def scope_fn(): with (slim.arg_scope([slim.batch_norm], **batch_norm_params) if batch_norm_params is not None else context_manager.IdentityContextManager()): with slim.arg_scope(affected_ops, weights_regularizer=_build_slim_regularizer( hyperparams_config.regularizer), weights_initializer=_build_initializer( hyperparams_config.initializer), activation_fn=_build_activation_fn( hyperparams_config.activation), normalizer_fn=batch_norm) as sc: return sc
def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) feature_map_layout = { 'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', '', ''], 'layer_depth': [-1, -1, 512, 256, 256, 128], 'use_explicit_padding': self._use_explicit_padding, 'use_depthwise': self._use_depthwise, } with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope( is_training=None, regularize_depthwise=True)): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v1.mobilenet_v1_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Conv2d_13_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, use_explicit_padding=self._use_explicit_padding, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, image_features=image_features) return feature_maps.values()
def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] Raises: ValueError: depth multiplier is not supported. """ if self._depth_multiplier != 1.0: raise ValueError('Depth multiplier not supported.') preprocessed_inputs = shape_utils.check_min_image_dim( 129, preprocessed_inputs) with tf.variable_scope(self._resnet_scope_name, reuse=self._reuse_weights) as scope: with slim.arg_scope(resnet_v1.resnet_arg_scope()): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): with slim.arg_scope([resnet_v1.bottleneck], use_bounded_activations=self. _use_bounded_activations): _, activations = self._resnet_base_fn( inputs=ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), num_classes=None, is_training=None, global_pool=False, output_stride=None, store_non_strided_activations=True, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.pooling_pyramid_feature_maps( base_feature_map_depth=self._base_feature_map_depth, num_layers=self._num_layers, image_features={ 'image_features': self._filter_features(activations)['block3'] }) return feature_maps.values()
def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope( is_training=None, regularize_depthwise=True)): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v1.mobilenet_v1_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Conv2d_13_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, use_explicit_padding=self._use_explicit_padding, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.pooling_pyramid_feature_maps( base_feature_map_depth=0, num_layers=6, image_features={ 'image_features': image_features['Conv2d_11_pointwise'] }) return feature_maps.values()
def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] Raises: ValueError: depth multiplier is not supported. """ if self._depth_multiplier != 1.0: raise ValueError('Depth multiplier not supported.') preprocessed_inputs = shape_utils.check_min_image_dim( 129, preprocessed_inputs) with tf.variable_scope(self._resnet_scope_name, reuse=self._reuse_weights) as scope: with slim.arg_scope(resnet_v1.resnet_arg_scope()): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = self._resnet_base_fn( inputs=ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), num_classes=None, is_training=None, global_pool=False, output_stride=None, store_non_strided_activations=True, scope=scope) image_features = self._filter_features(image_features) with slim.arg_scope(self._conv_hyperparams_fn()): with tf.variable_scope(self._fpn_scope_name, reuse=self._reuse_weights): base_fpn_max_level = min(self._fpn_max_level, 5) feature_block_list = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_block_list.append('block{}'.format(level - 1)) fpn_features = feature_map_generators.fpn_top_down_feature_maps( [(key, image_features[key]) for key in feature_block_list], depth=256) feature_maps = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_maps.append( fpn_features['top_down_block{}'.format(level - 1)]) last_feature_map = fpn_features['top_down_block{}'.format( base_fpn_max_level - 1)] # Construct coarse features for i in range(base_fpn_max_level, self._fpn_max_level): last_feature_map = slim.conv2d( last_feature_map, num_outputs=256, kernel_size=[3, 3], stride=2, padding='SAME', scope='bottom_up_block{}'.format(i)) feature_maps.append(last_feature_map) return feature_maps
def test_identity_context_manager(self): with context_manager.IdentityContextManager() as identity_context: self.assertIsNone(identity_context)
def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] Raises: ValueError: if image height or width are not 256 pixels. """ image_shape = preprocessed_inputs.get_shape() image_shape.assert_has_rank(4) image_height = image_shape[1].value image_width = image_shape[2].value if image_height is None or image_width is None: shape_assert = tf.Assert( tf.logical_and(tf.equal(tf.shape(preprocessed_inputs)[1], 256), tf.equal(tf.shape(preprocessed_inputs)[2], 256)), ['image size must be 256 in both height and width.']) with tf.control_dependencies([shape_assert]): preprocessed_inputs = tf.identity(preprocessed_inputs) elif image_height != 256 or image_width != 256: raise ValueError( 'image size must be = 256 in both height and width;' ' image dim = %d,%d' % (image_height, image_width)) feature_map_layout = { 'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', ''], 'layer_depth': [-1, -1, 512, 256, 256], 'conv_kernel_size': [-1, -1, 3, 3, 2], 'use_explicit_padding': self._use_explicit_padding, 'use_depthwise': self._use_depthwise, } with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope(is_training=None)): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v1.mobilenet_v1_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Conv2d_13_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, use_explicit_padding=self._use_explicit_padding, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, image_features=image_features) return feature_maps.values()
def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope( is_training=None, regularize_depthwise=True)): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v1.mobilenet_v1_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Conv2d_13_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, use_explicit_padding=self._use_explicit_padding, scope=scope) depth_fn = lambda d: max(int(d * self._depth_multiplier), self._min_depth) with slim.arg_scope(self._conv_hyperparams_fn()): with tf.variable_scope('fpn', reuse=self._reuse_weights): feature_blocks = [ 'Conv2d_3_pointwise', 'Conv2d_5_pointwise', 'Conv2d_11_pointwise', 'Conv2d_13_pointwise' ] base_fpn_max_level = min(self._fpn_max_level, 5) feature_block_list = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_block_list.append(feature_blocks[level - 2]) fpn_features = feature_map_generators.fpn_top_down_feature_maps( [(key, image_features[key]) for key in feature_block_list], depth=depth_fn(256)) feature_maps = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_maps.append(fpn_features['top_down_{}'.format( feature_blocks[level - 2])]) last_feature_map = fpn_features['top_down_{}'.format( feature_blocks[base_fpn_max_level - 2])] # Construct coarse features for i in range(base_fpn_max_level + 1, self._fpn_max_level + 1): last_feature_map = slim.conv2d( last_feature_map, num_outputs=depth_fn(256), kernel_size=[3, 3], stride=2, padding='SAME', scope='bottom_up_Conv2d_{}'.format(i - base_fpn_max_level + 13)) feature_maps.append(last_feature_map) return feature_maps