示例#1
0
def test_aep_map():
    site = IEA37Site(16)
    x = [0, 0]
    y = [0, 200]
    windTurbines = IEA37_WindTurbines(iea37_path + 'iea37-335mw.yaml')
    wake_model = IEA37SimpleBastankhahGaussian(site, windTurbines)
    aep = AEPCalculator(wake_model)
    # print(aep.calculate_AEP([0], [0]).sum())
    x_j = np.arange(-150, 150, 20)
    y_j = np.arange(-250, 250, 20)
    X, Y, Z = aep.aep_map(x_j, y_j, 0, x, y, wd=[0], ws=np.arange(3, 25))
    m = 17
    if 0:
        import matplotlib.pyplot as plt
        c = plt.contourf(X, Y, Z, 100)  # , np.arange(2, 10, .01))
        plt.colorbar(c)
        windTurbines.plot(x, y)
        plt.plot(X[m], Y[m], '.-r')
        plt.show()
    # print(np.round(Z[m], 2).tolist()) # ref
    ref = [
        21.5, 21.4, 21.02, 20.34, 18.95, 16.54, 13.17, 10.17, 10.17, 13.17,
        16.54, 18.95, 20.34, 21.02, 21.4
    ]
    npt.assert_array_almost_equal(Z[m], ref, 2)
示例#2
0
def get_iea37_cost(n_wt=9):
    """Cost component that wraps the IEA 37 AEP calculator"""
    wd = npa(range(16)) * 22.5  # only 16 bins
    site = IEA37Site(n_wt)
    wind_turbines = IEA37_WindTurbines()
    wake_model = IEA37SimpleBastankhahGaussian(wind_turbines)
    aep_calc = PyWakeAEP(site, wind_turbines, wake_model)
    return aep_calc.get_TopFarm_cost_component(n_wt, wd=wd)
示例#3
0
def main():
    if __name__ == '__main__':
        try:
            import matplotlib.pyplot as plt
            plt.gcf()
            plot_comp = XYPlotComp()
            plot = True
        except RuntimeError:
            plot_comp = NoPlot()
            plot = False

        n_wt = 16
        site = IEA37Site(n_wt)
        windTurbines = IEA37_WindTurbines()
        wake_model = IEA37SimpleBastankhahGaussian(site, windTurbines)
        Drotor_vector = [windTurbines.diameter()] * n_wt
        power_rated_vector = [float(windTurbines.power(20) / 1000)] * n_wt
        hub_height_vector = [windTurbines.hub_height()] * n_wt
        AEPCalc = AEPCalculator(wake_model)

        def aep_func(x, y, **kwargs):
            return AEPCalc.calculate_AEP(x_i=x, y_i=y).sum(-1).sum(-1) * 10**6

        def irr_func(aep, **kwargs):
            my_irr = economic_evaluation(Drotor_vector, power_rated_vector,
                                         hub_height_vector,
                                         aep).calculate_irr()
            print(my_irr)
            return my_irr

        aep_comp = CostModelComponent(input_keys=['x', 'y'],
                                      n_wt=n_wt,
                                      cost_function=aep_func,
                                      output_key="aep",
                                      output_unit="GWh",
                                      objective=False,
                                      output_val=np.zeros(n_wt))
        irr_comp = CostModelComponent(input_keys=['aep'],
                                      n_wt=n_wt,
                                      cost_function=irr_func,
                                      output_key="irr",
                                      output_unit="%",
                                      objective=True,
                                      income_model=True)
        group = TopFarmGroup([aep_comp, irr_comp])
        problem = TopFarmProblem(
            design_vars=dict(zip('xy', site.initial_position.T)),
            cost_comp=group,
            driver=EasyRandomSearchDriver(
                randomize_func=RandomizeTurbinePosition_Circle(), max_iter=50),
            constraints=[
                SpacingConstraint(200),
                CircleBoundaryConstraint([0, 0], 1300.1)
            ],
            plot_comp=plot_comp)
        cost, state, recorder = problem.optimize()
示例#4
0
def test_aep_map_no_turbines():
    _, _, freq = read_iea37_windrose(iea37_path + "iea37-windrose.yaml")
    site = UniformSite(freq, ti=0.075)
    windTurbines = IEA37_WindTurbines(iea37_path + 'iea37-335mw.yaml')
    wake_model = IEA37SimpleBastankhahGaussian(site, windTurbines)
    aep = AEPCalculator(wake_model)
    x_j = np.arange(-150, 150, 20)
    y_j = np.arange(-250, 250, 20)
    X, Y, Z = aep.aep_map(x_j, y_j, 0, [], [], wd=[0])
    expect = (3.35 * 1e6) * 24 * 365 * (1e-9)

    npt.assert_array_almost_equal(Z, expect, 2)
示例#5
0
def test_aep_map_no_turbines():

    _, _, freq = read_iea37_windrose(iea37_path + "iea37-windrose.yaml")
    # n_wt = 16
    # x, y, _ = read_iea37_windfarm(iea37_path + 'iea37-ex%d.yaml' % n_wt)

    site = UniformSite(freq, ti=0.75)
    windTurbines = IEA37_WindTurbines(iea37_path + 'iea37-335mw.yaml')
    wake_model = IEA37SimpleBastankhahGaussian(windTurbines)
    aep = AEPCalculator(site, windTurbines, wake_model)
    x_j = np.arange(-150, 150, 20)
    y_j = np.arange(-250, 250, 20)
    X, Y, Z = aep.aep_map(x_j, y_j, 0, [], [], wd=[0])

    npt.assert_array_almost_equal(Z, 21.89, 2)
示例#6
0
def main():
    if __name__ == '__main__':
        site = IEA37Site(16)
        windTurbines = IEA37_WindTurbines()
        wake_model = IEA37SimpleBastankhahGaussian(site, windTurbines)
        aep_calc = PyWakeAEP(wake_model)
        tf = TopFarmProblem(
            design_vars=dict(zip('xy', site.initial_position.T)),
            cost_comp=aep_calc.get_TopFarm_cost_component(16),
            driver=EasyRandomSearchDriver(
                randomize_func=RandomizeTurbinePosition_Circle(), max_iter=5),
            constraints=[CircleBoundaryConstraint([0, 0], 1300.1)],
            plot_comp=XYPlotComp())
        tf.optimize()
        tf.plot_comp.show()
def main():
    if __name__ == '__main__':
        plot_comp = XYPlotComp()
        site = get_site()
        n_wt = len(site.initial_position)
        windTurbines = DTU10MW()
        min_spacing = 2 * windTurbines.diameter(0)
        wake_model = IEA37SimpleBastankhahGaussian(site, windTurbines)
        Drotor_vector = [windTurbines.diameter()] * n_wt
        power_rated_vector = [float(windTurbines.power(20) / 1000)] * n_wt
        hub_height_vector = [windTurbines.hub_height()] * n_wt
        AEPCalc = AEPCalculator(wake_model)

        def aep_func(x, y, **kwargs):
            return AEPCalc.calculate_AEP(x_i=x, y_i=y).sum(-1).sum(-1) * 10**6

        def irr_func(aep, **kwargs):
            return economic_evaluation(Drotor_vector, power_rated_vector,
                                       hub_height_vector, aep).calculate_irr()

        aep_comp = CostModelComponent(input_keys=['x', 'y'],
                                      n_wt=n_wt,
                                      cost_function=aep_func,
                                      output_key="aep",
                                      output_unit="GWh",
                                      objective=False,
                                      output_val=np.zeros(n_wt))
        irr_comp = CostModelComponent(input_keys=['aep'],
                                      n_wt=n_wt,
                                      cost_function=irr_func,
                                      output_key="irr",
                                      output_unit="%",
                                      objective=True,
                                      income_model=True)
        group = TopFarmGroup([aep_comp, irr_comp])
        problem = TopFarmProblem(
            design_vars=dict(zip('xy', site.initial_position.T)),
            cost_comp=group,
            driver=EasyRandomSearchDriver(
                randomize_func=RandomizeTurbinePosition_Circle(), max_iter=50),
            constraints=[
                SpacingConstraint(min_spacing),
                XYBoundaryConstraint(site.boundary),
            ],
            plot_comp=plot_comp)
        cost, state, recorder = problem.optimize()
def test_IEA37SimpleBastankhahGaussian_ex16():
    _, _, freq = read_iea37_windrose(iea37_path + "iea37-windrose.yaml")
    n_wt = 16
    x, y, aep_ref = read_iea37_windfarm(iea37_path + 'iea37-ex%d.yaml' % n_wt)
    if 0:
        import matplotlib.pyplot as plt
        plt.plot(x, y, '2k')
        for i, (x_, y_) in enumerate(zip(x, y)):
            plt.annotate(i, (x_, y_))
        plt.axis('equal')
        plt.show()
    site = UniformSite(freq, ti=0.75)
    windTurbines = IEA37_WindTurbines(iea37_path + 'iea37-335mw.yaml')
    wake_model = IEA37SimpleBastankhahGaussian(windTurbines)

    aep = AEPCalculator(site, windTurbines, wake_model)
    aep_ilk = aep.calculate_AEP(x, y, wd=np.arange(0, 360, 22.5), ws=[9.8])
    aep_MW_l = aep_ilk.sum((0, 2)) * 1000
    # test that the result is equal to results provided for IEA task 37
    npt.assert_almost_equal(aep_ref[0], aep_MW_l.sum(), 5)
    npt.assert_array_almost_equal(aep_ref[1], aep_MW_l, 5)
def test_IEA37SimpleBastankhahGaussian_wake_map():
    site = IEA37_Site(16)
    x, y = site.initial_position.T
    windTurbines = IEA37_WindTurbines(iea37_path + 'iea37-335mw.yaml')
    wake_model = IEA37SimpleBastankhahGaussian(windTurbines)
    aep = AEPCalculator(site, windTurbines, wake_model)
    x_j = np.linspace(-1500, 1500, 200)
    y_j = np.linspace(-1500, 1500, 100)
    X, Y, Z = aep.wake_map(x_j, y_j, 110, x, y, wd=[0], ws=[9])

    # test that the result is equal to last run (no evidens that  these number are correct)
    ref = [
        3.32, 4.86, 7.0, 8.1, 7.8, 7.23, 6.86, 6.9, 7.3, 7.82, 8.11, 8.04,
        7.87, 7.79, 7.85, 8.04, 8.28
    ]
    npt.assert_array_almost_equal(Z[49, 100:133:2], ref, 2)
    if 0:
        import matplotlib.pyplot as plt
        c = plt.contourf(X, Y, Z, np.arange(2, 9.1, .01))
        plt.colorbar(c)
        site.plot_windturbines(x, y)
        plt.plot(X[49, 100:133:2], Y[49, 100:133:2], '-.')
        plt.show()