示例#1
0
 def lunar_latitude(cls, tee):
     """Return the latitude of moon (in degrees) at moment, tee.
     Adapted from "Astronomical Algorithms" by Jean Meeus,
     Willmann_Bell, Inc., 1998."""
     c = cls.julian_centuries(tee)
     cap_L_prime = cls.mean_lunar_longitude(c)
     cap_D = cls.lunar_elongation(c)
     cap_M = Solar.solar_anomaly(c)
     cap_M_prime = cls.lunar_anomaly(c)
     cap_F = cls.moon_node(c)
     cap_E = poly(c, [1, mpf(-0.002516), mpf(-0.0000074)])
     args_lunar_elongation = \
             [0, 0, 0, 2, 2, 2, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 0, 4, 0, 0, 0,
              1, 0, 0, 0, 1, 0, 4, 4, 0, 4, 2, 2, 2, 2, 0, 2, 2, 2, 2, 4, 2, 2,
              0, 2, 1, 1, 0, 2, 1, 2, 0, 4, 4, 1, 4, 1, 4, 2]
     args_solar_anomaly = \
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, -1, -1, -1, 1, 0, 1,
              0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1,
              0, -1, -2, 0, 1, 1, 1, 1, 1, 0, -1, 1, 0, -1, 0, 0, 0, -1, -2]
     args_lunar_anomaly = \
             [0, 1, 1, 0, -1, -1, 0, 2, 1, 2, 0, -2, 1, 0, -1, 0, -1, -1, -1,
              0, 0, -1, 0, 1, 1, 0, 0, 3, 0, -1, 1, -2, 0, 2, 1, -2, 3, 2, -3,
              -1, 0, 0, 1, 0, 1, 1, 0, 0, -2, -1, 1, -2, 2, -2, -1, 1, 1, -2,
              0, 0]
     args_moon_node = \
             [1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1,
              -1, 1, 3, 1, 1, 1, -1, -1, -1, 1, -1, 1, -3, 1, -3, -1, -1, 1,
              -1, 1, -1, 1, 1, 1, 1, -1, 3, -1, -1, 1, -1, -1, 1, -1, 1, -1,
              -1, -1, -1, -1, -1, 1]
     sine_coefficients = \
             [5128122, 280602, 277693, 173237, 55413, 46271, 32573,
              17198, 9266, 8822, 8216, 4324, 4200, -3359, 2463, 2211,
              2065, -1870, 1828, -1794, -1749, -1565, -1491, -1475,
              -1410, -1344, -1335, 1107, 1021, 833, 777, 671, 607,
              596, 491, -451, 439, 422, 421, -366, -351, 331, 315,
              302, -283, -229, 223, 223, -220, -220, -185, 181,
              -177, 176, 166, -164, 132, -119, 115, 107]
     beta = ((1.0/1000000.0) *
             sigma([sine_coefficients, 
                    args_lunar_elongation,
                    args_solar_anomaly,
                    args_lunar_anomaly,
                    args_moon_node],
                   lambda v, w, x, y, z: (v *
                                          pow(cap_E, abs(x)) *
                                          sin_degrees((w * cap_D) +
                                                      (x * cap_M) +
                                                      (y * cap_M_prime) +
                                                      (z * cap_F)))))
     venus = ((175/1000000) *
              (sin_degrees(mpf(119.75) + c * mpf(131.849) + cap_F) +
               sin_degrees(mpf(119.75) + c * mpf(131.849) - cap_F)))
     flat_earth = ((-2235/1000000) *  sin_degrees(cap_L_prime) +
                   (127/1000000) * sin_degrees(cap_L_prime - cap_M_prime) +
                   (-115/1000000) * sin_degrees(cap_L_prime + cap_M_prime))
     extra = ((382/1000000) *
              sin_degrees(mpf(313.45) + c * mpf(481266.484)))
     return beta + venus + flat_earth + extra
示例#2
0
 def lunar_longitude(cls, tee):
     """Return longitude of moon (in degrees) at moment tee.
     Adapted from "Astronomical Algorithms" by Jean Meeus,
     Willmann_Bell, Inc., 2nd ed., 1998."""
     c = cls.julian_centuries(tee)
     cap_L_prime = cls.mean_lunar_longitude(c)
     cap_D = cls.lunar_elongation(c)
     cap_M = Solar.solar_anomaly(c)
     cap_M_prime = cls.lunar_anomaly(c)
     cap_F = cls.moon_node(c)
     # see eq. 47.6 in Meeus
     cap_E = poly(c, [1, mpf(-0.002516), mpf(-0.0000074)])
     args_lunar_elongation = \
             [0, 2, 2, 0, 0, 0, 2, 2, 2, 2, 0, 1, 0, 2, 0, 0, 4, 0, 4, 2, 2, 1,
              1, 2, 2, 4, 2, 0, 2, 2, 1, 2, 0, 0, 2, 2, 2, 4, 0, 3, 2, 4, 0, 2,
              2, 2, 4, 0, 4, 1, 2, 0, 1, 3, 4, 2, 0, 1, 2]
     args_solar_anomaly = \
             [0, 0, 0, 0, 1, 0, 0, -1, 0, -1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
              0, 1, -1, 0, 0, 0, 1, 0, -1, 0, -2, 1, 2, -2, 0, 0, -1, 0, 0, 1,
              -1, 2, 2, 1, -1, 0, 0, -1, 0, 1, 0, 1, 0, 0, -1, 2, 1, 0]
     args_lunar_anomaly = \
             [1, -1, 0, 2, 0, 0, -2, -1, 1, 0, -1, 0, 1, 0, 1, 1, -1, 3, -2,
              -1, 0, -1, 0, 1, 2, 0, -3, -2, -1, -2, 1, 0, 2, 0, -1, 1, 0,
              -1, 2, -1, 1, -2, -1, -1, -2, 0, 1, 4, 0, -2, 0, 2, 1, -2, -3,
              2, 1, -1, 3]
     args_moon_node = \
             [0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, -2, 2, 0, 2, 0, 0, 0, 0,
              0, 0, -2, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0]
     sine_coefficients = \
             [6288774,1274027,658314,213618,-185116,-114332,
              58793,57066,53322,45758,-40923,-34720,-30383,
              15327,-12528,10980,10675,10034,8548,-7888,
              -6766,-5163,4987,4036,3994,3861,3665,-2689,
              -2602, 2390,-2348,2236,-2120,-2069,2048,-1773,
              -1595,1215,-1110,-892,-810,759,-713,-700,691,
              596,549,537,520,-487,-399,-381,351,-340,330,
              327,-323,299,294]
     correction = ((1.0/1000000.0) *
                   sigma([sine_coefficients, args_lunar_elongation,
                          args_solar_anomaly, args_lunar_anomaly,
                          args_moon_node],
                         lambda v, w, x, y, z:
                         v * pow(cap_E, abs(x)) *
                         sin_degrees((w * cap_D) +
                                     (x * cap_M) +
                                     (y * cap_M_prime) +
                                     (z * cap_F))))
     A1 = mpf(119.75) + (c * mpf(131.849))
     venus = ((3958/1000000) * sin_degrees(A1))
     A2 = mpf(53.09) + c * mpf(479264.29)
     jupiter = ((318/1000000) * sin_degrees(A2))
     flat_earth = ((1962/1000000) * sin_degrees(cap_L_prime - cap_F))
 
     return mod(cap_L_prime + correction + venus +
                jupiter + flat_earth + cls.nutation(tee), 360)
示例#3
0
 def lunar_distance(cls, tee):
     """Return the distance to moon (in meters) at moment, tee.
     Adapted from "Astronomical Algorithms" by Jean Meeus,
     Willmann_Bell, Inc., 2nd ed."""
     c = cls.julian_centuries(tee)
     cap_D = cls.lunar_elongation(c)
     cap_M = cls.solar_anomaly(c)
     cap_M_prime = cls.lunar_anomaly(c)
     cap_F = cls.moon_node(c)
     cap_E = poly(c, [1, mpf(-0.002516), mpf(-0.0000074)])
     args_lunar_elongation = \
         [0, 2, 2, 0, 0, 0, 2, 2, 2, 2, 0, 1, 0, 2, 0, 0, 4, 0, 4, 2, 2, 1,
          1, 2, 2, 4, 2, 0, 2, 2, 1, 2, 0, 0, 2, 2, 2, 4, 0, 3, 2, 4, 0, 2,
          2, 2, 4, 0, 4, 1, 2, 0, 1, 3, 4, 2, 0, 1, 2, 2,]
     args_solar_anomaly = \
         [0, 0, 0, 0, 1, 0, 0, -1, 0, -1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
          0, 1, -1, 0, 0, 0, 1, 0, -1, 0, -2, 1, 2, -2, 0, 0, -1, 0, 0, 1,
          -1, 2, 2, 1, -1, 0, 0, -1, 0, 1, 0, 1, 0, 0, -1, 2, 1, 0, 0]
     args_lunar_anomaly = \
         [1, -1, 0, 2, 0, 0, -2, -1, 1, 0, -1, 0, 1, 0, 1, 1, -1, 3, -2,
          -1, 0, -1, 0, 1, 2, 0, -3, -2, -1, -2, 1, 0, 2, 0, -1, 1, 0,
          -1, 2, -1, 1, -2, -1, -1, -2, 0, 1, 4, 0, -2, 0, 2, 1, -2, -3,
          2, 1, -1, 3, -1]
     args_moon_node = \
         [0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, -2, 2, 0, 2, 0, 0, 0, 0,
          0, 0, -2, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, -2]
     cosine_coefficients = \
         [-20905355, -3699111, -2955968, -569925, 48888, -3149,
          246158, -152138, -170733, -204586, -129620, 108743,
          104755, 10321, 0, 79661, -34782, -23210, -21636, 24208,
          30824, -8379, -16675, -12831, -10445, -11650, 14403,
          -7003, 0, 10056, 6322, -9884, 5751, 0, -4950, 4130, 0,
          -3958, 0, 3258, 2616, -1897, -2117, 2354, 0, 0, -1423,
          -1117, -1571, -1739, 0, -4421, 0, 0, 0, 0, 1165, 0, 0,
          8752]
     correction = sigma ([cosine_coefficients,
                          args_lunar_elongation,
                          args_solar_anomaly,
                          args_lunar_anomaly,
                          args_moon_node],
                         lambda v, w, x, y, z: (v *
                                     pow(cap_E, abs(x)) * 
                                     cos_degrees((w * cap_D) +
                                                    (x * cap_M) +
                                                    (y * cap_M_prime) +
                                                    (z * cap_F))))
     return 385000560 + correction
示例#4
0
 def solar_longitude(cls, tee):
     """Return the longitude of sun at moment 'tee'.
     Adapted from 'Planetary Programs and Tables from -4000 to +2800'
     by Pierre Bretagnon and Jean_Louis Simon, Willmann_Bell, Inc., 1986.
     See also pag 166 of 'Astronomical Algorithms' by Jean Meeus, 2nd Ed 1998,
     with corrections Jun 2005."""
     c = cls.julian_centuries(tee)
     coefficients = [403406, 195207, 119433, 112392, 3891, 2819, 1721,
                     660, 350, 334, 314, 268, 242, 234, 158, 132, 129, 114,
                     99, 93, 86, 78,72, 68, 64, 46, 38, 37, 32, 29, 28, 27, 27,
                     25, 24, 21, 21, 20, 18, 17, 14, 13, 13, 13, 12, 10, 10, 10,
                     10]
     multipliers = [mpf(0.9287892), mpf(35999.1376958), mpf(35999.4089666),
                    mpf(35998.7287385), mpf(71998.20261), mpf(71998.4403),
                    mpf(36000.35726), mpf(71997.4812), mpf(32964.4678),
                    mpf(-19.4410), mpf(445267.1117), mpf(45036.8840), mpf(3.1008),
                    mpf(22518.4434), mpf(-19.9739), mpf(65928.9345),
                    mpf(9038.0293), mpf(3034.7684), mpf(33718.148), mpf(3034.448),
                    mpf(-2280.773), mpf(29929.992), mpf(31556.493), mpf(149.588),
                    mpf(9037.750), mpf(107997.405), mpf(-4444.176), mpf(151.771),
                    mpf(67555.316), mpf(31556.080), mpf(-4561.540),
                    mpf(107996.706), mpf(1221.655), mpf(62894.167),
                    mpf(31437.369), mpf(14578.298), mpf(-31931.757),
                    mpf(34777.243), mpf(1221.999), mpf(62894.511),
                    mpf(-4442.039), mpf(107997.909), mpf(119.066), mpf(16859.071),
                    mpf(-4.578), mpf(26895.292), mpf(-39.127), mpf(12297.536),
                    mpf(90073.778)]
     addends = [mpf(270.54861), mpf(340.19128), mpf(63.91854), mpf(331.26220),
                mpf(317.843), mpf(86.631), mpf(240.052), mpf(310.26), mpf(247.23),
                mpf(260.87), mpf(297.82), mpf(343.14), mpf(166.79), mpf(81.53),
                mpf(3.50), mpf(132.75), mpf(182.95), mpf(162.03), mpf(29.8),
                mpf(266.4), mpf(249.2), mpf(157.6), mpf(257.8),mpf(185.1),
                mpf(69.9),  mpf(8.0), mpf(197.1), mpf(250.4), mpf(65.3),
                mpf(162.7), mpf(341.5), mpf(291.6), mpf(98.5), mpf(146.7),
                mpf(110.0), mpf(5.2), mpf(342.6), mpf(230.9), mpf(256.1),
                mpf(45.3), mpf(242.9), mpf(115.2), mpf(151.8), mpf(285.3),
                mpf(53.3), mpf(126.6), mpf(205.7), mpf(85.9), mpf(146.1)]
     lam = (mpf(282.7771834) +
            mpf(36000.76953744) * c +
            mpf(0.000005729577951308232) *
            sigma([coefficients, addends, multipliers],
                  lambda x, y, z:  x * sin_degrees(y + (z * c))))
     return mod(lam + cls.aberration(tee) + cls.nutation(tee), 360)
示例#5
0
 def nth_new_moon(cls, n):
     """Return the moment of n-th new moon after (or before) the new moon
     of January 11, 1.  Adapted from "Astronomical Algorithms"
     by Jean Meeus, Willmann_Bell, Inc., 2nd ed., 1998."""
     n0 = 24724
     k = n - n0
     c = k / mpf(1236.85)
     approx = (cls.J2000 +
               poly(c, [mpf(5.09766),
                        cls.MEAN_SYNODIC_MONTH * mpf(1236.85),
                        mpf(0.0001437),
                        mpf(-0.000000150),
                        mpf(0.00000000073)]))
     cap_E = poly(c, [1, mpf(-0.002516), mpf(-0.0000074)])
     solar_anomaly = poly(c, [mpf(2.5534), (mpf(1236.85) * mpf(29.10535669)), mpf(-0.0000014), mpf(-0.00000011)])
     lunar_anomaly = poly(c, [mpf(201.5643), (mpf(385.81693528) * mpf(1236.85)), mpf(0.0107582), mpf(0.00001238), mpf(-0.000000058)])
     moon_argument = poly(c, [mpf(160.7108), (mpf(390.67050284) * mpf(1236.85)), mpf(-0.0016118), mpf(-0.00000227), mpf(0.000000011)])
     cap_omega = poly(c, [mpf(124.7746), (mpf(-1.56375588) * mpf(1236.85)), mpf(0.0020672), mpf(0.00000215)])
     E_factor = [0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0]
     solar_coeff = [0, 1, 0, 0, -1, 1, 2, 0, 0, 1, 0, 1, 1, -1, 2,
                    0, 3, 1, 0, 1, -1, -1, 1, 0]
     lunar_coeff = [1, 0, 2, 0, 1, 1, 0, 1, 1, 2, 3, 0, 0, 2, 1, 2,
                    0, 1, 2, 1, 1, 1, 3, 4]
     moon_coeff = [0, 0, 0, 2, 0, 0, 0, -2, 2, 0, 0, 2, -2, 0, 0,
                   -2, 0, -2, 2, 2, 2, -2, 0, 0]
     sine_coeff = [mpf(-0.40720), mpf(0.17241), mpf(0.01608),
                   mpf(0.01039),  mpf(0.00739), mpf(-0.00514),
                   mpf(0.00208), mpf(-0.00111), mpf(-0.00057),
                   mpf(0.00056), mpf(-0.00042), mpf(0.00042),
                   mpf(0.00038), mpf(-0.00024), mpf(-0.00007),
                   mpf(0.00004), mpf(0.00004), mpf(0.00003),
                   mpf(0.00003), mpf(-0.00003), mpf(0.00003),
                   mpf(-0.00002), mpf(-0.00002), mpf(0.00002)]
     correction = ((mpf(-0.00017) * sin_degrees(cap_omega)) +
                   sigma([sine_coeff, E_factor, solar_coeff,
                          lunar_coeff, moon_coeff],
                         lambda v, w, x, y, z: (v *
                                     pow(cap_E, w) *
                                     sin_degrees((x * solar_anomaly) + 
                                                 (y * lunar_anomaly) +
                                                 (z * moon_argument)))))
     add_const = [mpf(251.88), mpf(251.83), mpf(349.42), mpf(84.66),
                  mpf(141.74), mpf(207.14), mpf(154.84), mpf(34.52),
                  mpf(207.19), mpf(291.34), mpf(161.72), mpf(239.56),
                  mpf(331.55)]
     add_coeff = [mpf(0.016321), mpf(26.651886), mpf(36.412478),
                  mpf(18.206239), mpf(53.303771), mpf(2.453732),
                  mpf(7.306860), mpf(27.261239), mpf(0.121824),
                  mpf(1.844379), mpf(24.198154), mpf(25.513099),
                  mpf(3.592518)]
     add_factor = [mpf(0.000165), mpf(0.000164), mpf(0.000126),
                   mpf(0.000110), mpf(0.000062), mpf(0.000060),
                   mpf(0.000056), mpf(0.000047), mpf(0.000042),
                   mpf(0.000040), mpf(0.000037), mpf(0.000035),
                   mpf(0.000023)]
     extra = (mpf(0.000325) * sin_degrees(poly(c, [mpf(299.77), mpf(132.8475848), mpf(-0.009173)])))
     additional = sigma([add_const, add_coeff, add_factor],
                        lambda i, j, l: l * sin_degrees(i + j * k))
 
     return cls.universal_from_dynamical(approx + correction + extra + additional)