示例#1
0
    def test_gpu_numpy(self):
        if swig_paddle.isGpuVersion():
            vec = swig_paddle.IVector.create(range(0, 10), True)
            assert isinstance(vec, swig_paddle.IVector)
            self.assertTrue(vec.isGpu())
            self.assertEqual(vec.getData(), range(0, 10))
            num_arr = vec.copyToNumpyArray()
            assert isinstance(num_arr, np.ndarray)  # for code hint.
            num_arr[4] = 7
            self.assertEquals(vec.getData(), range(0, 10))

            vec.copyFromNumpyArray(num_arr)
            expect_vec = range(0, 10)
            expect_vec[4] = 7
            self.assertEqual(vec.getData(), expect_vec)
示例#2
0
    def test_gpu_numpy(self):
        if swig_paddle.isGpuVersion():
            vec = swig_paddle.IVector.create(range(0, 10), True)
            assert isinstance(vec, swig_paddle.IVector)
            self.assertTrue(vec.isGpu())
            self.assertEqual(vec.getData(), range(0, 10))
            num_arr = vec.copyToNumpyArray()
            assert isinstance(num_arr, np.ndarray)  # for code hint.
            num_arr[4] = 7
            self.assertEquals(vec.getData(), range(0, 10))

            vec.copyFromNumpyArray(num_arr)
            expect_vec = range(0, 10)
            expect_vec[4] = 7
            self.assertEqual(vec.getData(), expect_vec)
示例#3
0
    def test_numpyGpu(self):
        if swig_paddle.isGpuVersion():
            numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype='float32')
            gpu_m = swig_paddle.Matrix.createGpuDenseFromNumpy(numpy_mat)
            assert isinstance(gpu_m, swig_paddle.Matrix)
            self.assertEqual((int(gpu_m.getHeight()), int(gpu_m.getWidth())),
                             numpy_mat.shape)
            self.assertTrue(gpu_m.isGpu())
            numpy_mat = gpu_m.copyToNumpyMat()
            numpy_mat[0, 1] = 3.23
            for a, e in zip(gpu_m.getData(), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]):
                self.assertAlmostEqual(a, e)

            gpu_m.copyFromNumpyMat(numpy_mat)

            for a, e in zip(gpu_m.getData(), [1.0, 3.23, 3.0, 4.0, 5.0, 6.0]):
                self.assertAlmostEqual(a, e)
示例#4
0
    def test_numpyGpu(self):
        if swig_paddle.isGpuVersion():
            numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype='float32')
            gpu_m = swig_paddle.Matrix.createGpuDenseFromNumpy(numpy_mat)
            assert isinstance(gpu_m, swig_paddle.Matrix)
            self.assertEqual((int(gpu_m.getHeight()), int(gpu_m.getWidth())),
                             numpy_mat.shape)
            self.assertTrue(gpu_m.isGpu())
            numpy_mat = gpu_m.copyToNumpyMat()
            numpy_mat[0, 1] = 3.23
            for a, e in zip(gpu_m.getData(), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]):
                self.assertAlmostEqual(a, e)

            gpu_m.copyFromNumpyMat(numpy_mat)

            for a, e in zip(gpu_m.getData(), [1.0, 3.23, 3.0, 4.0, 5.0, 6.0]):
                self.assertAlmostEqual(a, e)
示例#5
0
            self.assertEqual((int(gpu_m.getHeight()), int(gpu_m.getWidth())),
                             numpy_mat.shape)
            self.assertTrue(gpu_m.isGpu())
            numpy_mat = gpu_m.copyToNumpyMat()
            numpy_mat[0, 1] = 3.23
            for a, e in zip(gpu_m.getData(), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]):
                self.assertAlmostEqual(a, e)

            gpu_m.copyFromNumpyMat(numpy_mat)

            for a, e in zip(gpu_m.getData(), [1.0, 3.23, 3.0, 4.0, 5.0, 6.0]):
                self.assertAlmostEqual(a, e)

    def test_numpy(self):
        numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype="float32")
        m = swig_paddle.Matrix.createDenseFromNumpy(numpy_mat)
        self.assertEqual((int(m.getHeight()), int(m.getWidth())),
                         numpy_mat.shape)
        self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu())
        for a, e in zip(m.getData(), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]):
            self.assertAlmostEqual(a, e)


if __name__ == "__main__":
    swig_paddle.initPaddle("--use_gpu=0")
    suite = unittest.TestLoader().loadTestsFromTestCase(TestMatrix)
    unittest.TextTestRunner().run(suite)
    if swig_paddle.isGpuVersion():
        swig_paddle.setUseGpu(True)
        unittest.main()
示例#6
0
        def gen_data(batch_size, shape):
            data = []
            for i in xrange(batch_size):
                each_sample = []
                each_sample.append(np.random.random(shape))
                data.append(each_sample)
            return data

        feeder = DataFeeder([('image', data_type.dense_array(2352))],
                            {'image': 0})
        arg = feeder(gen_data(32, (3, 28, 28)))
        h = arg.getSlotFrameHeight(0)
        w = arg.getSlotFrameWidth(0)
        self.assertEqual(h, 28)
        self.assertEqual(w, 28)

        arg = feeder(gen_data(32, (3, 30, 32)))
        h = arg.getSlotFrameHeight(0)
        w = arg.getSlotFrameWidth(0)
        self.assertEqual(h, 30)
        self.assertEqual(w, 32)


if __name__ == '__main__':
    api.initPaddle("--use_gpu=0")
    suite = unittest.TestLoader().loadTestsFromTestCase(DataFeederTest)
    unittest.TextTestRunner().run(suite)
    if api.isGpuVersion():
        api.setUseGpu(True)
        unittest.main()
示例#7
0
            self.assertTrue(util.doubleEqual(n, v))

        numpy_2 = vec.toNumpyArrayInplace()
        vec[0] = 1.3
        for x, y in zip(numpy_arr, numpy_2):
            self.assertTrue(util.doubleEqual(x, y))

        for x, y in zip(numpy_arr, vec):
            self.assertTrue(util.doubleEqual(x, y))

        numpy_3 = vec.copyToNumpyArray()
        numpy_3[0] = 0.4
        self.assertTrue(util.doubleEqual(vec[0], 1.3))
        self.assertTrue(util.doubleEqual(numpy_3[0], 0.4))

        for i in xrange(1, len(numpy_3)):
            util.doubleEqual(numpy_3[i], vec[i])

    def testCopyFromNumpy(self):
        vec = swig_paddle.Vector.createZero(1)
        arr = np.array([1.3, 3.2, 2.4], dtype="float32")
        vec.copyFromNumpyArray(arr)
        for i in xrange(len(vec)):
            self.assertTrue(util.doubleEqual(vec[i], arr[i]))


if __name__ == '__main__':
    swig_paddle.initPaddle("--use_gpu=1"
                           if swig_paddle.isGpuVersion() else "--use_gpu=0")
    unittest.main()
示例#8
0
            self.assertEqual((int(gpu_m.getHeight()), int(gpu_m.getWidth())),
                             numpy_mat.shape)
            self.assertTrue(gpu_m.isGpu())
            numpy_mat = gpu_m.copyToNumpyMat()
            numpy_mat[0, 1] = 3.23
            for a, e in zip(gpu_m.getData(), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]):
                self.assertAlmostEqual(a, e)

            gpu_m.copyFromNumpyMat(numpy_mat)

            for a, e in zip(gpu_m.getData(), [1.0, 3.23, 3.0, 4.0, 5.0, 6.0]):
                self.assertAlmostEqual(a, e)

    def test_numpy(self):
        numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype="float32")
        m = swig_paddle.Matrix.createDenseFromNumpy(numpy_mat)
        self.assertEqual((int(m.getHeight()), int(m.getWidth())),
                         numpy_mat.shape)
        self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu())
        for a, e in zip(m.getData(), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]):
            self.assertAlmostEqual(a, e)


if __name__ == "__main__":
    swig_paddle.initPaddle("--use_gpu=0")
    suite = unittest.TestLoader().loadTestsFromTestCase(TestMatrix)
    unittest.TextTestRunner().run(suite)
    if swig_paddle.isGpuVersion():
        swig_paddle.setUseGpu(True)
        unittest.main()
示例#9
0
        data = []
        for i in xrange(batch_size):
            a = np.random.randint(10)
            b = self.sparse_binary_reader(20000, 40, non_empty=True)
            c = self.dense_reader(100)
            each_sample = (a, b, c)
            data.append(each_sample)

        # test multiple features
        data_types = [('fea0', data_type.dense_vector(100)),
                      ('fea1', data_type.sparse_binary_vector(20000)),
                      ('fea2', data_type.integer_value(10))]
        feeder = DataFeeder(data_types, {'fea0': 2, 'fea1': 1, 'fea2': 0})
        arg = feeder(data)
        out_dense = arg.getSlotValue(0).copyToNumpyMat()
        out_sparse = arg.getSlotValue(1)
        out_index = arg.getSlotIds(2).copyToNumpyArray()
        for i in xrange(batch_size):
            self.assertEqual(out_dense[i].all(), data[i][2].all())
            self.assertEqual(out_sparse.getSparseRowCols(i), data[i][1])
            self.assertEqual(out_index[i], data[i][0])


if __name__ == '__main__':
    api.initPaddle("--use_gpu=0")
    suite = unittest.TestLoader().loadTestsFromTestCase(DataFeederTest)
    unittest.TextTestRunner().run(suite)
    if api.isGpuVersion():
        api.setUseGpu(True)
        unittest.main()
示例#10
0
            self.assertTrue(util.doubleEqual(n, v))

        numpy_2 = vec.toNumpyArrayInplace()
        vec[0] = 1.3
        for x, y in zip(numpy_arr, numpy_2):
            self.assertTrue(util.doubleEqual(x, y))

        for x, y in zip(numpy_arr, vec):
            self.assertTrue(util.doubleEqual(x, y))

        numpy_3 = vec.copyToNumpyArray()
        numpy_3[0] = 0.4
        self.assertTrue(util.doubleEqual(vec[0], 1.3))
        self.assertTrue(util.doubleEqual(numpy_3[0], 0.4))

        for i in xrange(1, len(numpy_3)):
            util.doubleEqual(numpy_3[i], vec[i])

    def testCopyFromNumpy(self):
        vec = swig_paddle.Vector.createZero(1)
        arr = np.array([1.3, 3.2, 2.4], dtype="float32")
        vec.copyFromNumpyArray(arr)
        for i in xrange(len(vec)):
            self.assertTrue(util.doubleEqual(vec[i], arr[i]))


if __name__ == '__main__':
    swig_paddle.initPaddle(
        "--use_gpu=1" if swig_paddle.isGpuVersion() else "--use_gpu=0")
    unittest.main()