the employee, or None self.salary = salary # monthly salary of the employee def __repr__(self): # specifies how to display the employee return "Employee: %s" % self.name @pyDatalog.program() # --> the following function contains pyDatalog clauses def Employee(): (Employee.manager[X]==Y) <= (Employee.manager_name[X]==Z) & (Z==Employee.name[Y]) # the salary class of employee X is computed as a function of his/her salary # this statement is a logic equality, not an assignment ! Employee.salary_class[X] = Employee.salary[X]//1000 # all the indirect managers of employee X are derived from his manager, recursively Employee.indirect_manager(X,Y) <= (Employee.manager[X]==Y) & (Y != None) Employee.indirect_manager(X,Y) <= (Employee.manager[X]==Z) & Employee.indirect_manager(Z,Y) & (Y != None) # count the number of reports of X (Employee.report_count[X] == len(Y)) <= Employee.indirect_manager(Y,X) Employee.p(X,Y) <= (Y <= Employee.salary[X] + 1) Base.metadata.create_all(engine) John = Employee('John', None, 6800) Mary = Employee('Mary', 'John', 6300) Sam = Employee('Sam', 'Mary', 5900) session.add(John) session.add(Mary) session.add(Sam) session.commit() assert (John.salary_class ==6) X = pyDatalog.Variable() result = (Employee.salary[X] == 6300) # notice the similarity to a pyDatalog query assert result == [(Mary,), ] assert (X._value() == [Mary,]) # prints [Employee: Mary] assert (X.v() == Mary) # prints Employee:Mary result = (Employee.indirect_manager(Mary, X)) assert result == [(John,), ] assert (X.v() == John) # prints [Employee: John] Mary.salary_class = ((Employee.salary_class[Mary]==X) >= X) Mary.salary = 10000 assert Mary.salary_class != ((Employee.salary_class[Mary]==X) >= X) X, Y, N = pyDatalog.variables(3) result = (Employee.salary[X]==6800) & (Employee.name[X]==N) assert result == [(John,'John'), ] assert N.v() == 'John' result = (Employee.salary[X]==Employee.salary[X]) assert result == [(John,), (Mary,), (Sam,)] result = (Employee.p(X,1)) assert result == [(John,), (Mary,), (Sam,)] result = (Employee.salary[X]<Employee.salary[X]+1) assert result == [(John,), (Mary,), (Sam,)] result = (Employee.salary[John]==N) & Employee.p(John, N) assert result == [(6800,)] result = (Employee.salary[X]==6800) & (Employee.salary[X]==N) & Employee.p(X, N) assert result == [(John, 6800)] """
def mitigate(ServiceA): pyDatalog.retract_fact(compromised,ServiceA)
def __retract_user(self, user, prediction): retract_fact('user_id', user.id) retract_fact('name', user.id, user.name) retract_fact('age', user.id, user.age) retract_fact('bio', user.id, user.bio) retract_fact('distance', user.id, user.distance) retract_fact('distance_unit', user.id, user.distance_unit) retract_fact('ping_time', user.id, user.ping_time) retract_fact('birth_date', user.id, user.birth_date) for friend in user.common_friends: retract_fact('common_friend', user.id, friend) for like in user.common_likes: retract_fact('common_likes', user.id, like) retract_fact('prediction', user.id, prediction)
def borrar_sintomas(sintoma): for i in sintoma(X): pyDatalog.retract_fact(str(sintoma),str(i[0]))
def cutNetworkConnection(ServiceA, ServiceB): pyDatalog.retract_fact("networkConnectsTo",ServiceA,ServiceB)
def moveService(ServiceA,HostA,HostB): pyDatalog.retract_fact(residesOn,ServiceA,HostA) pyDatalog.assert_fact(residesOn,HostB)
def test(): # test of expressions pyDatalog.load(""" + p(a) # p is a proposition """) assert pyDatalog.ask('p(a)') == set([('a', )]) pyDatalog.assert_fact('p', 'a', 'b') assert pyDatalog.ask('p(a, "b")') == set([('a', 'b')]) pyDatalog.retract_fact('p', 'a', 'b') assert pyDatalog.ask('p(a, "b")') == None """unary facts """ @pyDatalog.program() def unary(): +z() assert ask(z()) == set([()]) +p(a) # check that unary queries work assert ask(p(a)) == set([('a', )]) assert ask(p(X)) == set([('a', )]) assert ask(p(Y)) == set([('a', )]) assert ask(p(_X)) == set([('a', )]) assert ask(p(b)) == None assert ask(p(a) & p(b)) == None +p(b) assert ask(p(X), _fast=True) == set([('a', ), ('b', )]) +p(b) # facts are unique assert ask(p(X)) == set([('a', ), ('b', )]) -p(b) # retract a unary fact assert ask(p(X)) == set([('a', )]) -p(a) assert ask(p(X)) == None +p(a) # strings and integers +p('c') assert ask(p(c)) == set([('c', )]) +p(1) assert ask(p(1)) == set([(1, )]) +n(None) assert ask(n(X)) == set([(None, )]) assert ask(n(None)) == set([(None, )]) # spaces and uppercase in strings +farmer('Moshe dayan') +farmer('omar') assert ask(farmer(X)) == set([('Moshe dayan', ), ('omar', )]) # execute queries in a python program moshe_is_a_farmer = pyDatalog.ask("farmer('Moshe dayan')") assert moshe_is_a_farmer == set([('Moshe dayan', )]) """ binary facts """ @pyDatalog.program() def binary(): +q(a, b) assert ask(q(a, b)) == set([('a', 'b')]) assert ask(q(X, b)) == set([('a', 'b')]) assert ask(q(a, Y)) == set([('a', 'b')]) assert ask(q(a, c)) == None assert ask(q(X, Y)) == set([('a', 'b')]) +q(a, c) assert ask(q(a, Y)) == set([('a', 'b'), ('a', 'c')]) -q(a, c) assert ask(q(a, Y)) == set([('a', 'b')]) assert ask(q(X, X)) == None +q(a, a) assert ask(q(X, X)) == set([('a', 'a')]) -q(a, a) """ (in)equality """ @pyDatalog.program() def equality(): assert ask(X == 1) == set([(1, )]) assert ask(X == Y) == None assert ask(X == Y + 1) == None assert ask((X == 1) & (Y == 1) & (X == Y)) == set([(1, 1)]) assert ask((X == 1) & (Y == 2) & (X == Y - 1)) == set([(1, 2)]) #assert ask((X==1) & (Y==2) & (X+2==Y+1)) == set([(1,2)]) assert ask((X == 2) & (Y == X / 2)) == set([(2, 1)]) assert ask((X == 2) & (Y == X // 2)) == set([(2, 1)]) assert ask((X == 1) & (Y == 1 + X)) == set([(1, 2)]) assert ask((X == 1) & (Y == 1 - X)) == set([(1, 0)]) assert ask((X == 1) & (Y == 2 * X)) == set([(1, 2)]) assert ask((X == 2) & (Y == 2 / X)) == set([(2, 1)]) assert ask((X == 2) & (Y == 2 // X)) == set([(2, 1)]) """ Conjunctive queries """ @pyDatalog.program() def conjuctive(): assert ask(q(X, Y) & p(X)) == set([('a', 'b')]) assert ask(p(X) & p(a)) == set([('a', ), ('c', ), (1, )]) assert ask(p(X) & p(Y) & (X == Y)) == set([('a', 'a'), ('c', 'c'), (1, 1)]) assert ask(p(X) & p(Y) & (X == Y) & (Y == a)) == set([('a', 'a')]) assert ask(q(X, Y)) == set([('a', 'b')]) assert ask(q(X, Y) & p(X)) == set([('a', 'b')]) @pyDatalog.program() def equality2(): assert ask((X == 1) & (X < X + 1)) == set([(1, )]) assert ask((X == 1) & (Y == X)) == set([(1, 1)]) assert ask((X == 1) & (Y == X + 1)) == set([(1, 2)]) assert ask((X == 1) & (Y == X + 1) & (X < Y)) == set([(1, 2)]) assert ask((X == 1) & (X < 1)) == None assert ask((X == 1) & (X <= 1)) == set([(1, )]) assert ask((X == 1) & (X > 1)) == None assert ask((X == 1) & (X >= 1)) == set([(1, )]) # assert ask(X==(1,2)) == set([((1,2), (1,2))]) assert ask(X in (1, )) == set([(1, )]) assert ask((X == 1) & (X not in (2, ))) == set([(1, )]) assert ask((X == 1) & ~(X in (2, ))) == set([(1, )]) assert ask((X == 1) & (X not in (1, ))) == None assert ask((X == 1) & ~(X in (1, ))) == None @pyDatalog.program() def equality3(): # equality (must be between parenthesis): s(X) <= (X == a) assert ask(s(X)) == set([('a', )]) s(X) <= (X == 1) assert ask(s(X)) == set([(1, ), ('a', )]) s(X, Y) <= p(X) & (X == Y) assert ask(s(a, a)) == set([('a', 'a')]) assert ask(s(a, b)) == None assert ask(s(X, a)) == set([('a', 'a')]) assert ask(s(X, Y)) == set([('a', 'a'), ('c', 'c'), (1, 1)]) assert pyDatalog.ask('p(a)') == set([('a', )]) """ clauses """ @pyDatalog.program() def clauses(): p2(X) <= p(X) assert ask(p2(a)) == set([('a', )]) p2(X) <= p(X) r(X, Y) <= p(X) & p(Y) assert ask(r(a, a)) == set([('a', 'a')]) assert ask(r(a, c)) == set([('a', 'c')]) r(X, b) <= p(X) assert ask(r(a, b)) == set([('a', 'b')]) -(r(X, b) <= p(X)) assert ask(r(a, b)) == None # TODO more tests # integer variable for i in range(10): +successor(i + 1, i) assert ask(successor(2, 1)) == set([(2, 1)]) # built-in assert abs(-3) == 3 assert math.sin(3) == math.sin(3) """ in """ pyDatalog.assert_fact('is_list', (1, 2)) @pyDatalog.program() def _in(): assert ((X == 1) & (X in (1, 2))) == [(1, )] _in(X) <= (X in [1, 2]) assert ask(_in(1)) == set([(1, )]) assert ask(_in(9)) == None assert ask(_in(X)) == set([(1, ), (2, )]) _in2(X) <= is_list(Y) & (X in Y) assert ask(_in2(X)) == set([(1, ), (2, )]) assert ask((Y == (1, 2)) & (X == 1) & (X in Y)) == set([((1, 2), 1)]) assert ask((Y == (1, 2)) & (X == 1) & (X in Y + (3, ))) == set([ ((1, 2), 1) ]) """ recursion """ @pyDatalog.program() def recursion(): +even(0) even(N) <= successor(N, N1) & odd(N1) odd(N) <= ~even(N) assert ask(even(0)) == set([(0, )]) assert ask(even(X)) == set([(4, ), (10, ), (6, ), (0, ), (2, ), (8, )]) assert ask(even(10)) == set([(10, )]) assert ask(odd(1)) == set([(1, )]) assert ask(odd(5)) == set([(5, )]) assert ask(even(5)) == None """ recursion with expressions """ # reset the engine pyDatalog.clear() @pyDatalog.program() def recursive_expression(): predecessor(X, Y) <= (X == Y - 1) assert ask(predecessor(X, 11)) == set([(10, 11)]) p(X, Z) <= (Y == Z - 1) & (X == Y - 1) assert ask(p(X, 11)) == set([(9, 11)]) # odd and even +even(0) even(N) <= (N > 0) & odd(N - 1) assert ask(even(0)) == set([(0, )]) odd(N) <= (N > 0) & ~even(N) assert ask(even(0)) == set([(0, )]) assert ask(odd(1)) == set([(1, )]) assert ask(odd(5)) == set([(5, )]) assert ask(even(5)) == None assert ask((X == 3) & odd(X + 2)) == set([(3, )]) # Factorial pyDatalog.clear() @pyDatalog.program() def factorial(): # (factorial[N] == F) <= (N < 1) & (F == -factorial[-N]) # + (factorial[1]==1) # (factorial[N] == F) <= (N > 1) & (F == N*factorial[N-1]) # assert ask(factorial[1] == F) == set([(1, 1)]) # assert ask(factorial[4] == F) == set([(4, 24)]) # assert ask(factorial[-4] == F) == set([(-4, -24)]) pass # Fibonacci pyDatalog.clear() @pyDatalog.program() def fibonacci(): (fibonacci[N] == F) <= (N == 0) & (F == 0) (fibonacci[N] == F) <= (N == 1) & (F == 1) (fibonacci[N] == F) <= (N > 1) & (F == fibonacci[N - 1] + fibonacci[N - 2]) assert ask(fibonacci[1] == F) == set([(1, 1)]) assert ask(fibonacci[4] == F) == set([(4, 3)]) assert ask(fibonacci[18] == F) == set([(18, 2584)]) # string manipulation @pyDatalog.program() def _lambda(): split(X, Y, Z) <= (X == Y + '-' + Z) assert ask(split(X, 'a', 'b')) == set([('a-b', 'a', 'b')]) split(X, Y, Z) <= (Y == (lambda X: X.split('-')[0])) & (Z == ( lambda X: X.split('-')[1])) assert ask(split('a-b', Y, Z)) == set([('a-b', 'a', 'b')]) assert ask(split(X, 'a', 'b')) == set([('a-b', 'a', 'b')]) (two[X] == Z) <= (Z == X + (lambda X: X)) assert ask(two['A'] == Y) == set([('A', 'AA')]) """ negation """ @pyDatalog.program() def _negation(): +p(a, b) assert ask(~p(X, b)) == None assert ask(~p(X, c)) == set([('X', 'c')]) pyDatalog.load(""" + even(0) even(N) <= (N > 0) & (N1==N-1) & odd(N1) odd(N) <= (N2==N+2) & ~ even(N) & (N2>0) """) assert pyDatalog.ask('~ odd(7)', _fast=True) == None assert pyDatalog.ask('~ odd(2)', _fast=True) == set([(2, )]) assert pyDatalog.ask('odd(3)', _fast=True) == set([(3, )]) assert pyDatalog.ask('odd(3)') == set([(3, )]) assert pyDatalog.ask('odd(5)', _fast=True) == set([(5, )]) assert pyDatalog.ask('odd(5)') == set([(5, )]) assert pyDatalog.ask('even(5)', _fast=True) == None assert pyDatalog.ask('even(5)') == None """ functions """ pyDatalog.clear() @pyDatalog.program() def function(): +(f[a] == b) assert ask(f[X] == Y) == set([('a', 'b')]) assert ask(f[X] == b) == set([('a', 'b') ]) #TODO remove 'b' from result assert ask(f[a] == X) == set([('a', 'b')]) assert ask(f[a] == b) == set([('a', 'b')]) +(f[a] == c) assert ask(f[a] == X) == set([('a', 'c')]) +(f[a] == a) assert ask(f[f[a]] == X) == set([('a', )]) assert ask(f[X] == f[a]) == set([('a', )]) assert ask(f[X] == f[a] + '') == set([('a', )]) -(f[a] == a) assert ask(f[f[a]] == X) == None +(f[a] == None) assert (ask(f[a] == X)) == set([('a', None)]) +(f[a] == (1, 2)) assert (ask(f[a] == X)) == set([('a', (1, 2))]) assert (ask(f[X] == (1, 2))) == set([('a', (1, 2))]) +(f[a] == c) +(f2[a, x] == b) assert ask(f2[a, x] == b) == set([('a', 'x', 'b')]) +(f2[a, x] == c) assert ask(f2[a, x] == X) == set([('a', 'x', 'c')]) g[X] = f[X] + f[X] assert (ask(g[a] == X)) == set([('a', 'cc')]) h(X, Y) <= (f[X] == Y) assert (ask(h(X, 'c'))) == set([('a', 'c')]) assert (ask(h(X, Y))) == set([('a', 'c')]) @pyDatalog.program() def function_comparison(): assert ask(f[X] == Y) == set([('a', 'c')]) assert ask(f[a] < 'd') == set([('c', )]) assert ask(f[a] > 'a') == set([('c', )]) assert ask(f[a] >= 'c') == set([('c', )]) assert ask(f[a] > 'c') == None assert ask(f[a] <= 'c') == set([('c', )]) assert ask(f[a] > 'c') == None assert ask(f[a] in [ 'c', ]) == set([('c', )]) assert ask((f[X] == 'c') & (f[Y] == f[X])) == set([('a', 'a')]) assert ask((f[X] == 'c') & (f[Y] == f[X] + '')) == set([('a', 'a')]) assert ask((f[X] == 'c') & (f[Y] == (lambda X: 'c'))) == set([('a', 'a')]) assert ask(f[X] == Y + '') == None assert ask((Y == 'c') & (f[X] == Y + '')) == set([('c', 'a')]) assert ask((Y == 'c') & (f[X] <= Y + '')) == set([('c', 'a')]) assert ask((Y == 'c') & (f[X] < Y + '')) == None assert ask((Y == 'c') & (f[X] < 'd' + Y + '')) == set([('c', 'a')]) assert ask((Y == ('a', 'c')) & (f[X] in Y)) == set([(('a', 'c'), 'a')]) assert ask((Y == ('a', 'c')) & (f[X] in (Y + ('z', )))) == set([ (('a', 'c'), 'a') ]) assert ask(f[X] == f[X] + '') == set([('a', )]) @pyDatalog.program() def function_negation(): assert not (ask(~(f[a] < 'd'))) assert not (ask(~(f[X] < 'd'))) assert ask(~(f[a] in ('d', ))) """ aggregates """ pyDatalog.clear() @pyDatalog.program() def sum(): +p(a, c, 1) +p(b, b, 4) +p(a, b, 1) assert (sum(1, 2)) == 3 (a_sum[X] == sum(Y, key=Z)) <= p(X, Z, Y) assert ask(a_sum[X] == Y) == set([('a', 2), ('b', 4)]) assert ask(a_sum[a] == X) == set([('a', 2)]) assert ask(a_sum[a] == 2) == set([('a', 2)]) assert ask(a_sum[X] == 4) == set([('b', 4)]) assert ask(a_sum[c] == X) == None assert ask((a_sum[X] == 2) & (p(X, Z, Y))) == set([('a', 'c', 1), ('a', 'b', 1)]) (a_sum2[X] == sum(Y, for_each=X)) <= p(X, Z, Y) assert ask(a_sum2[a] == X) == set([('a', 1)]) (a_sum3[X] == sum(Y, key=(X, Z))) <= p(X, Z, Y) assert ask(a_sum3[X] == Y) == set([('a', 2), ('b', 4)]) assert ask(a_sum3[a] == X) == set([('a', 2)]) @pyDatalog.program() def len(): assert (len((1, 2))) == 2 (a_len[X] == len(Z)) <= p(X, Z, Y) assert ask(a_len[X] == Y) == set([('a', 2), ('b', 1)]) assert ask(a_len[a] == X) == set([('a', 2)]) assert ask(a_len[X] == 1) == set([('b', 1)]) assert ask(a_len[X] == 5) == None (a_lenY[X] == len(Y)) <= p(X, Z, Y) assert ask(a_lenY[a] == X) == set([('a', 1)]) assert ask(a_lenY[c] == X) == None (a_len2[X, Y] == len(Z)) <= p(X, Y, Z) assert ask(a_len2[a, b] == X) == set([('a', 'b', 1)]) assert ask(a_len2[a, X] == Y) == set([('a', 'b', 1), ('a', 'c', 1)]) +q(a, c, 1) +q(a, b, 2) +q(b, b, 4) @pyDatalog.program() def concat(): (a_concat[X] == concat(Y, key=Z, sep='+')) <= q(X, Y, Z) assert ask(a_concat[X] == Y) == set([('b', 'b'), ('a', 'c+b')]) assert ask(a_concat[a] == 'c+b') == set([('a', 'c+b')]) assert ask(a_concat[a] == X) == set([('a', 'c+b')]) assert ask(a_concat[X] == b) == set([('b', 'b')]) (a_concat2[X] == concat(Y, order_by=(Z, ), sep='+')) <= q(X, Y, Z) assert ask(a_concat2[a] == X) == set([('a', 'c+b')]) (a_concat3[X] == concat(Y, key=(-Z, ), sep='-')) <= q(X, Y, Z) assert ask(a_concat3[a] == X) == set([('a', 'b-c')]) @pyDatalog.program() def min(): assert min(1, 2) == 1 (a_min[X] == min(Y, key=Z)) <= q(X, Y, Z) assert ask(a_min[X] == Y) == set([('b', 'b'), ('a', 'c')]) assert ask(a_min[a] == 'c') == set([('a', 'c')]) assert ask(a_min[a] == X) == set([('a', 'c')]) assert ask(a_min[X] == 'b') == set([('b', 'b')]) (a_minD[X] == min(Y, order_by=-Z)) <= q(X, Y, Z) assert ask(a_minD[a] == X) == set([('a', 'b')]) (a_min2[X, Y] == min(Z, key=(X, Y))) <= q(X, Y, Z) assert ask(a_min2[Y, b] == X) == set([('a', 'b', 2), ('b', 'b', 4)]) assert ask(a_min2[Y, Y] == X) == set([('b', 'b', 4)]), "a_min2" (a_min3[Y] == min(Z, key=(-X, Z))) <= q(X, Y, Z) assert ask(a_min3[b] == Y) == set([('b', 4)]), "a_min3" @pyDatalog.program() def max(): assert max(1, 2) == 2 (a_max[X] == max(Y, key=-Z)) <= q(X, Y, Z) assert ask(a_max[a] == X) == set([('a', 'c')]) (a_maxD[X] == max(Y, order_by=Z)) <= q(X, Y, Z) assert ask(a_maxD[a] == X) == set([('a', 'b')]) @pyDatalog.program() def rank(): (a_rank1[Z] == rank(for_each=Z, order_by=Z)) <= q(X, Y, Z) assert ask(a_rank1[X] == Y) == set([(1, 0), (2, 0), (4, 0)]) assert ask(a_rank1[X] == 0) == set([(1, 0), (2, 0), (4, 0)]) assert ask(a_rank1[1] == X) == set([(1, 0)]) assert ask(a_rank1[1] == 0) == set([(1, 0)]) assert ask(a_rank1[1] == 1) == None # rank (a_rank[X, Y] == rank(for_each=(X, Y2), order_by=Z2)) <= q(X, Y, Z) & q(X, Y2, Z2) assert ask(a_rank[X, Y] == Z) == set([('a', 'b', 1), ('a', 'c', 0), ('b', 'b', 0)]) assert ask(a_rank[a, b] == 1) == set([('a', 'b', 1)]) assert ask(a_rank[a, b] == Y) == set([('a', 'b', 1)]) assert ask(a_rank[a, X] == 0) == set([('a', 'c', 0)]) assert ask(a_rank[a, X] == Y) == set([('a', 'b', 1), ('a', 'c', 0)]) assert ask(a_rank[X, Y] == 1) == set([('a', 'b', 1)]) assert ask(a_rank[a, y] == Y) == None # reversed (b_rank[X, Y] == rank(for_each=(X, Y2), order_by=-Z2)) <= q(X, Y, Z) & q(X, Y2, Z2) assert ask(b_rank[X, Y] == Z) == set([('a', 'b', 0), ('a', 'c', 1), ('b', 'b', 0)]) assert ask(b_rank[a, b] == 0) == set([('a', 'b', 0)]) assert ask(b_rank[a, b] == Y) == set([('a', 'b', 0)]) assert ask(b_rank[a, X] == 1) == set([('a', 'c', 1)]) assert ask(b_rank[a, X] == Y) == set([('a', 'b', 0), ('a', 'c', 1)]) assert ask(b_rank[X, Y] == 0) == set([('a', 'b', 0), ('b', 'b', 0)]) assert ask(b_rank[a, y] == Y) == None @pyDatalog.program() def running_sum(): # running_sum (a_run_sum[X, Y] == running_sum( Z2, for_each=(X, Y2), order_by=Z2)) <= q(X, Y, Z) & q(X, Y2, Z2) assert ask(a_run_sum[X, Y] == Z) == set([('a', 'b', 3), ('a', 'c', 1), ('b', 'b', 4)]) assert ask(a_run_sum[a, b] == 3) == set([('a', 'b', 3)]) assert ask(a_run_sum[a, b] == Y) == set([('a', 'b', 3)]) assert ask(a_run_sum[a, X] == 1) == set([('a', 'c', 1)]) assert ask(a_run_sum[a, X] == Y) == set([('a', 'b', 3), ('a', 'c', 1)]) assert ask(a_run_sum[X, Y] == 4) == set([('b', 'b', 4)]) assert ask(a_run_sum[a, y] == Y) == None (b_run_sum[X, Y] == running_sum( Z2, for_each=(X, Y2), order_by=-Z2)) <= q(X, Y, Z) & q(X, Y2, Z2) assert ask(b_run_sum[X, Y] == Z) == set([('a', 'b', 2), ('a', 'c', 3), ('b', 'b', 4)]) assert ask(b_run_sum[a, b] == 2) == set([('a', 'b', 2)]) assert ask(b_run_sum[a, b] == Y) == set([('a', 'b', 2)]) assert ask(b_run_sum[a, X] == 3) == set([('a', 'c', 3)]) assert ask(b_run_sum[a, X] == Y) == set([('a', 'b', 2), ('a', 'c', 3)]) assert ask(b_run_sum[X, Y] == 4) == set([('b', 'b', 4)]) assert ask(b_run_sum[a, y] == Y) == None """ simple in-line queries """ X = pyDatalog.Variable() assert ((X == 1) >= X) == 1 assert ((X == 1) & (X != 2) >= X) == 1 assert set(X._in((1, 2))) == set([(1, ), (2, )]) assert ((X == 1) & (X._in((1, 2)))) == [(1, )] """ interface with python classes """ class A(pyDatalog.Mixin): def __init__(self, b): super(A, self).__init__() self.b = b def __repr__(self): return self.b @pyDatalog.program( ) # indicates that the following method contains pyDatalog clauses def _(): (A.c[X] == N) <= (A.b[X] == N) (A.len[X] == len(N)) <= (A.b[X] == N) @classmethod def _pyD_x1(cls, X): if X.is_const() and X.id.b == 'za': yield (X.id, ) else: for X in pyDatalog.metaMixin.__refs__[cls]: if X.b == 'za': yield (X, ) a = A('a') b = A('b') assert a.c == 'a' X, Y = pyDatalog.variables(2) assert (A.c[X] == 'a') == [(a, )] assert (A.c[X] == 'a')[0] == (a, ) assert list(X.data) == [a] assert X.v() == a assert ((A.c[a] == X) >= X) == 'a' assert ((A.c[a] == X) & (A.c[a] == X) >= X) == 'a' assert ((A.c[a] == X) & (A.c[b] == X) >= X) == None (A.c[X] == 'b') & (A.b[X] == 'a') assert list(X.data) == [] (A.c[X] == 'a') & (A.b[X] == 'a') assert list(X.data) == [a] result = (A.c[X] == 'a') & (A.b[X] == 'a') assert result == [(a, )] assert (A.c[a] == 'a') == [()] assert (A.b[a] == 'a') == [()] assert (A.c[a] == 'a') & (A.b[a] == 'a') == [()] assert (A.b[a] == 'f') == [] assert ((A.c[a] == 'a') & (A.b[a] == 'f')) == [] """ filters on python classes """ assert (A.b[X] != Y) == [(a, None), (b, None)] assert (A.b[X] != 'a') == [(b, )] assert (A.b[X] != 'z') == [(a, ), (b, )] assert (A.b[a] != 'a') == [] assert list(A.b[b] != 'a') == [()] assert ((A.b[b] != 'a') & (A.b[b] != 'z')) == [()] assert (A.b[X] < Y) == [(a, None), (b, None)] assert (A.b[X] < 'a') == [] assert (A.b[X] < 'z') == [(a, ), (b, )] assert (A.b[a] < 'b') == [()] assert (A.b[b] < 'a') == [] assert ((A.b[b] < 'z') & (A.b[b] != 'z')) == [()] assert (A.b[X] <= 'a') == [(a, )] assert (A.b[X] <= 'z') == [(a, ), (b, )] assert (A.b[a] <= 'b') == [()] assert (A.b[b] <= 'a') == [] assert ((A.b[b] <= 'z') & (A.b[b] != 'z')) == [()] assert (A.b[X] > 'a') == [(b, )] assert (A.b[X] >= 'a') == [(a, ), (b, )] assert (A.c[X] <= 'a') == [(a, )] assert (A.c[X] <= 'a' + '') == [(a, )] assert (A.c[X]._in(('a', ))) == [(a, )] assert (A.c[X]._in(('a', ) + ('z', ))) == [(a, )] assert ((Y == ('a', )) & (A.c[X]._in(Y))) == [(('a', ), a) ] # TODO make ' in ' work assert ((Y == ('a', )) & (A.c[X]._in(Y + ('z', )))) == [ (('a', ), a) ] # TODO make ' in ' work assert (A.c[X]._in(('z', ))) == [] # more complex queries assert ((Y == 'a') & (A.b[X] != Y)) == [ ('a', b) ] # order of appearance of the variables ! assert (A.len[X] == Y) == [(b, 1), (a, 1)] assert (A.len[a] == Y) == [(1, )] """ subclass """ class Z(A): def __init__(self, z): super(Z, self).__init__(z + 'a') self.z = z def __repr__(self): return self.z @pyDatalog.program( ) # indicates that the following method contains pyDatalog clauses def _(): (Z.w[X] == N) <= (Z.z[X] != N) @classmethod def _pyD_query(cls, pred_name, args): if pred_name == 'Z.pred': if args[0].is_const() and args[0].id.b != 'za': yield (args[0].id, ) else: for X in pyDatalog.metaMixin.__refs__[cls]: if X.b != 'za': yield (X, ) else: raise AttributeError z = Z('z') assert z.z == 'z' assert (Z.z[X] == 'z') == [(z, )] assert ((Z.z[X] == 'z') & (Z.z[X] > 'a')) == [(z, )] assert list(X.data) == [z] try: a.z == 'z' except Exception as e: e_message = e.message if hasattr(e, 'message') else e.args[0] if e_message != "Predicate without definition (or error in resolver): A.z[1]==/2": print(e_message) else: assert False try: (Z.z[a] == 'z') == None except Exception as e: e_message = e.message if hasattr(e, 'message') else e.args[0] if e_message != "Object is incompatible with the class that is queried.": print(e_message) else: assert False assert (Z.b[X] == Y) == [(z, 'za')] assert (Z.c[X] == Y) == [(z, 'za')] assert ((Z.c[X] == Y) & (Z.c[X] > 'a')) == [(z, 'za')] assert (Z.c[X] > 'a') == [(z, )] assert ((Z.c[X] > 'a') & (A.c[X] == 'za')) == [(z, )] assert (A.c[X] == 'za') == [(z, )] assert (A.c[z] == 'za') == [()] assert (z.b) == 'za' assert (z.c) == 'za' w = Z('w') w = Z('w') # duplicated to test __refs__[cls] assert (Z.x(X)) == [(z, )] assert not (~Z.x(z)) assert ~Z.x(w) assert ~(Z.z[w] == 'z') assert (Z.pred(X)) == [(w, )] # not duplicated ! assert (Z.pred(X) & ~(Z.z[X] >= 'z')) == [(w, )] assert (Z.x(X) & ~(Z.pred(X))) == [(z, )] assert (Z.len[X] == Y) == [(w, 1), (z, 1)] assert (Z.len[z] == Y) == [(1, )] # TODO print (A.b[w]==Y) """ python resolvers """ @pyDatalog.predicate() def p(X, Y): yield (1, 2) yield (2, 3) assert pyDatalog.ask('p(X,Y)') == set([(1, 2), (2, 3)]) assert pyDatalog.ask('p(1,Y)') == set([(1, 2)]) assert pyDatalog.ask('p(1,2)') == set([(1, 2)]) """ error detection """ @pyDatalog.program() def _(): pass error = False try: _() except: error = True assert error def assert_error(code, message='^$'): _error = False try: pyDatalog.load(code) except Exception as e: e_message = e.message if hasattr( e, 'message') else e.args[0] # python 2 and 3 if not re.match(message, e_message): print(e_message) _error = True assert _error def assert_ask(code, message='^$'): _error = False try: pyDatalog.ask(code) except Exception as e: e_message = e.message if hasattr(e, 'message') else e.args[0] if not re.match(message, e_message): print(e_message) _error = True assert _error assert_error('ask(z(a),True)', 'Too many arguments for ask \!') assert_error('ask(z(a))', 'Predicate without definition \(or error in resolver\): z/1') assert_error( "+ farmer(farmer(moshe))", "Syntax error: Literals cannot have a literal as argument : farmer\[\]" ) assert_error( "+ manager[Mary]==John", "Left-hand side of equality must be a symbol or function, not an expression." ) assert_error( "manager[X]==Y <= (X==Y)", "Syntax error: please verify parenthesis around \(in\)equalities") assert_error("p(X) <= (Y==2)", "Can't create clause") assert_error( "p(X) <= X==1 & X==2", "Syntax error: please verify parenthesis around \(in\)equalities") assert_error("p(X) <= (manager[X]== min(X))", "Error: argument missing in aggregate") assert_error("p(X) <= (manager[X]== max(X, order_by=X))", "Aggregation cannot appear in the body of a clause") assert_error("q(min(X, order_by=X)) <= p(X)", "Syntax error: Incorrect use of aggregation\.") assert_error( "manager[X]== min(X, order_by=X) <= manager(X)", "Syntax error: please verify parenthesis around \(in\)equalities") assert_error( "(manager[X]== min(X, order_by=X+2)) <= manager(X)", "order_by argument of aggregate must be variable\(s\), not expression\(s\)." ) assert_error("ask(X<1)", 'Error: left hand side of comparison must be bound: =X<1/1') assert_error("ask(X<Y)", 'Error: left hand side of comparison must be bound: =X<Y/2') assert_error("ask(1<Y)", 'Error: left hand side of comparison must be bound: =Y>1/1') assert_error( "ask( (A.c[X]==Y) & (Z.c[X]==Y))", "TypeError: First argument of Z.c\[1\]==\('.','.'\) must be a Z, not a A " ) assert_ask( "A.u[X]==Y", "Predicate without definition \(or error in resolver\): A.u\[1\]==/2") assert_ask( "A.u[X,Y]==Z", "Predicate without definition \(or error in resolver\): A.u\[2\]==/3") assert_error('(a_sum[X] == sum(Y, key=Y)) <= p(X, Z, Y)', "Error: Duplicate definition of aggregate function.") assert_error( '(two(X)==Z) <= (Z==X+(lambda X: X))', 'Syntax error near equality: consider using brackets. two\(X\)') assert_error('p(X) <= sum(X, key=X)', 'Invalid body for clause') assert_error( 'ask(- manager[X]==1)', "Left-hand side of equality must be a symbol or function, not an expression." ) assert_error("p(X) <= (X=={})", "unhashable type: 'dict'") """ SQL Alchemy """ from sqlalchemy import create_engine from sqlalchemy import Column, Integer, String, ForeignKey from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker, relationship engine = create_engine('sqlite:///:memory:', echo=False) # create database in memory Session = sessionmaker(bind=engine) session = Session() Base = declarative_base(cls=pyDatalog.Mixin, metaclass=pyDatalog.sqlMetaMixin) Base.session = session class Employee(Base): # --> Employee inherits from the Base class __tablename__ = 'employee' name = Column(String, primary_key=True) manager_name = Column(String, ForeignKey('employee.name')) salary = Column(Integer) def __init__(self, name, manager_name, salary): super(Employee, self).__init__() self.name = name self.manager_name = manager_name # direct manager of the employee, or None self.salary = salary # monthly salary of the employee def __repr__(self): # specifies how to display the employee return "Employee: %s" % self.name @pyDatalog.program( ) # --> the following function contains pyDatalog clauses def Employee(): (Employee.manager[X] == Y) <= (Employee.manager_name[X] == Z) & (Z == Employee.name[Y]) # the salary class of employee X is computed as a function of his/her salary # this statement is a logic equality, not an assignment ! Employee.salary_class[X] = Employee.salary[X] // 1000 # all the indirect managers of employee X are derived from his manager, recursively Employee.indirect_manager( X, Y) <= (Employee.manager[X] == Y) & (Y != None) Employee.indirect_manager( X, Y) <= (Employee.manager[X] == Z) & Employee.indirect_manager(Z, Y) & (Y != None) # count the number of reports of X (Employee.report_count[X] == len(Y)) <= Employee.indirect_manager( Y, X) Employee.p(X, Y) <= (Y <= Employee.salary[X] + 1) Base.metadata.create_all(engine) John = Employee('John', None, 6800) Mary = Employee('Mary', 'John', 6300) Sam = Employee('Sam', 'Mary', 5900) session.add(John) session.add(Mary) session.add(Sam) session.commit() assert (John.salary_class == 6) X = pyDatalog.Variable() result = (Employee.salary[X] == 6300 ) # notice the similarity to a pyDatalog query assert result == [ (Mary, ), ] assert (X._value() == [ Mary, ]) # prints [Employee: Mary] assert (X.v() == Mary) # prints Employee:Mary result = (Employee.indirect_manager(Mary, X)) assert result == [ (John, ), ] assert (X.v() == John) # prints [Employee: John] Mary.salary_class = ((Employee.salary_class[Mary] == X) >= X) Mary.salary = 10000 assert Mary.salary_class != ((Employee.salary_class[Mary] == X) >= X) X, Y, N = pyDatalog.variables(3) result = (Employee.salary[X] == 6800) & (Employee.name[X] == N) assert result == [ (John, 'John'), ] assert N.v() == 'John' result = (Employee.salary[X] == Employee.salary[X]) assert result == [(John, ), (Mary, ), (Sam, )] result = (Employee.p(X, 1)) assert result == [(John, ), (Mary, ), (Sam, )] result = (Employee.salary[X] < Employee.salary[X] + 1) assert result == [(John, ), (Mary, ), (Sam, )] result = (Employee.salary[John] == N) & Employee.p(John, N) assert result == [(6800, )] result = (Employee.salary[X] == 6800) & (Employee.salary[X] == N) & Employee.p(X, N) assert result == [(John, 6800)] """
def tryTacticOptions(maxTactics,debug=False): #Initialize utilities dictionary for each of the tactic options utilities = {} #if debug: #bestUtility = float(0) originalUtil = float(determineResidualUtility()) bestUtility = originalUtil print("Original utility: " + str(originalUtil)) utilities[""] = originalUtil #For progress tracking numOptions = 0 for numTactics in range(1,maxTactics+1): numOptions += len(list(itertools.combinations(tacticsIter(),numTactics))) #TODO? Put following line back in #utilities[None] = float(determineResidualUtility()) setNumber = 0 print("Tactic options: " + str(numOptions)) #TODO Extra double-check to ensure logic is correct here...should be all possible vulnerabilities #TODO Also try zero tactics! Maybe current config is the best for numTactics in range(1,maxTactics+1): #Creator iterator of tactic sets to try tacticOptions = itertools.combinations(tacticsIter(),numTactics) #if numTactics == 0: # tacticOptions = iter([[]]) for tacticSet in tacticOptions: #Print status setNumber += 1 percentComplete = 100 * setNumber / numOptions print(str(percentComplete) + "%...\r"), sys.stdout.flush() #print "***************************************" #print "Tactic Set:" #print tacticSet #Apply the tactics in the selected tactic set for tactic in tacticSet: #print tactic args = tactic[1:] if tactic[0] == "retract": pyDatalog.retract_fact(*args) if bidirectional: if tactic[1] == "networkConnectsTo": #retract the symmetric connection #TODO Did we already do this in the code above? Is it a safe assumption that the reversed connection has the same CIA attributes? #Changed argsRev = [args[0],args[2],args[1],args[3],args[4],args[5]] pyDatalog.retract_fact(*argsRev) else: pyDatalog.assert_fact(*args) #Determine utility and put in dictionary #This weighted value includes cost of tactic: A cost of 1 per tactic tsStr = str(sorted(list(tacticSet))) #key residualUtil = float(determineResidualUtility() - numTactics) #value if debug and residualUtil>=bestUtility: print("New optimal: " + str(residualUtil) + str(tacticSet)) bestUtility = residualUtil #TODO The check for multiple tactics may not be necessary in some versions of this code if tsStr in utilities: #print("MULTIPLE: " + tsStr + ": " + str(residualUtil)) if residualUtil < utilities[tsStr]: utilities[tsStr] = residualUtil else: utilities[tsStr] = residualUtil #Undo the tactic application for tactic in tacticSet: args = tactic[1:] if tactic[0] == "assert": pyDatalog.retract_fact(*args) #Changed #TODO Is this a safe assumption that the reversed connection has the same CIA attributes? if (tactic[1] == "networkConnectsToWithAttributes") and (bidirectional == True): pyDatalog.retract_fact(args[0],args[2],args[1],args[3],args[4],args[5]) else: pyDatalog.assert_fact(*args) #pprint.pprint(utilities) #Find the best performing tactic set in the dictionary created earlier bestOptions(utilities)
def forgetData(self, estereotipo, nombre): pyDatalog.retract_fact(estereotipo, nombre)