示例#1
0
def im_test(im):
    face_info = lib.align(im[:, :, (2, 1, 0)], front_face_detector,
                          lmark_predictor)
    # Samples
    if len(face_info) == 0:
        logging.warning('No faces are detected.')
        prob = -1  # we ignore this case
    else:
        # Check how many faces in an image
        logging.info('{} faces are detected.'.format(len(face_info)))
        max_prob = -1
        # If one face is fake, the image is fake
        for _, point in face_info:
            rois = []
            for i in range(sample_num):
                roi, _ = lib.cut_head([im], point, i)
                rois.append(cv2.resize(roi[0], tuple(cfg.IMG_SIZE[:2])))
            vis_im(rois, 'tmp/vis.jpg')
            prob = solver.test(rois)
            prob = np.mean(
                np.sort(prob[:, 0])[np.round(sample_num / 2).astype(int):])
            if prob >= max_prob:
                max_prob = prob
        prob = max_prob
    return prob
示例#2
0
def im_test(net, im, args):
    face_info = lib.align(im[:, :, (2, 1, 0)], front_face_detector,
                          lmark_predictor)
    # Samples
    if len(face_info) != 1:
        prob = -1
    else:
        _, point = face_info[0]
        rois = []
        for i in range(sample_num):
            roi, _ = lib.cut_head([im], point, i)
            rois.append(cv2.resize(roi[0], (args.input_size, args.input_size)))

        # vis_ = np.concatenate(rois, 1)
        # cv2.imwrite('vis.jpg', vis_)

        bgr_mean = np.array([103.939, 116.779, 123.68])
        bgr_mean = bgr_mean[np.newaxis, :, np.newaxis, np.newaxis]
        bgr_mean = torch.from_numpy(bgr_mean).float().cuda()

        rois = torch.from_numpy(np.array(rois)).float().cuda()
        rois = rois.permute((0, 3, 1, 2))
        prob = net(rois - bgr_mean)
        prob = F.softmax(prob, dim=1)
        prob = prob.data.cpu().numpy()
        prob = 1 - np.mean(
            np.sort(prob[:, 0])[np.round(sample_num / 2).astype(int):])
    return prob, face_info
    def get_batch(self, batch_idx, resize=None):
        if batch_idx >= self.batch_num:
            raise ValueError("Batch idx must be in range [0, {}].".format(self.batch_num - 1))

        imgs = []
        names = []
        im_path = self.face_img_paths[batch_idx]
        im = cv2.imread(str(im_path))
        im_name = os.path.basename(im_path).split('.')[0]
        _, points = self.face_caches[im_name]
        if points is None:
            return None

        for _ in range(self.sample_num):
            # Cut out head region
            im_cut, _ = lib.cut_head([im.copy()], points)
            im_cut = cv2.resize(im_cut[0], (resize[0], resize[1]))
            imgs.append(im_cut)

        data = {}
        data['images'] = imgs
        data['name_list'] = im_name
        return data
示例#4
0
    def get_batch(self, batch_idx, resize=None):
        if batch_idx >= self.batch_num:
            raise ValueError("Batch idx must be in range [0, {}].".format(self.batch_num - 1))

        # Get start and end image index ( counting from 0 )
        start_idx = batch_idx * self.batch_size
        idx_range = []
        for i in range(self.batch_size):
            idx_range.append((start_idx + i) % self.data_num)

        print('batch index: {}, counting from 0'.format(batch_idx))

        imgs = []
        labels = []
        names = []
        for i in idx_range:
            im = cv2.imread(str(self.face_img_paths[i]))
            im_name = os.path.basename(self.face_img_paths[i]).split('.')[0]
            if im_name in self.face_caches:
                trans_matrix, point = self.face_caches[im_name]
            if point is None:
                continue

            label = self.annos[im_name]
            # label is 1 means this is an authentic image,
            if label == 1:
                rnd = np.random.uniform()
                if rnd < 0.5:
                    # Affine warp face area back
                    size = np.arange(64, 128, dtype=np.int32)
                    c = np.random.randint(0, len(size))
                    new_im = self._face_blur(im, trans_matrix, size=size[c])
                    rnd2 = np.random.uniform()
                    if rnd2 < 0.5:
                        # Only retain a minimal polygon mask
                        part_mask = lib.get_face_mask(im.shape[:2], point)
                        # Select specific blurred part
                        new_im = self._select_part_to_blur(im, new_im, part_mask)
                    im = new_im
                    label = 0
            else:
                continue

            # Cut out head region
            ims, _ = lib.cut_head([im], point)
            # Augmentation
            if self.is_aug:
                im = proc_img.aug(ims, random_transform_args=None,
                                  color_rng=[0.8, 1.2])[0]
            im = cv2.resize(im, (resize[0], resize[1]))
            imgs.append(im)
            labels.append(label)
            names.append(im_name)

        if batch_idx == self.batch_num - 1:
            if self.is_shuffle:
                idx = np.random.permutation(self.data_num)
                self.face_img_paths = [self.face_img_paths[j] for j in idx]

        data = {}
        data['images'] = imgs
        data['images_label'] = labels
        data['name_list'] = names
        return data