示例#1
0
    def predict_pos(self, date, obscode=807):
        """
        Computes ra, dec, and error ellipse at the date(s) and observatory specified.
        Date is an ephem.date object.
        Returns a corresponding dictionary with keywords
            'ra' -- ra in ICRS coords, returned as an ephem.Angle object
            'dec' -- dec in ICRS coords, ditto
            'err' -- error ellipse (see below)
            'elong' -- solar elongation in degrees
            'opp' -- opposition angle in degrees
        where the error ellipse, indexed by 'err', is itself a dictionary with keywords:
            'a'  -- semimajor axis in arcsec
            'b'  -- semiminor axis in arcsec
            'PA' -- position angle in degrees, north through east
        
        """
        p_in = self.orbit_abg
        jd0 = orbfit.cvar.jd0  # zeropoint of time scale
        # Create space for various useful matrices
        sigxy = orbfit.dmatrix(1, 2, 1, 2)
        derivs = orbfit.dmatrix(1, 2, 1, 2)
        covecl = orbfit.dmatrix(1, 2, 1, 2)
        coveq = orbfit.dmatrix(1, 2, 1, 2)

        # Fill the OBSERVATION structure
        futobs = orbfit.OBSERVATION()
        futobs.obscode = obscode
        futobs.obstime = (ephem.julian_date(date) - jd0) * orbfit.DAY
        futobs.xe = -999  # force evaluation of earth3D
        dx = orbfit.dvector(1, 6)
        dy = orbfit.dvector(1, 6)
        # Sometimes hangs in next line... why?
        thetax, thetay = orbfit.kbo2d(p_in, futobs, dx, dy)
        # Predicted position, in abg basis:
        orbfit.predict_posn(p_in, self.cov_abg, futobs, sigxy)
        solar_elongation = orbfit.elongation(
            futobs) / orbfit.DTOR  # solar elongation in degrees
        opposition_angle = orbfit.opposition_angle(
            futobs) / orbfit.DTOR  # opposition angle in degrees
        lat_ec, lon_ec = orbfit.proj_to_ec(
            futobs.thetax, futobs.thetay, orbfit.cvar.lat0, orbfit.cvar.lon0,
            derivs)  # project to ecliptic coords
        orbfit.covar_map(sigxy, derivs, covecl, 2, 2)  # map the covariance
        ra_eq, dec_eq = orbfit.ec_to_eq(
            lat_ec, lon_ec, derivs)  # transform to ICRS to compute ra, dec
        if ra_eq < 0: ra_eq += 2 * np.pi  # convert angle to (0,2pi) range
        orbfit.covar_map(covecl, derivs, coveq, 2, 2)  # map the covariance

        # Compute ICRS error ellipse
        c = orbfit.doubleArray(4)  # stoopid workaround for double pointers...
        orbfit.flatten_cov(coveq, 2, c)
        covar_eq = np.array([c[i] for i in range(4)]).reshape(2, 2)
        xx = covar_eq[0][0] * np.cos(dec_eq)**2
        xy = covar_eq[0][1] * np.cos(dec_eq)
        yy = covar_eq[1][1]
        pos_angle = 0.5 * np.arctan2(2. * xy, (xx - yy)) * 180. / np.pi
        pos_angle = 90 - pos_angle  # convert to astronomy convention of measuring position angle North through East
        bovasqrd = (xx + yy - np.sqrt((xx - yy)**2 +
                                      (2 * xy)**2)) / (xx + yy +
                                                       np.sqrt((xx - yy)**2 +
                                                               (2 * xy)**2))
        det = xx * yy - xy * xy
        a = (det / bovasqrd)**(
            1 / 4
        ) / orbfit.ARCSEC  # semimajor, minor axes of error ellipse, in arcsec
        b = (det * bovasqrd)**(1 / 4) / orbfit.ARCSEC
        err_ellipse = dict(a=a, b=b, PA=pos_angle)  # store as a dictionary

        pos = dict(ra=ephem.hours(ra_eq),
                   dec=ephem.degrees(dec_eq),
                   err=err_ellipse,
                   elong=solar_elongation,
                   opp=opposition_angle)
        return pos
示例#2
0
    def predict_pos(self, date, obscode=807):
        """
        Computes ra, dec, and error ellipse at the date(s) and observatory specified.
        Date is an ephem.date object.
        Returns a corresponding dictionary with keywords
            'ra' -- ra in ICRS coords, returned as an ephem.Angle object
            'dec' -- dec in ICRS coords, ditto
            'err' -- error ellipse (see below)
            'elong' -- solar elongation in degrees
            'opp' -- opposition angle in degrees
        where the error ellipse, indexed by 'err', is itself a dictionary with keywords:
            'a'  -- semimajor axis in arcsec
            'b'  -- semiminor axis in arcsec
            'PA' -- position angle in degrees, north through east
        
        """
        p_in = self.orbit_abg
        jd0 = orbfit.cvar.jd0  # zeropoint of time scale
        # Create space for various useful matrices
        sigxy = orbfit.dmatrix(1, 2, 1, 2)
        derivs = orbfit.dmatrix(1, 2, 1, 2)
        covecl = orbfit.dmatrix(1, 2, 1, 2)
        coveq = orbfit.dmatrix(1, 2, 1, 2)

        # Fill the OBSERVATION structure
        futobs = orbfit.OBSERVATION()
        futobs.obscode = obscode
        futobs.obstime = (ephem.julian_date(date) - jd0) * orbfit.DAY
        futobs.xe = -999  # force evaluation of earth3D
        dx = orbfit.dvector(1, 6)
        dy = orbfit.dvector(1, 6)
        thetax, thetay = orbfit.kbo2d(p_in, futobs, dx, dy)

        # Predicted position, in abg basis:
        orbfit.predict_posn(p_in, self.cov_abg, futobs, sigxy)
        solar_elongation = orbfit.elongation(futobs) / orbfit.DTOR  # solar elongation in degrees
        opposition_angle = orbfit.opposition_angle(futobs) / orbfit.DTOR  # opposition angle in degrees
        lat_ec, lon_ec = orbfit.proj_to_ec(
            futobs.thetax, futobs.thetay, orbfit.cvar.lat0, orbfit.cvar.lon0, derivs
        )  # project to ecliptic coords
        orbfit.covar_map(sigxy, derivs, covecl, 2, 2)  # map the covariance
        ra_eq, dec_eq = orbfit.ec_to_eq(lat_ec, lon_ec, derivs)  # transform to ICRS to compute ra, dec
        if ra_eq < 0:
            ra_eq += 2 * np.pi  # convert angle to (0,2pi) range
        orbfit.covar_map(covecl, derivs, coveq, 2, 2)  # map the covariance

        # Compute ICRS error ellipse
        c = orbfit.doubleArray(4)  # stoopid workaround for double pointers...
        orbfit.flatten_cov(coveq, 2, c)
        covar_eq = np.array([c[i] for i in range(4)]).reshape(2, 2)
        xx = covar_eq[0][0] * np.cos(dec_eq) ** 2
        xy = covar_eq[0][1] * np.cos(dec_eq)
        yy = covar_eq[1][1]
        pos_angle = 0.5 * np.arctan2(2.0 * xy, (xx - yy)) * 180.0 / np.pi
        pos_angle = 90 - pos_angle  # convert to astronomy convention of measuring position angle North through East
        bovasqrd = (xx + yy - np.sqrt((xx - yy) ** 2 + (2 * xy) ** 2)) / (
            xx + yy + np.sqrt((xx - yy) ** 2 + (2 * xy) ** 2)
        )
        det = xx * yy - xy * xy
        a = (det / bovasqrd) ** (1 / 4) / orbfit.ARCSEC  # semimajor, minor axes of error ellipse, in arcsec
        b = (det * bovasqrd) ** (1 / 4) / orbfit.ARCSEC
        err_ellipse = dict(a=a, b=b, PA=pos_angle)  # store as a dictionary

        pos = dict(
            ra=ephem.hours(ra_eq),
            dec=ephem.degrees(dec_eq),
            err=err_ellipse,
            elong=solar_elongation,
            opp=opposition_angle,
        )
        return pos
def predict_from_abg(abginfo, date, obscode=807):

    p_in = abginfo['pbasis']
    cov_abg = abginfo['cov_abg']
    orbfit.cvar.jd0 = abginfo['jd0']
    orbfit.cvar.xBary = abginfo['xBary']
    orbfit.cvar.yBary = abginfo['yBary']
    orbfit.cvar.zBary = abginfo['zBary']
    orbfit.cvar.lon0 = abginfo['lon0'] * np.pi / 180
    orbfit.cvar.lat0 = abginfo['lat0'] * np.pi / 180
    sigxy = orbfit.dmatrix(1, 2, 1, 2)
    derivs = orbfit.dmatrix(1, 2, 1, 2)
    covecl = orbfit.dmatrix(1, 2, 1, 2)
    coveq = orbfit.dmatrix(1, 2, 1, 2)
    # Fill the OBSERVATION structure
    futobs = orbfit.OBSERVATION()
    futobs.obscode = obscode
    futobs.obstime = (ephem.julian_date(date) - orbfit.cvar.jd0) * orbfit.DAY
    futobs.xe = -999  # force evaluation of earth3D

    dx = orbfit.dvector(1, 6)
    dy = orbfit.dvector(1, 6)

    thetax, thetay = orbfit.kbo2d(p_in, futobs, dx, dy)

    # Predicted position, in abg basis:
    orbfit.predict_posn(p_in, cov_abg, futobs, sigxy)
    solar_elongation = orbfit.elongation(
        futobs) / orbfit.DTOR  # solar elongation in degrees
    opposition_angle = orbfit.opposition_angle(
        futobs) / orbfit.DTOR  # opposition angle in degrees
    lat_ec, lon_ec = orbfit.proj_to_ec(futobs.thetax, futobs.thetay,
                                       orbfit.cvar.lat0, orbfit.cvar.lon0,
                                       derivs)  # project to ecliptic coords
    orbfit.covar_map(sigxy, derivs, covecl, 2, 2)  # map the covariance
    ra_eq, dec_eq = orbfit.ec_to_eq(
        lat_ec, lon_ec, derivs)  # transform to ICRS to compute ra, dec
    eq = ephem.Equatorial(ephem.Ecliptic(lat_ec, lon_ec))
    ra_eq2 = eq.ra * 180 / np.pi
    dec_eq2 = eq.dec * 180 / np.pi
    if ra_eq < 0: ra_eq += 2 * np.pi  # convert angle to (0,2pi) range
    #        print ra_eq*180/np.pi, dec_eq*180/np.pi, ra_eq2, dec_eq2, ra_eq*180/np.pi-ra_eq2, dec_eq*180/np.pi-dec_eq2
    orbfit.covar_map(covecl, derivs, coveq, 2, 2)  # map the covariance
    #        print ephem.hours(ra_eq), ephem.degrees(dec_eq)
    # Compute ICRS error ellipse
    c2d = orbfit.doubleArray(4)  # stoopid workaround for double pointers...
    orbfit.flatten_cov(coveq, 2, c2d)
    covar_eq = np.array([c2d[i] for i in range(4)]).reshape(2, 2)
    xx = covar_eq[0][0] * np.cos(dec_eq)**2
    xy = covar_eq[0][1] * np.cos(dec_eq)
    yy = covar_eq[1][1]
    pos_angle = 0.5 * np.arctan2(2. * xy, (xx - yy)) * 180. / np.pi
    pos_angle = 90 - pos_angle  # convert to astronomy convention of measuring position angle North through East
    bovasqrd = (xx + yy - np.sqrt((xx - yy)**2 +
                                  (2 * xy)**2)) / (xx + yy +
                                                   np.sqrt((xx - yy)**2 +
                                                           (2 * xy)**2))
    det = xx * yy - xy * xy
    a = (det / bovasqrd)**(
        1 /
        4) / orbfit.ARCSEC  # semimajor, minor axes of error ellipse, in arcsec
    b = (det * bovasqrd)**(1 / 4) / orbfit.ARCSEC
    err_ellipse = dict(a=a, b=b, PA=pos_angle)  # store as a dictionary

    pos = dict(ra=ephem.hours(ra_eq),
               dec=ephem.degrees(dec_eq),
               err=err_ellipse,
               elong=solar_elongation,
               opp=opposition_angle)
    return pos
示例#4
0
def predict_from_abg(abginfo, date, obscode=807):

    p_in = abginfo["pbasis"]
    cov_abg = abginfo["cov_abg"]
    orbfit.cvar.jd0 = abginfo["jd0"]
    orbfit.cvar.xBary = abginfo["xBary"]
    orbfit.cvar.yBary = abginfo["yBary"]
    orbfit.cvar.zBary = abginfo["zBary"]
    orbfit.cvar.lon0 = abginfo["lon0"] * np.pi / 180
    orbfit.cvar.lat0 = abginfo["lat0"] * np.pi / 180
    sigxy = orbfit.dmatrix(1, 2, 1, 2)
    derivs = orbfit.dmatrix(1, 2, 1, 2)
    covecl = orbfit.dmatrix(1, 2, 1, 2)
    coveq = orbfit.dmatrix(1, 2, 1, 2)
    # Fill the OBSERVATION structure
    futobs = orbfit.OBSERVATION()
    futobs.obscode = obscode
    futobs.obstime = (ephem.julian_date(date) - orbfit.cvar.jd0) * orbfit.DAY
    futobs.xe = -999  # force evaluation of earth3D

    dx = orbfit.dvector(1, 6)
    dy = orbfit.dvector(1, 6)

    thetax, thetay = orbfit.kbo2d(p_in, futobs, dx, dy)

    # Predicted position, in abg basis:
    orbfit.predict_posn(p_in, cov_abg, futobs, sigxy)
    solar_elongation = orbfit.elongation(futobs) / orbfit.DTOR  # solar elongation in degrees
    opposition_angle = orbfit.opposition_angle(futobs) / orbfit.DTOR  # opposition angle in degrees
    lat_ec, lon_ec = orbfit.proj_to_ec(
        futobs.thetax, futobs.thetay, orbfit.cvar.lat0, orbfit.cvar.lon0, derivs
    )  # project to ecliptic coords
    orbfit.covar_map(sigxy, derivs, covecl, 2, 2)  # map the covariance
    ra_eq, dec_eq = orbfit.ec_to_eq(lat_ec, lon_ec, derivs)  # transform to ICRS to compute ra, dec
    eq = ephem.Equatorial(ephem.Ecliptic(lat_ec, lon_ec))
    ra_eq2 = eq.ra * 180 / np.pi
    dec_eq2 = eq.dec * 180 / np.pi
    if ra_eq < 0:
        ra_eq += 2 * np.pi  # convert angle to (0,2pi) range
    #        print ra_eq*180/np.pi, dec_eq*180/np.pi, ra_eq2, dec_eq2, ra_eq*180/np.pi-ra_eq2, dec_eq*180/np.pi-dec_eq2
    orbfit.covar_map(covecl, derivs, coveq, 2, 2)  # map the covariance
    #        print ephem.hours(ra_eq), ephem.degrees(dec_eq)
    # Compute ICRS error ellipse
    c2d = orbfit.doubleArray(4)  # stoopid workaround for double pointers...
    orbfit.flatten_cov(coveq, 2, c2d)
    covar_eq = np.array([c2d[i] for i in range(4)]).reshape(2, 2)
    xx = covar_eq[0][0] * np.cos(dec_eq) ** 2
    xy = covar_eq[0][1] * np.cos(dec_eq)
    yy = covar_eq[1][1]
    pos_angle = 0.5 * np.arctan2(2.0 * xy, (xx - yy)) * 180.0 / np.pi
    pos_angle = 90 - pos_angle  # convert to astronomy convention of measuring position angle North through East
    bovasqrd = (xx + yy - np.sqrt((xx - yy) ** 2 + (2 * xy) ** 2)) / (xx + yy + np.sqrt((xx - yy) ** 2 + (2 * xy) ** 2))
    det = xx * yy - xy * xy
    a = (det / bovasqrd) ** (1 / 4) / orbfit.ARCSEC  # semimajor, minor axes of error ellipse, in arcsec
    b = (det * bovasqrd) ** (1 / 4) / orbfit.ARCSEC
    err_ellipse = dict(a=a, b=b, PA=pos_angle)  # store as a dictionary

    pos = dict(
        ra=ephem.hours(ra_eq), dec=ephem.degrees(dec_eq), err=err_ellipse, elong=solar_elongation, opp=opposition_angle
    )
    return pos