示例#1
0
def loaddata_old(dicomdata):
    indata = pydicom_series.read_files(dicomdata,showProgress=True)[0]  


    pixelsize =  float(indata.info["0028","0030"].value[0])

    array = indata.get_pixel_array()
    return pixelsize, array, indata
示例#2
0
    def __init__(self,path):

        self.dcmseries = dicomseries.read_files(path,True,True)

        self.tagdict = {'Protocol Name': ['0018', '1030'], 'Scan sequence': ['0018', '0020'], 'Acq Mat': ['0018', '1310'], 'Instance No': ['0020', '0013'], 'TR': ['0018', '0080'], 'TE': ['0018', '0081'], 'Image No': ['0051', '1008'], 
                        'Series No': ['0020', '0011'], 'PixelSize':['0028','0030']}

        self.datadict = {}
        self.fill_datadict()
示例#3
0
def loaddata(dicomdata):
    indata = pydicom_series.read_files(dicomdata,showProgress=True)[0]  


    pixelsize =  float(indata.info["0028","0030"].value[0])
    
    rows = indata.info["0028","0010"].value
    cols = indata.info["0028","0011"].value

    newshape = (rows,cols)
    print "shape of dataslices: ", newshape
    
    bitdepth = indata.info["0028","0100"].value #bits allocated
    if bitdepth == 16:
        bv = np.int16
    elif bitdepth == 8:
        bv = np.int8    
    elif bitdepth == 32:
        bv = np.int32
    elif bitdepth == 64:
        bv = np.int64
    
    
    datlist = []

    sequence = indata.__dict__['_datasets']
    
    for i in range(len(sequence)):
       tmpkeys = sequence[i].keys()      
       datlist.append(np.reshape(np.fromstring(sequence[i][dicom.tag.Tag("7fe0","0010")].value,dtype=bv),newshape))
       

    array = np.array(datlist)
    print "loaddata complete"
    
    return pixelsize, array, indata
示例#4
0
def sfnrTest(data,results,params):
    """
    MRI_fBIRN Checks: fBIRN QA
      Signal-to-Fluctuation-Noise Ratio (SFNR)
      ... (more tests to come eventually)

    Workflow:
        1. Read image or sequence
        2. Run test
        3. Build output
    """

    #(1) Reads input file(s) list as a series (scan) single DICOM object
    #    returns DICOM header, raw pizelData object scaled and type of current DICOM object { 2D, 3D, ... }
    #dcmInfile,pixeldataIn,dicomMode = wadwrapper_lib.prepareInput(data.series_filelist[0],headers_only=False,logTag=logTag())

    #------------------------------------------------------------------
    pixeldataIn = None

    if ( len(data.series_filelist[0]) > 1 ) or ( len(data.series_filelist[0]) == 1 and os.path.isdir(data.series_filelist[0][0]) ):
        
        fileList = data.series_filelist[0]
        if len(data.series_filelist[0]) == 1 :
            fileList = data.series_filelist[0][0]
        # read/load a list of DICOM files
        seriesDataList = pydicom_series.read_files(fileList,showProgress=True, readPixelData=True,skipNonImageFiles=True)

        # check number of series in the array/list
        if len(seriesDataList) != 1:
            raise ValueError("{} Such test is supposed to apply solely to a single series/scan. Something went wrong...".format(logTag))

        seriesData = seriesDataList[0]

        nTemporalPositions = int(seriesData.info["0020","0105"].value)

        # Image pixeldata seems to be transposed when read using wadwrapper_lib methods...
        pixeldataIn = seriesData.get_pixel_array()
        pixeldataIn = np.transpose(pixeldataIn)
        new3rdDimension = int(pixeldataIn.shape[2])/nTemporalPositions
        print '[Debug] Image dimensions: ' +  str(pixeldataIn.shape)
        print '[Debug] New dimensions: (%s, %s, %s, %s)' %(str(pixeldataIn.shape[0]),str(pixeldataIn.shape[1]),str(new3rdDimension),str(nTemporalPositions))
        pixeldataIn = np.reshape(pixeldataIn, (pixeldataIn.shape[0],pixeldataIn.shape[1],new3rdDimension,nTemporalPositions))

    elif ( len(data.series_filelist[0]) == 1) and ( wadwrapper_lib.testIfEnhancedDICOM(data.series_filelist[0][0]) ):
         # read/load a single DICOM file
        dcmInfile,pixeldataIn,dicomMode = wadwrapper_lib.prepareEnhancedInput(data.series_filelist[0][0],headers_only=False)

        # DICOM keeps NumberOfTemporalPositions nested in sequence items/subitems. And DCM4CHEE seems not to keep them at all (!?).
        # Workaround: Use Philips private tag, should be read as a bit string and converted to string/integer/whatever
        if 'PHILIPS' not in (wadwrapper_lib.readDICOMtag("0008,0070",dcmInfile)).upper():
            raise ValueError("{} Input enhanced dataset type not suitable --> no dynamics/temporal information found".format(logTag))

        nSlicesRaw = wadwrapper_lib.readDICOMtag("2001,1018",dcmInfile)
        try:
            nSlices = struct.unpack("<L",nSlicesRaw)[0]
        except:
            nSlices = nSlicesRaw
        nTemporalPositions = int(pixeldataIn.shape[0])/int(nSlices)

        # Image pixeldata seems to be transposed when read using wadwrapper_lib methods...
        pixeldataIn = np.transpose(pixeldataIn)
        new3rdDimension = int(pixeldataIn.shape[2])/nTemporalPositions
        print '[Debug] Image dimensions: ' + str(pixeldataIn.shape)
        print '[Debug] New dimensions: (%s, %s, %s, %s)' %(str(pixeldataIn.shape[0]),str(pixeldataIn.shape[1]),str(new3rdDimension),str(nTemporalPositions))
        pixeldataIn = np.reshape(pixeldataIn, (pixeldataIn.shape[0],pixeldataIn.shape[1],new3rdDimension,nTemporalPositions))

    else:
        raise ValueError("{} Input dataset type cannot be determined or is not compatible".format(logTag))

    #(2)

    #if 'BIRN' not in options['seriesDesc'] or 'BIRN' not in options['protocolName']:
    #   raise ValueError("{} Input dataset type not suitable".format(logTag))
    # OR
    #   print '[Warning] Not an fBIRN scan --> do nothing'

    #Check if pixeldataIn is actually a numpy array
    if type(pixeldataIn).__module__ != np.__name__ :
        raise ValueError("{} Unable to pull out the pixel data of the incomming DICOM file(s)".format(logTag))

    output = fBIRN_lib.fBIRN_SFNR(pixeldataIn,plot_data=False)

    #(3)

    results.addFloat('mean_SNR', np.mean(output['imgsnr']), quantity='SNR', level=2) #quantity is actually magnitude in the WAD-QC app
    results.addFloat('mean_SFNR', output['meansfnr'], quantity='SFNR', level=2) #quantity is actually magnitude in the WAD-QC app

    #print '[info] SNR, %f'%np.mean(output['imgsnr'])
    #print '[info] SFNR, %f'%output['meansfnr']
    #print '[info] drift, %f'%output['trend'].params[1]
    #if len(output['spikes']) > 0:
        #print '[info] nspikes,%d'%len(output['spikes'])
    if len(output['spikes']) > 0:
        results.addBool('spikes', True, level=2) #Spikes detected
    else :
        results.addBool('spikes', False, level=2) #No spikes detected
示例#5
0
def sfnrTest(data, results, params):
    """
    MRI_fBIRN Checks: fBIRN QA
      Signal-to-Fluctuation-Noise Ratio (SFNR)
      ... (more tests to come eventually)

    Workflow:
        1. Read image or sequence
        2. Run test
        3. Build output
    """

    #(1) Reads input file(s) list as a series (scan) single DICOM object
    #    returns DICOM header, raw pizelData object scaled and type of current DICOM object { 2D, 3D, ... }
    #dcmInfile,pixeldataIn,dicomMode = wadwrapper_lib.prepareInput(data.series_filelist[0],headers_only=False,logTag=logTag())

    #------------------------------------------------------------------
    pixeldataIn = None

    if (len(data.series_filelist[0]) > 1) or (len(data.series_filelist[0]) == 1
                                              and os.path.isdir(
                                                  data.series_filelist[0][0])):

        fileList = data.series_filelist[0]
        if len(data.series_filelist[0]) == 1:
            fileList = data.series_filelist[0][0]
        # read/load a list of DICOM files
        seriesDataList = pydicom_series.read_files(fileList,
                                                   showProgress=True,
                                                   readPixelData=True,
                                                   skipNonImageFiles=True)

        # check number of series in the array/list
        if len(seriesDataList) != 1:
            raise ValueError(
                "{} Such test is supposed to apply solely to a single series/scan. Something went wrong..."
                .format(logTag))

        seriesData = seriesDataList[0]

        nTemporalPositions = int(seriesData.info["0020", "0105"].value)

        # Image pixeldata seems to be transposed when read using wadwrapper_lib methods...
        pixeldataIn = seriesData.get_pixel_array()
        pixeldataIn = np.transpose(pixeldataIn)
        new3rdDimension = int(pixeldataIn.shape[2]) / nTemporalPositions
        print '[Debug] Image dimensions: ' + str(pixeldataIn.shape)
        print '[Debug] New dimensions: (%s, %s, %s, %s)' % (
            str(pixeldataIn.shape[0]), str(pixeldataIn.shape[1]),
            str(new3rdDimension), str(nTemporalPositions))
        pixeldataIn = np.reshape(pixeldataIn,
                                 (pixeldataIn.shape[0], pixeldataIn.shape[1],
                                  new3rdDimension, nTemporalPositions))

    elif (len(data.series_filelist[0])
          == 1) and (wadwrapper_lib.testIfEnhancedDICOM(
              data.series_filelist[0][0])):
        # read/load a single DICOM file
        dcmInfile, pixeldataIn, dicomMode = wadwrapper_lib.prepareEnhancedInput(
            data.series_filelist[0][0], headers_only=False)

        # DICOM keeps NumberOfTemporalPositions nested in sequence items/subitems. And DCM4CHEE seems not to keep them at all (!?).
        # Workaround: Use Philips private tag, should be read as a bit string and converted to string/integer/whatever
        if 'PHILIPS' not in (wadwrapper_lib.readDICOMtag(
                "0008,0070", dcmInfile)).upper():
            raise ValueError(
                "{} Input enhanced dataset type not suitable --> no dynamics/temporal information found"
                .format(logTag))

        nSlicesRaw = wadwrapper_lib.readDICOMtag("2001,1018", dcmInfile)
        try:
            nSlices = struct.unpack("<L", nSlicesRaw)[0]
        except:
            nSlices = nSlicesRaw
        nTemporalPositions = int(pixeldataIn.shape[0]) / int(nSlices)

        # Image pixeldata seems to be transposed when read using wadwrapper_lib methods...
        pixeldataIn = np.transpose(pixeldataIn)
        new3rdDimension = int(pixeldataIn.shape[2]) / nTemporalPositions
        print '[Debug] Image dimensions: ' + str(pixeldataIn.shape)
        print '[Debug] New dimensions: (%s, %s, %s, %s)' % (
            str(pixeldataIn.shape[0]), str(pixeldataIn.shape[1]),
            str(new3rdDimension), str(nTemporalPositions))
        pixeldataIn = np.reshape(pixeldataIn,
                                 (pixeldataIn.shape[0], pixeldataIn.shape[1],
                                  new3rdDimension, nTemporalPositions))

    else:
        raise ValueError(
            "{} Input dataset type cannot be determined or is not compatible".
            format(logTag))

    #(2)

    #if 'BIRN' not in options['seriesDesc'] or 'BIRN' not in options['protocolName']:
    #   raise ValueError("{} Input dataset type not suitable".format(logTag))
    # OR
    #   print '[Warning] Not an fBIRN scan --> do nothing'

    #Check if pixeldataIn is actually a numpy array
    if type(pixeldataIn).__module__ != np.__name__:
        raise ValueError(
            "{} Unable to pull out the pixel data of the incomming DICOM file(s)"
            .format(logTag))

    output = fBIRN_lib.fBIRN_SFNR(pixeldataIn, plot_data=False)

    #(3)

    results.addFloat(
        'mean_SNR', np.mean(output['imgsnr']), quantity='SNR',
        level=2)  #quantity is actually magnitude in the WAD-QC app
    results.addFloat(
        'mean_SFNR', output['meansfnr'], quantity='SFNR',
        level=2)  #quantity is actually magnitude in the WAD-QC app

    #print '[info] SNR, %f'%np.mean(output['imgsnr'])
    #print '[info] SFNR, %f'%output['meansfnr']
    #print '[info] drift, %f'%output['trend'].params[1]
    #if len(output['spikes']) > 0:
    #print '[info] nspikes,%d'%len(output['spikes'])
    if len(output['spikes']) > 0:
        results.addBool('spikes', True, level=2)  #Spikes detected
    else:
        results.addBool('spikes', False, level=2)  #No spikes detected