示例#1
0
    def __init__(self, config_file=None, input_table=None, **kwargs):

        self.table_config = TableDataSource(config_file=config_file)
        self.input_table = input_table
        self.logic_engine = logic_engine
        Logic(self.logic_engine)
        super(GraphNode, self).__init__()
示例#2
0
    def leer_perfil(self, datos):
        str_experto = datos[0]
        str_medico = ""
        
        if(datos[1] == "si" and datos[2]=="si" and datos[3] == "si"):
            str_medico = "si"
        elif(datos[1] == "si" and datos[2]=="no" and datos[3] == "si"):
            str_medico = "si"
        else:
            str_medico = "no"

        Logic(self.conocimiento)
        try:
            pyDatalog.assert_fact("resp_experto",str_experto)
            pyDatalog.assert_fact("resp_medico",str_medico)

            q = "tipo_usuario(X,Y)"

            rq_3 = pyDatalog.ask(q)

            arr_resp = [
                rq_3.answers[0][0],
                rq_3.answers[0][1]
            ]

            return arr_resp
        except:
            print("error")
示例#3
0
    def assertPatient(self, name, age, sick):
        Logic(self.first)
        #metodo que agrega un paciente a la base de conocimiento
        pyDatalog.assert_fact('age', name, age)
        pyDatalog.assert_fact('sick_of', name, sick)

        tq2 = "sick_of(" + name + ",Y)"
        tq3 = "require_limits_temperature(" + name + ",A,B)"
        tq4 = "require_temperature(" + name + ",A)"
        tq5 = "is_in_stage(" + name + ",A)"
        q2 = pyDatalog.ask(tq2)
        q3 = pyDatalog.ask(tq3)
        q4 = pyDatalog.ask(tq4)
        q5 = pyDatalog.ask(tq5)
        db = self.con.conexion()
        coleccion = db['sensor_temp']
        query = {"activo": "t"}
        data = {
            "$set": {
                "act0_status": "f",
                "act1_status": "f",
                "enfermedad": q2.answers[0][0],
                "temp_min": int(q3.answers[0][1]),
                "temp_max": int(q3.answers[0][0]),
                "temp_pref": int(q4.answers[0][0]),
                "stage": q5.answers[0][0]
            }
        }
        coleccion.update_one(query, data)
        print("mongodb updated")

        return 'saved'
示例#4
0
def dump_facts():
    m = Logic(True)
    for v in sorted(m.Db.values(), key=str):
        if v.name[0] in 'abcdefghijklmnopqrstuvwxyz' and '==' not in v.name:
            for c in v.db.values():
                if not c.body:
                    print('+', c.head)
示例#5
0
def queen(thread_name):
    n = int(random.random() * 8) + 1 # 1 to 8
    Logic()
    
    queens(X0)                      <= (X0._in(range(n)))
    queens(X0,X1)                   <= queens(X0)                   & next_queen(X0,X1)
    queens(X0,X1,X2)                <= queens(X0,X1)                & next_queen(X0,X1,X2)
    queens(X0,X1,X2,X3)             <= queens(X0,X1,X2)             & next_queen(X0,X1,X2,X3)
    queens(X0,X1,X2,X3,X4)          <= queens(X0,X1,X2,X3)          & next_queen(X0,X1,X2,X3,X4)
    queens(X0,X1,X2,X3,X4,X5)       <= queens(X0,X1,X2,X3,X4)       & next_queen(X0,X1,X2,X3,X4,X5)
    queens(X0,X1,X2,X3,X4,X5,X6)    <= queens(X0,X1,X2,X3,X4,X5)    & next_queen(X0,X1,X2,X3,X4,X5,X6)
    queens(X0,X1,X2,X3,X4,X5,X6,X7) <= queens(X0,X1,X2,X3,X4,X5,X6) & next_queen(X0,X1,X2,X3,X4,X5,X6,X7)
    
    next_queen(X0,X1)                   <= queens(X1)                       & ok(X0,1,X1)
    next_queen(X0,X1,X2)                <= next_queen(X1,X2)                & ok(X0,2,X2)
    next_queen(X0,X1,X2,X3)             <= next_queen(X1,X2,X3)             & ok(X0,3,X3)
    next_queen(X0,X1,X2,X3,X4)          <= next_queen(X1,X2,X3,X4)          & ok(X0,4,X4)
    next_queen(X0,X1,X2,X3,X4,X5)       <= next_queen(X1,X2,X3,X4,X5)       & ok(X0,5,X5)
    next_queen(X0,X1,X2,X3,X4,X5,X6)    <= next_queen(X1,X2,X3,X4,X5,X6)    & ok(X0,6,X6)
    next_queen(X0,X1,X2,X3,X4,X5,X6,X7) <= next_queen(X1,X2,X3,X4,X5,X6,X7) & ok(X0,7,X7)
    
    query = pyDatalog.ask("queens(%s)" % (",".join("X%s" % i for i in range(n))))
    answers = query.answers if query else [] 
    result = "OK" if len(answers) == [1,0,0,2,10,4,40,92][n-1] else "* not OK ! *"
    print("%s : n = %d %s " % (thread_name, n, result))
示例#6
0
    def __init__(self):
        print('Base de conocimientos')

        self.conocimiento=Logic(True)
    
        pyDatalog.load("""
            + usar_computadora('experto','si')
            + usar_computadora('inexperto','no')

            es_experto(Y) <= usar_computadora(Y,Z) & resp_experto(Z)

            # Es médico
            + terminologia('medico','si')
            + pacientes('medico','si')
            + recetar('medico','si')

            # No es médico
            + terminologia('persona','no')
            + pacientes('persona','no')
            + recetar('persona','no')

            es_medico(X) <= terminologia(X,A) & pacientes(X,A) & recetar(X,A) & resp_medico(A)
            

            tipo_usuario(X,Y) <= es_medico(X) & es_experto(Y)
        """)
示例#7
0
def dump_all():
    m = Logic(True)
    for v in sorted(m.Db.values(), key=str):
        for c in v.db.values():
            if not c.body:
                print('+', c.head)
            else:
                print(c.head, '<=', c.body)
示例#8
0
 def readPatient(self, name):
     Logic(self.first)
     #metodo que consulta los datos del paciente actualmente presente en la base de conocimiento
     returnvalue = ""
     try:
         tq1 = "age(" + name + ",Y)"
         tq2 = "sick_of(" + name + ",Y)"
         q1 = pyDatalog.ask(tq1)
         q2 = pyDatalog.ask(tq2)
         returnvalue = "{'name':'" + name + "','age':'" + q1.answers[0][
             0] + "','sick':'" + q2.answers[0][0] + "'}"
     except:
         returnvalue = "NOPATIENT"
     return returnvalue
示例#9
0
 def retractPatient(self, name):
     Logic(self.first)
     #Método para olvidar el paciente, recupera sus datos de la base de conocimiento y lo elimina
     returnvalue = ''
     try:
         tq1 = "age(" + name + ",Y)"
         tq2 = "sick_of(" + name + ",Y)"
         q1 = pyDatalog.ask(tq1)
         q2 = pyDatalog.ask(tq2)
         pyDatalog.retract_fact('age', name, q1.answers[0][0])
         pyDatalog.retract_fact('sick_of', name, q2.answers[0][0])
         return 'retracted'
     except:
         returnvalue = "NOPATIENT"
     return returnvalue
示例#10
0
def createAttackScenarioLogic(currentAttackScenario):
    #for currentAttackScenario in attackScenarios:
        #Clear all vulnerabilities and add only those for a specific attack
        Logic()
        setup()
        #serviceTuple is a tuple of services on the attack path
        serviceTuple = currentAttackScenario[0]
        #we have to add the final (target) service to the end of the path
        serviceTuple = serviceTuple + (targetService,)
        #vulnerabilityTuple is a tuple of the vulnerabilities exploited along the attack path
        vulnerabilityTuple = currentAttackScenario[1]
        #print("Creating Attack Scenario...")
        for s,v  in zip(serviceTuple,vulnerabilityTuple):
            if v != "legitimate":
                #print("Adding Fact: " + v + "(" + s + ",0)")
                pyDatalog.assert_fact(v,s,0)
示例#11
0
    def retractpreferences(self):
        Logic(self.first)
        returnvalue = ''
        try:
            db = self.con.conexion()
            coleccion = db['sensor_temp']
            query = {"activo": "t"}
            req = list(coleccion.find(query))[0]

            tq1 = "prefer_temperature(" + req['enfermedad'] + "," + req[
                'stage'] + ",X)"
            q1 = pyDatalog.ask(tq1)

            pyDatalog.retract_fact('prefer_temperature', req['enfermedad'],
                                   req['stage'], q1.answers[0], [0])
            pyDatalog.assert_fact('prefer_temperature', req['enfermedad'],
                                  req['stage'], req['temp_pref'])
            return 'retracted'
        except:
            returnvalue = "NOPATIENT"
        return returnvalue
示例#12
0
def queen(thread_name, logic8, logic, n):
    print("start %s" % thread_name)
    Logic(logic8)
    check_logic(thread_name, 8)
    Logic(logic)
    check_logic(thread_name, n)
示例#13
0
                                      ][n - 1] else answers
    print("%s : n = %d %s " % (thread_name, n, result))


def queen(thread_name, logic8, logic, n):
    print("start %s" % thread_name)
    Logic(logic8)
    check_logic(thread_name, 8)
    Logic(logic)
    check_logic(thread_name, n)


# create queen resolution logic for N = 1 to 8
logic = []
for i in range(8):
    logic.append(Logic())
    add_logic(i + 1)

Logic(logic[7])
check_logic("Main", 8)

Logic(logic[4])
check_logic("Main", 5)

# start 20 threads, each with a randomly-chosen logic
for i in range(20):
    n = int(random.random() * 8) + 1  # 1 to 8
    t = threading.Thread(target=queen,
                         args=("thread %02d" % i, (logic[7]), logic[n - 1], n))
    t.start()
示例#14
0
 def run(self):
     Logic(self.logic)
     loadBigString(self.loadStr, self.threadID)
from pyDatalog import pyDatalog
from pyDatalog import Logic
import logging
from pyDatalog import pyEngine
pyEngine.Trace = True
import copy
import itertools
import gc

#logging.basicConfig(level=logging.DEBUG)

Logic()
#pyDatalog.create_terms('a','b','c','d','isTrue','equal','X','Y','Z')

#equal(X,Y) <= equal(Y,X)
#equal(X,Z) <= equal(X,Y) & equal(Y,Z)

#+ equal('a','b')
#+ equal('b','c')

#myAnswer = pyDatalog.ask('equal(X,Y)')
#print str(myAnswer.answers)

pyDatalog.create_terms(
    'parent,child,grandparent,X,Y,Z,Alice,Bob,Charlie,David,Eve')

grandparent(X, Z) <= parent(X, Y) & parent(Y, Z)
+parent('Alice', 'Bob')
+parent('Bob', 'Charlie')
+parent('Charlie', 'David')
示例#16
0
# -*- coding: utf-8 -*-
"""
Created on Thu Nov  7 18:01:54 2019

@author: Moi
"""

from pyDatalog import pyDatalog, Logic
Logic()  # initializes the pyDatalog engine

Logic()  # creates an empty set of clauses for use in the current thread
# add first set of clauses here
first = Logic(True)  # save the current set of clauses in variable 'first'

Logic()  # first is not affected by this statement
# define the second set of clauses here
second = Logic(True)  # save it for later use

Logic(first)  # now use first in the current thread
# queries will now run against the first set of rules
示例#17
0
 def _check_instance(self):
     if id(self) != id(Rota.last_instance):
         Rota.last_instance._logic = Logic(True)
         Rota.last_instance = self
         Logic(self._logic)
示例#18
0
    def __init__(self, conexion):
        print('KB loaded')
        self.con = conexion
        self.first = Logic(True)

        pyDatalog.load("""
            #Reglas para la inferencia de la edad
            #Niñez
            + stage_life('0','childhood')
            + stage_life('1','childhood')
            + stage_life('2','childhood')
            + stage_life('3','childhood')
            + stage_life('4','childhood')
            + stage_life('5','childhood')
            + stage_life('6','childhood')
            + stage_life('7','childhood')
            + stage_life('8','childhood')
            + stage_life('9','childhood')
            + stage_life('10','childhood')
            + stage_life('11','childhood')
            + stage_life('12','childhood')
            + stage_life('13','childhood')
            + stage_life('14','childhood')
            + stage_life('15','childhood')
            + stage_life('16','childhood')
            + stage_life('17','childhood')

            #Adulto
            + stage_life('18','adulthood')
            + stage_life('19','adulthood')
            + stage_life('20','adulthood')
            + stage_life('21','adulthood')
            + stage_life('22','adulthood')
            + stage_life('23','adulthood')
            + stage_life('24','adulthood')
            + stage_life('25','adulthood')
            + stage_life('26','adulthood')
            + stage_life('27','adulthood')
            + stage_life('28','adulthood')
            + stage_life('29','adulthood')
            + stage_life('30','adulthood')
            + stage_life('31','adulthood')
            + stage_life('32','adulthood')
            + stage_life('33','adulthood')
            + stage_life('34','adulthood')
            + stage_life('35','adulthood')
            + stage_life('36','adulthood')
            + stage_life('37','adulthood')
            + stage_life('38','adulthood')
            + stage_life('39','adulthood')
            + stage_life('40','adulthood')
            + stage_life('41','adulthood')
            + stage_life('42','adulthood')
            + stage_life('43','adulthood')
            + stage_life('44','adulthood')
            + stage_life('45','adulthood')
            + stage_life('46','adulthood')
            + stage_life('47','adulthood')
            + stage_life('48','adulthood')
            + stage_life('49','adulthood')
            + stage_life('50','adulthood')
            + stage_life('51','adulthood')
            + stage_life('52','adulthood')
            + stage_life('53','adulthood')
            + stage_life('54','adulthood')
            + stage_life('55','adulthood')
            + stage_life('56','adulthood')
            + stage_life('57','adulthood')
            + stage_life('58','adulthood')
            + stage_life('59','adulthood')

            #Edad Adulta
            + stage_life('60','senior')
            + stage_life('61','senior')
            + stage_life('62','senior')
            + stage_life('63','senior')
            + stage_life('64','senior')
            + stage_life('65','senior')
            + stage_life('66','senior')
            + stage_life('67','senior')
            + stage_life('68','senior')
            + stage_life('69','senior')
            + stage_life('70','senior')
            + stage_life('71','senior')
            + stage_life('72','senior')
            + stage_life('73','senior')
            + stage_life('74','senior')
            + stage_life('75','senior')
            + stage_life('76','senior')
            + stage_life('77','senior')
            + stage_life('78','senior')
            + stage_life('79','senior')
            + stage_life('80','senior')
            + stage_life('81','senior')
            + stage_life('82','senior')
            + stage_life('83','senior')
            + stage_life('84','senior')
            + stage_life('85','senior')
            + stage_life('86','senior')
            + stage_life('87','senior')
            + stage_life('88','senior')
            + stage_life('89','senior')
            + stage_life('91','senior')
            + stage_life('92','senior')
            + stage_life('93','senior')
            + stage_life('94','senior')
            + stage_life('95','senior')
            + stage_life('96','senior')
            + stage_life('97','senior')
            + stage_life('98','senior')
            + stage_life('99','senior')
            + stage_life('100','senior')

            #Regla para inferir la etapa de una persona
            is_in_stage(X,Z) <= age(X,Y) & stage_life(Y,Z)


            #Limites de temperatura
            #Respiratoria
            + has_limits('respiratory','childhood','26','25')
            + has_limits('respiratory','adulthood','27','24')
            + has_limits('respiratory','senior','27','24')

            #Golpe de calor y similares
            + has_limits('heatstroke','childhood','25','22')
            + has_limits('heatstroke','adulthood','25','21')
            + has_limits('heatstroke','senior','26','22')

            #Hipotermia y similares
            + has_limits('hypothermia','childhood','29','25')
            + has_limits('hypothermia','adulthood','30','24')
            + has_limits('hypothermia','senior','30','25')

            #Otras enfermedades
            + has_limits('other','childhood','27','25')
            + has_limits('other','adulthood','28','24')
            + has_limits('other','senior','28','24')

            #Temperatura preferida anterior
            #Respiratoria
            + prefer_temperature('respiratory','childhood','24')
            + prefer_temperature('respiratory','adulthood','25')
            + prefer_temperature('respiratory','senior','26')

            #Golpe de calor y similares
            + prefer_temperature('heatstroke','childhood','22')
            + prefer_temperature('heatstroke','adulthood','23')
            + prefer_temperature('heatstroke','senior','25')

            #Hipotermia y similares
            + prefer_temperature('hypothermia','childhood','28')
            + prefer_temperature('hypothermia','adulthood','27')
            + prefer_temperature('hypothermia','senior','28')

            #Otras enfermedades
            + prefer_temperature('other','childhood','25')
            + prefer_temperature('other','adulthood','27')
            + prefer_temperature('other','senior','27')

            #Reglas para inferencia de datos de temperatura
            require_temperature(X,A) <= is_in_stage(X,Y) & sick_of(X,Z) & prefer_temperature(Z,Y,A)
            require_limits_temperature(X,A,B) <= is_in_stage(X,Y) & sick_of(X,Z) & has_limits(Z,Y,A,B)
        """)
示例#19
0
 def _new_instance(self):
     if Rota.last_instance is not None:
         Rota.last_instance._logic = Logic(True)
     Logic()
     Rota.last_instance = self
示例#20
0
	def run(self):
		#threadLock.acquire()
		Logic(self.logic)
		loadBigString(self.loadStr, self.threadID)
示例#21
0
from pyDatalog import pyDatalog
from pyDatalog import Logic
import logging
from pyDatalog import pyEngine
pyEngine.Trace = True
import copy
import itertools
import gc
import sys
from operator import itemgetter
import pprint
import time

#This is the risk metric
Logic()
pyDatalog.create_terms('connectsTo,residesOn,runs,TargetHost,SourceHost,DestHost,TargetService,SourceService,compromised,connectsToWithPrivileges,questionableWithinRisk,functionQuestionableWithinRisk','allAttackerPathsCostPlus','F','F2','FuncName','U','U2','Util','allAttackerPathsCostPlus','SS','TS','IS1','functionDown','functionalityFree','Prob')
pyDatalog.create_terms('cTo,cToWithPrivileges,ServiceA,ServiceB,HostA,HostB,localRootExploit,remoteRootExploit,attackerConnectsToWithPrivileges,attackerReachable')
pyDatalog.create_terms('allPaths,allAttackerPaths,P,P2,IntermediateService1,attackerCanReachOneStep,ok,attackerCanReachTwoSteps,oneStepToBadness,twoStepsToBadness','shortestAttackerPathsPlus')
pyDatalog.create_terms('requires,Task,Hostname','remoteUserExploit','vulnExists','RiskForFunction','MaxR','OtherService','functionDownOrCompromised','probCompromised')
pyDatalog.create_terms('cutConnection','VulnType','isAccount','C','C2','cost','TotalC','TotalC2','E','E2','notConnectsTo','notResidesOn','notCompromised','notRemoteUserExploit','notRemoteRootExploit','notLocalRootExploit''a','b','c','suspicious','t1','t2','t3','t4','t5','TacticNumber','moveHostTo','transitiveConnects','transitiveConnectsSecure')
pyDatalog.create_terms('TestA','TestB','utility','FunctionA','resultingUtil','functionCompromised','functionUncompromised','FuncAUtil','allConnectionPaths','questionable','functionQuestionable','U','requiresConnection','networkConnectsTo','adHost','missingConnection','isType','allAttackerPathsWithTyping','ExploitAndTarget','ExploitAndTarget2','TargetType','questionableAtRisk','allAttackerPathsPlus','functionQuestionableWithinRiskPlus')
pyDatalog.create_terms('Functionality','Attribute','Data','Service','Impact','requiresSecurityAttribute','FunctionB','FunctionC','functionRequires','implements','implementedF','requiresAllConnections')
pyDatalog.create_terms('isType','validNewConnectsTo')
pyDatalog.create_terms('vulnExistsWithAttributes','remoteRootExploitWithAttributes','compromisedWithAttributes','functionCompromisedWithAttributes')
pyDatalog.create_terms('requiresSecurityAttribute','consumesDataWithAttributes','transitiveConnectsWithAttributes','producesData','requiresDataWithAttributes','C*K','IOK','AOK','CRequired','IRequired','ARequired','CImpact','IImpact','AImpact')
pyDatalog.create_terms('CProvided','IProvided','AProvided','CProvided1','IProvided1','AProvided1','CProvided2','IProvided2','AProvided2','connectsToWithAttributes','consumesData','networkConnectsToWithAttributes','requiresFunction','transitiveConnectsWithAttributesOnPath')
pyDatalog.create_terms('consumesDataWithC','consumesDataWithI','consumesDataWithA','consumesDataWithAttributeProblems','consumesDataWithAttributesNoAlternative','allCompromised','someCompromised','attackPaths','pathCompromisesFunctionWithCost','pathCompromisesService')
pyDatalog.create_terms('isPath','X','Y','Z','pathCompromisesUtilities','pathCompromisesWithCost','worstCasePath','UtilPathPair','pathCompromisesFunctions','FList','worstCasePathValue','weightedWorstCastPath','probCapability','estimatedUtility','worstCasePathFromSource','SourceCost','compromisedCombo')

#Logic for Below Cases
@pyDatalog.predicate()
from pyDatalog import pyDatalog
from pyDatalog import Logic
import logging
from pyDatalog import pyEngine
pyEngine.Trace = True
import copy
import itertools
import gc
import sys
from operator import itemgetter
import pprint
import time
import csv

#This is the risk metric
Logic()
pyDatalog.create_terms('connectsTo,residesOn,runs,TargetHost,SourceHost,DestHost,TargetService,SourceService,compromised,connectsToWithPrivileges,questionableWithinRisk,functionQuestionableWithinRisk','allAttackerPathsCostPlus','F','F2','FuncName','U','U2','Util','allAttackerPathsCostPlus','SS','TS','IS1','functionDown','functionalityFree','Prob')
pyDatalog.create_terms('cTo,cToWithPrivileges,ServiceA,ServiceB,HostA,HostB,localRootExploit,remoteRootExploit,attackerConnectsToWithPrivileges,attackerReachable')
pyDatalog.create_terms('allPaths,allAttackerPaths,P,P2,IntermediateService1,attackerCanReachOneStep,ok,attackerCanReachTwoSteps,oneStepToBadness,twoStepsToBadness','shortestAttackerPathsPlus')
pyDatalog.create_terms('requires,Task,Hostname','remoteUserExploit','vulnExists','RiskForFunction','MaxR','OtherService','functionDownOrCompromised','probCompromised')
pyDatalog.create_terms('cutConnection','VulnType','isAccount','C','C2','cost','TotalC','TotalC2','E','E2','notConnectsTo','notResidesOn','notCompromised','notRemoteUserExploit','notRemoteRootExploit','notLocalRootExploit''a','b','c','suspicious','t1','t2','t3','t4','t5','TacticNumber','moveHostTo','transitiveConnects','transitiveConnectsSecure')
pyDatalog.create_terms('TestA','TestB','utility','FunctionA','resultingUtil','functionCompromised','functionUncompromised','FuncAUtil','allConnectionPaths','questionable','functionQuestionable','U','requiresConnection','networkConnectsTo','adHost','missingConnection','isType','allAttackerPathsWithTyping','ExploitAndTarget','ExploitAndTarget2','TargetType','questionableAtRisk','allAttackerPathsPlus','functionQuestionableWithinRiskPlus')
pyDatalog.create_terms('Functionality','Attribute','Data','Service','Impact','requiresSecurityAttribute','FunctionB','FunctionC','functionRequires','implements','implementedF','requiresAllConnections')
pyDatalog.create_terms('isType','validNewConnectsTo')
pyDatalog.create_terms('vulnExistsWithAttributes','remoteRootExploitWithAttributes','componentCompromisedWithAttributes','functionCompromisedWithAttributes')
pyDatalog.create_terms('requiresSecurityAttribute','consumesDataWithAttributes','transitiveConnectsWithAttributes','producesData','requiresDataWithAttributes','C*K','IOK','AOK','CRequired','IRequired','ARequired','CImpact','IImpact','AImpact')
pyDatalog.create_terms('CProvided','IProvided','AProvided','CProvided1','IProvided1','AProvided1','CProvided2','IProvided2','AProvided2','connectsToWithAttributes','consumesData','networkConnectsToWithAttributes','requiresFunction','transitiveConnectsWithAttributesOnPath')
pyDatalog.create_terms('consumesDataWithC','consumesDataWithI','consumesDataWithA','consumesDataWithAttributeProblems','consumesDataWithAttributesNoAlternative','allCompromised','someCompromised','attackPaths','pathCompromisesFunctionWithCost','pathCompromisesService')
pyDatalog.create_terms('isPath','X','Y','Z','pathCompromisesUtilities','pathCompromisesWithCost','worstCasePath','UtilPathPair','pathCompromisesFunctions','FList','worstCasePathValue','weightedWorstCastPath','probCapability','estimatedUtility','worstCasePathFromSource','SourceCost','compromisedCombo')
pyDatalog.create_terms('consumesDataOnlyGoodPath','noIdealConsumption','transitiveConnectsWithAttributesOnPathUnderAttack','consumesDataWithCUnderAttack','consumesDataWithIUnderAttack','consumesDataWithAUnderAttack','consumesDataWithAttributesUnderAttack','UMod')
pyDatalog.create_terms('consumeseDataWithModifiedUtilityUnderAttack','pC','isSubType','isTypeOrSubType','isTypeOrSuperType','ComponentType','isVulnerable','existsExploit','Paths','Paths2','Exploits','AttackerMove','AttackerMoves','hasCredential','transitiveConnectsPath','consumesPath')
示例#23
0
def loadDBRels():
	words = {}
	langs = {}
	derivedLoadStr = ""
	etymologicallyLoadStr = ""
	etymologically_relatedLoadStr = ""
	etymologyLoadStr = ""
	has_derived_formLoadStr = ""
	variantLoadStr = ""
	loadStrs = ["","","","","",""]
	loadStrsNums = [0,0,0,0,0,0]
	numWords = 0
	threads = []
	saved = 0
	#with open("../etymwn/etymwn.tsv") as f:
	with open("../etymwn/summaryDB.tsv") as f:
		i = 0
		for l in f:
			tmp = l.split("\t")
			rel = tmp[1]
			if(rel == 'rel:etymological_origin_of' or rel == 'rel:is_derived_from'):
				#print(rel)
				continue

			lft = tmp[0]
			rgt = tmp[2]
			tmpLft = lft.split(': ')
			langLft, wordLft = tmpLft[0], tmpLft[1]
			tmpRgt = rgt.split(': ')
			langRgt, wordRgt = tmpRgt[0], tmpRgt[1].split("\n")[0]

			try:
				u = langs[langLft]
			except KeyError:
				langs[langLft] = langLft

			try:
				u = langs[langRgt]
			except KeyError:
				langs[langRgt] = langRgt

			try:
				u = words[wordLft]
				saved += 1
			except KeyError:
				words[wordLft] = (i,1)

			try:
				u = words[wordRgt]
				saved += 1
			except KeyError:
				words[wordRgt] = (i,2)


			for k in range(len(loadStrs)):
				if(loadStrsNums[k] > 15000):
					th = myThread(k, loadStrs[k], Logic(True))
					th.start()
					threads.append(th)
					print(len(loadStrs[k].split("\n")),"remaining of", loadStrs[k].split("(")[0])
					#load(loadStrs[k])
					loadStrs[k] = ""
					loadStrsNums[k] = 0

			if(wordRgt == 'anchor' or wordLft == 'anchor'):
				print(rel, "(", wordLft, ",", wordRgt, ")")
			#print("boop:", len(langs), len(words))
			#print("beep:", languages.index(langLft), words[wordLft], languages.index(langRgt), words[wordRgt], rel)
			langLftIdx = langs[langLft]
			langRgtIdx = langs[langRgt]
			if(rel == 'rel:derived'):
				#loadStrs[0] += "derived("+str(langLftIdx)+", "+str(words[wordLft])+", "+str(langRgtIdx)+", "+str(words[wordRgt])+")\n"
				#loadStrsNums[0] += 1
				+ derived(str(langLftIdx), str(words[wordLft]), str(langRgtIdx), str(words[wordRgt]))
			elif(rel == 'rel:etymologically'):
				#loadStrs[1] += "etymologically("+str(langLftIdx)+", "+str(words[wordLft])+", "+str(langRgtIdx)+", "+str(words[wordRgt])+")\n"
				#loadStrsNums[1] += 1
				+ etymologically(str(langLftIdx), str(words[wordLft]), str(langRgtIdx), str(words[wordRgt]))
			elif(rel == 'rel:etymologically_related'):
				#loadStrs[2] += "etymologically_related("+str(langLftIdx)+", "+str(words[wordLft])+", "+str(langRgtIdx)+", "+str(words[wordRgt])+")\n"
				#loadStrsNums[2] += 1
				+ etymologically_related(str(langLftIdx), str(words[wordLft]), str(langRgtIdx), str(words[wordRgt]))
			elif(rel == 'rel:etymology'):
				#loadStrs[3] += "etymology("+str(langLftIdx)+", "+str(words[wordLft])+", "+str(langRgtIdx)+", "+str(words[wordRgt])+")\n"
				#loadStrsNums[3] += 1
				+ etymology(str(langLftIdx), str(words[wordLft]), str(langRgtIdx), str(words[wordRgt]))
			elif(rel == 'rel:has_derived_form'):
				#loadStrs[4] += "has_derived_form("+str(langLftIdx)+", "+str(words[wordLft])+", "+str(langRgtIdx)+", "+str(words[wordRgt])+")\n"
				#loadStrsNums[4] += 1
				+ has_derived_form(str(langLftIdx), str(words[wordLft]), str(langRgtIdx), str(words[wordRgt]))
			elif(rel.find('rel:variant') > -1):
				#loadStrs[5] += "variant("+str(langLftIdx)+", "+str(words[wordLft])+", "+str(langRgtIdx)+", "+str(words[wordRgt])+")\n"
				#loadStrsNums[5] += 1
				+ variant(str(langLftIdx), str(words[wordLft]), str(langRgtIdx), str(words[wordRgt]))

			i += 1
			if i%100000==0:
				print("beep:", langs[langLft], words[wordLft], langs[langRgt], words[wordRgt], rel, len(words), len(langs))
				print(i)
			#if i>300000:
			#	break
		for k in range(len(loadStrs)):
			load(loadStrs[k])
			print(len(loadStrs[k].split("\n")),"remaining of", loadStrs[k].split("(")[0])
			loadStrs[k] = ""
			loadStrsNums[k] = 0
		print("dbSize:",i, "lenWords:", len(words), "saved:", saved)
		print("Now waiting to join:", time.strftime("%H:%M:%S"))
		print()
		for t in threads:
			t.join()
			print("joined a thread:",time.strftime("%H:%M:%S"))
		print("Joined every thread:", time.strftime("%H:%M:%S"))
		return words, langs
def createEnvironment(instanceFile):
    setup(instanceFile)
    noVulnLogic = Logic(True)
    Logic()
    setup(instanceFile)
示例#25
0
 def _save_new_logic(self):
     self._logic = Logic()
示例#26
0
 def _restore_saved_logic(self):
     Logic(self._logic)
示例#27
0
assertion_without_column(X0) <= (is_property_assertion(X0)
                                 & ~assertion_has_column(X0, Y0))
assertion_without_entity_type(X0) <= (is_assertion(X0)
                                      & ~assertion_has_entity_type(X0, Y0))

# relationship source name and target name properties
relationship_has_source_name_property(
    X0, X1) <= (is_relationship_assertion(X0)
                & is_property(X1)
                & is_column(Y0)
                & assertion_has_source_entity_name_column(X0, Y0)
                & is_name_assertion(Y1)
                & assertion_has_property_column(Y1, Y0)
                & column_has_property_type(Y0, X1))

logic_engine = Logic(True)


def flatten(nested_thing):
    if not isinstance(nested_thing, (list, tuple, set)):
        yield nested_thing
    else:
        for thing in nested_thing:
            for i in flatten(thing):
                yield i


class AmbiguityException(Exception):
    pass