def test():
    ### Parameters or externals
    info_ret = {'order': 2}
    locs = np.random.random((1000, 2))
    inttypes = [int, np.int32, np.int64]
#    mainmapper1 = generate_random_relations(25, store='sparse')
#    mainmapper2 = generate_random_relations(100, store='sparse')
#    mainmapper3 = generate_random_relations(5000, store='sparse')
    griddisc1 = GridSpatialDisc((5, 5), xlim=(0, 1), ylim=(0, 1))
    griddisc2 = GridSpatialDisc((10, 10), xlim=(0, 1), ylim=(0, 1))
    griddisc3 = GridSpatialDisc((50, 100), xlim=(0, 1), ylim=(0, 1))

    ### Testing utities
    ## util_spatial_relations
    f = lambda x, y: x + y
    sp_elements = np.random.random(10)
    general_spatial_relation(sp_elements[0], sp_elements[0], f)
    general_spatial_relations(sp_elements, f, simmetry=False)
    general_spatial_relations(sp_elements, f, simmetry=True)

    ## format_out_relations
    mainmapper1 = randint_sparse_matrix(0.8, (25, 25))
    format_out_relations(mainmapper1, 'sparse')
    format_out_relations(mainmapper1, 'network')
    format_out_relations(mainmapper1, 'sp_relations')
    lista = format_out_relations(mainmapper1, 'list')
    u_regs = mainmapper1.data

    ## Element metrics
    element_i, element_j = 54, 2
    pars1 = {'periodic': 60}
    pars2 = {}
    unidimensional_periodic(element_i, element_j, pars=pars1)
    unidimensional_periodic(element_i, element_j, pars=pars2)
    unidimensional_periodic(element_j, element_i, pars=pars1)
    unidimensional_periodic(element_j, element_i, pars=pars2)
    measure_difference(element_i, element_j, pars=pars1)
    measure_difference(element_i, element_j, pars=pars2)
    measure_difference(element_j, element_i, pars=pars1)
    measure_difference(element_j, element_i, pars=pars2)

    def ensure_output(neighs, dists, mainmapper):
#        print dists
        assert(all([len(e.shape) == 2 for e in dists]))
        assert(all([len(e) == 0 for e in dists if np.prod(e.shape) == 0]))
        if mainmapper._out == 'indices':
#            print neighs
            correcness = []
            for nei in neighs:
                if len(nei):
                    correcness.append(all([type(e) in inttypes for e in nei]))
                else:
                    correcness.append(nei.dtype in inttypes)
            assert(correcness)

    ###########################################################################
    ### Massive combinatorial testing
    # Possible parameters
    relations, pars_rel, _data =\
        compute_ContiguityRegionDistances(griddisc1, store='sparse')
    pos_relations = [relations, relations.A,
                     format_out_relations(relations, 'network')]
    pos_distanceorweighs, pos_sym = [True, False], [True, False]
    pos_inputstypes, pos_outputtypes = [[None, 'indices', 'elements_id']]*2
    pos_input_type = [None, 'general', 'integer', 'array', 'array1', 'array2',
                      'list', 'list_int', 'list_array']
    pos_inputs = [[0], 0, 0, np.array([0]), np.array([0]), np.array([0]),
                  [0], [0], [np.array([0])]]
    pos_data_in, pos_data = [[]]*2
    possibles = [pos_relations, pos_distanceorweighs, pos_sym, pos_outputtypes,
                 pos_inputstypes, pos_input_type]
    # Combinations
    for p in product(*possibles):
        mainmapper1 = RegionDistances(relations=p[0], distanceorweighs=p[1],
                                      symmetric=p[2], output=p[3], input_=p[4],
                                      input_type=p[5])
        mainmapper1[slice(0, 1)]
        # Define input
        if p[5] is None:
            if p[4] != 'indices':
                neighs, dists = mainmapper1[mainmapper1.data[0]]
                ensure_output(neighs, dists, mainmapper1)
                neighs, dists = mainmapper1[0]
                ensure_output(neighs, dists, mainmapper1)
                neighs, dists = mainmapper1[np.array([-1])]
                ensure_output(neighs, dists, mainmapper1)
            if p[4] != 'elements_id':
                neighs, dists = mainmapper1[0]
                ensure_output(neighs, dists, mainmapper1)
                try:
                    boolean = False
                    mainmapper1[-1]
                    boolean = True
                    raise Exception("It has to halt here.")
                except:
                    if boolean:
                        raise Exception("It has to halt here.")
        else:
            if p[5] == 'list':
                # Get item
                neighs, dists = mainmapper1[[0]]
                ensure_output(neighs, dists, mainmapper1)
                neighs, dists = mainmapper1[[np.array([0])]]
                ensure_output(neighs, dists, mainmapper1)
                try:
                    boolean = False
                    mainmapper1[[None]]
                    boolean = True
                    raise Exception("It has to halt here.")
                except:
                    if boolean:
                        raise Exception("It has to halt here.")
            idxs = pos_inputs[pos_input_type.index(p[5])]
            neighs, dists = mainmapper1[idxs]
            ensure_output(neighs, dists, mainmapper1)
        # Functions
        mainmapper1.set_inout(p[5], p[4], p[3])
        mainmapper1.transform(lambda x: x)
        mainmapper1.data
        mainmapper1.data_input
        mainmapper1.data_output
        mainmapper1.shape
        ## Extreme cases

    ## Individual extreme cases
    ## Instantiation
    pars_rel = {'symmetric': False}
    relations = relations.A
    data_in = list(np.arange(len(relations)))
    wrond_data = np.random.random((100))
    mainmapper3 = RegionDistances(relations=relations, _data=wrond_data,
                                  data_in=data_in, **pars_rel)
    data_in = np.arange(len(relations)).reshape((len(relations), 1))
    mainmapper3 = RegionDistances(relations=relations, _data=wrond_data,
                                  data_in=data_in, **pars_rel)
    try:
        boolean = False
        wrond_data = np.random.random((100, 3, 4))
        mainmapper3 = RegionDistances(relations=relations, _data=wrond_data,
                                      data_in=data_in, **pars_rel)
        boolean = True
        raise Exception("It has to halt here.")
    except:
        if boolean:
            raise Exception("It has to halt here.")
    try:
        boolean = False
        wrond_data = np.random.random((100, 3, 4))
        sparse_rels = randint_sparse_matrix(0.8, (25, 25))
        mainmapper3 = RegionDistances(relations=relations, _data=wrond_data,
                                      data_in=data_in, **pars_rel)
        boolean = True
        raise Exception("It has to halt here.")
    except:
        if boolean:
            raise Exception("It has to halt here.")
    try:
        boolean = False
        wrond_data = np.random.random((100, 3, 4))
        mainmapper3 = RegionDistances(relations=relations, _data=wrond_data,
                                      data_in=data_in, **pars_rel)
        boolean = True
        raise Exception("It has to halt here.")
    except:
        if boolean:
            raise Exception("It has to halt here.")
    relations = np.random.random((20, 20))
    try:
        boolean = False
        wrond_data = np.random.random((100, 3, 4))
        mainmapper3 = RegionDistances(relations=relations, _data=wrond_data,
                                      data_in=data_in, **pars_rel)
        boolean = True
        raise Exception("It has to halt here.")
    except:
        if boolean:
            raise Exception("It has to halt here.")

    ## Other cases
    # Dummymap instantiation
    regs0 = np.unique(np.random.randint(0, 1000, 200))
    regs1 = regs0.reshape((len(regs0), 1))
    regs2 = regs0.reshape((len(regs0), 1, 1))
    pos_regs = [regs0, list(regs0), regs1]
    possibles = [pos_regs, pos_input_type]
    for p in product(*possibles):
        dummymapper = DummyRegDistance(p[0], p[1])
        # Get item
        idxs = pos_inputs[pos_input_type.index(p[1])]
        neighs, dists = dummymapper[idxs]
        ensure_output(neighs, dists, dummymapper)
        neighs, dists = dummymapper[slice(0, 1)]
        ensure_output(neighs, dists, dummymapper)
        ## Functions
        dummymapper.transform(lambda x: x)
        dummymapper.data
        dummymapper.data_input
        dummymapper.data_output
        dummymapper.shape
    # Halting cases
    try:
        boolean = False
        dummymapper = DummyRegDistance(regs2)
        boolean = True
        raise Exception("It has to halt here.")
    except:
        if boolean:
            raise Exception("It has to halt here.")
    try:
        boolean = False
        dummymapper = DummyRegDistance(None)
        boolean = True
        raise Exception("It has to halt here.")
    except:
        if boolean:
            raise Exception("It has to halt here.")
    try:
        boolean = False
        dummymapper[None]
        boolean = True
        raise Exception("It has to halt here.")
    except:
        if boolean:
            raise Exception("It has to halt here.")
    try:
        boolean = False
        dummymapper[-1]
        boolean = True
        raise Exception("It has to halt here.")
    except:
        if boolean:
            raise Exception("It has to halt here.")

    ###########################################################################
    ### Auxiliar parsing creation functions test
    ############################################
    # Standarts
    #    * relations object
    #    * (main_relations_info, pars_rel)
    #    * (main_relations_info, pars_rel, _data)
    #    * (main_relations_info, pars_rel, _data, data_in)
    #
    ## Main relations information
    relations = np.random.random((100, 20))
    _data = np.arange(20)
    _data_input = np.arange(100)

    relations_info = (relations, {})
    relations_object = _relations_parsing_creation(relations_info)
    assert(isinstance(relations_object, RegionDistances))

    relations_info = (relations, {}, _data)
    relations_object = _relations_parsing_creation(relations_info)
    assert(isinstance(relations_object, RegionDistances))

    relations_info = (relations, {}, _data, _data_input)
    relations_object = _relations_parsing_creation(relations_info)
    assert(isinstance(relations_object, RegionDistances))

    relations_object = _relations_parsing_creation(relations_object)
    assert(isinstance(relations_object, RegionDistances))

    relations_object = _relations_parsing_creation(relations)
    assert(isinstance(relations_object, RegionDistances))

    ###########################################################################
    ### Computers testing
    #####################
    ## aux_regionmetrics
    # Get regions activated
    elements = griddisc1.get_regions_id()
    get_regions4distances(griddisc1, elements=None, activated=None)
    get_regions4distances(griddisc1, elements, activated=elements)

    # Filter possible neighs
    only_possible = np.unique(np.random.randint(0, 100, 50))
    neighs = [np.unique(np.random.randint(0, 100, 6)) for i in range(4)]
    dists = [np.random.random(len(neighs[i])) for i in range(4)]
    filter_possible_neighs(only_possible, neighs, dists)
    filter_possible_neighs(only_possible, neighs, None)

    # TODO: Sync with other classes as sp_desc_models
    lista = [[0, 1, 2, 3], [0, 2, 3, 5], [1, 1, 1, 1]]
    u_regs = np.arange(25)
    regions_id = np.arange(25)
    elements_i = np.arange(25)
    element_labels = np.arange(25)
    discretizor = GridSpatialDisc((5, 5), xlim=(0, 1), ylim=(0, 1))

    locs = np.random.random((100, 2))
    retriever = KRetriever
    info_ret = np.ones(100)*4
    descriptormodel = DummyDescriptor()

    sp_descriptor = discretizor, locs, retriever, info_ret, descriptormodel

    sparse_from_listaregneighs(lista, u_regs, symmetric=True)
    sparse_from_listaregneighs(lista, u_regs, symmetric=False)
    ret_selfdists = KRetriever(locs, 4, ifdistance=True)
    compute_selfdistances(ret_selfdists, np.arange(100), typeoutput='network',
                          symmetric=True)
    compute_selfdistances(ret_selfdists, np.arange(100), typeoutput='sparse',
                          symmetric=True)
    compute_selfdistances(ret_selfdists, np.arange(100), typeoutput='matrix',
                          symmetric=True)

#    create_sp_descriptor_points_regs(sp_descriptor, regions_id, elements_i)
#    create_sp_descriptor_regionlocs(sp_descriptor, regions_id, elements_i)

    ## Compute Avg distance
    locs = np.random.random((100, 2))
    sp_descriptor = (griddisc1, locs), (KRetriever, {'info_ret': 5}), None
    relations, pars_rel, _data =\
        compute_AvgDistanceRegions(sp_descriptor, store='network')
    regdists = RegionDistances(relations=relations, _data=_data, **pars_rel)
    relations, pars_rel, _data =\
        compute_AvgDistanceRegions(sp_descriptor, store='matrix')
    regdists = RegionDistances(relations=relations, _data=_data, **pars_rel)
    relations, pars_rel, _data =\
        compute_AvgDistanceRegions(sp_descriptor, store='sparse')
    regdists = RegionDistances(relations=relations, _data=_data, **pars_rel)

    # Region spatial relations
    # For future (TODO)

    ### RegionDistances Computers
    griddisc1 = GridSpatialDisc((5, 5), xlim=(0, 1), ylim=(0, 1))
    ## Compute Contiguity
    relations, pars_rel, _data =\
        compute_ContiguityRegionDistances(griddisc1, store='matrix')
    relations, pars_rel, _data =\
        compute_ContiguityRegionDistances(griddisc1, store='network')
    relations, pars_rel, _data =\
        compute_ContiguityRegionDistances(griddisc1, store='sparse')
    mainmapper1 = RegionDistances(relations=relations, _data=None,
                                  **pars_rel)
    neighs, dists = mainmapper1.retrieve_neighs([0])
    assert(len(neighs) == len(dists))
    assert(len(neighs) == 1)
    neighs, dists = mainmapper1.retrieve_neighs([0, 1])
    assert(len(neighs) == len(dists))
    assert(len(neighs) == 2)

    ## Compute CenterLocs
    sp_descriptor = griddisc1, None, None
    ## TODO: pdist problem
    relations, pars_rel, _data =\
        compute_CenterLocsRegionDistances(sp_descriptor, store='network',
                                          elements=None, symmetric=True,
                                          activated=None)
    relations, pars_rel, _data =\
        compute_CenterLocsRegionDistances(sp_descriptor, store='matrix',
                                          elements=None, symmetric=True,
                                          activated=None)
    relations, pars_rel, _data =\
        compute_CenterLocsRegionDistances(sp_descriptor, store='sparse',
                                          elements=None, symmetric=True,
                                          activated=None)
    sp_descriptor = griddisc1, (KRetriever, {'info_ret': 2}), None

### TODO: Descriptormodel
    relations, pars_rel, _data =\
        compute_CenterLocsRegionDistances(sp_descriptor, store='sparse',
                                          elements=None, symmetric=True,
                                          activated=None)

    ## Retriever tuple
    ## Retriever object

    ## Spdesc

    ## Compute PointsNeighsIntersection

    ## Aux_regionmetrics
    #sparse_from_listaregneighs(lista, u_regs, symmetric)

    ###########################################################################
    ### Relative positioner testing
    ###############################
    n_el, n_dim = 5, 2
    elements_i = np.random.random((n_el, n_dim))
    elements_neighs = []
    for i in range(n_el):
        aux_neigh = np.random.random((np.random.randint(1, 4), n_dim))
        elements_neighs.append(aux_neigh)
    rel_pos = BaseRelativePositioner(metric_distances)
    rel_pos.compute(elements_i, elements_neighs)

    rel_pos = BaseRelativePositioner(diff_vectors)
    rel_pos.compute(elements_i, elements_neighs)