def test_build_softmax_score_converter(self): post_processing_text_proto = """ score_converter: SOFTMAX """ post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) _, score_converter = post_processing_builder.build( post_processing_config) self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale')
def test_build_identity_score_converter(self): post_processing_text_proto = """ score_converter: IDENTITY """ post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) _, score_converter = post_processing_builder.build( post_processing_config) self.assertEqual(score_converter.__name__, 'identity_with_logit_scale') inputs = tf.constant([1, 1], tf.float32) outputs = score_converter(inputs) with self.test_session() as sess: converted_scores = sess.run(outputs) expected_converted_scores = sess.run(inputs) self.assertAllClose(converted_scores, expected_converted_scores)
def test_build_non_max_suppressor_with_correct_parameters(self): post_processing_text_proto = """ batch_non_max_suppression { score_threshold: 0.7 iou_threshold: 0.6 max_detections_per_class: 100 max_total_detections: 300 } """ post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) non_max_suppressor, _ = post_processing_builder.build( post_processing_config) self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 100) self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300) self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7) self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6)