示例#1
0
def block_gauss_seidel(A, x, b, iterations=1, sweep='forward', blocksize=1, Dinv=None):
    """Perform block Gauss-Seidel iteration on the linear system Ax=b

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix
    x : ndarray
        Approximate solution (length N)
    b : ndarray
        Right-hand side (length N)
    iterations : int
        Number of iterations to perform
    sweep : {'forward','backward','symmetric'}
        Direction of sweep
    Dinv : array
        Array holding block diagonal inverses of A 
        size (N/blocksize, blocksize, blocksize)
    blocksize : int
        Desired dimension of blocks


    Returns
    -------
    Nothing, x will be modified in place.

    Examples
    --------
    >>> ## Use Gauss-Seidel as a Stand-Alone Solver
    >>> from pyamg.relaxation import *
    >>> from pyamg.gallery import poisson
    >>> from pyamg.util.linalg import norm
    >>> import numpy
    >>> A = poisson((10,10), format='csr')
    >>> x0 = numpy.zeros((A.shape[0],1))
    >>> b = numpy.ones((A.shape[0],1))
    >>> block_gauss_seidel(A, x0, b, iterations=10, blocksize=4, sweep='symmetric')
    >>> print norm(b-A*x0)
    0.958333817624
    >>> #
    >>> ## Use Gauss-Seidel as the Multigrid Smoother
    >>> from pyamg import smoothed_aggregation_solver
    >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)),
    ...        coarse_solver='pinv2', max_coarse=50,
    ...        presmoother=('block_gauss_seidel', {'sweep':'symmetric', 'blocksize' : 4}), 
    ...        postsmoother=('block_gauss_seidel', {'sweep':'symmetric', 'blocksize' : 4}))
    >>> x0=numpy.zeros((A.shape[0],1))
    >>> residuals=[]
    >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals)
    """
    A,x,b = make_system(A, x, b, formats=['csr','bsr'])
    A = A.tobsr(blocksize=(blocksize, blocksize))
    
    if Dinv == None:
        Dinv = get_block_diag(A, blocksize=blocksize, inv_flag=True)
    elif Dinv.shape[0] != A.shape[0]/blocksize:
        raise ValueError('Dinv and A have incompatible dimensions')
    elif (Dinv.shape[1] != blocksize) or (Dinv.shape[2] != blocksize):
        raise ValueError('Dinv and blocksize are incompatible')

    if sweep == 'forward':
        row_start,row_stop,row_step = 0,len(x)/blocksize,1
    elif sweep == 'backward':
        row_start,row_stop,row_step = len(x)/blocksize-1,-1,-1 
    elif sweep == 'symmetric':
        for iter in xrange(iterations):
            block_gauss_seidel(A, x, b, iterations=1, sweep='forward', blocksize=blocksize, Dinv=Dinv)
            block_gauss_seidel(A, x, b, iterations=1, sweep='backward',blocksize=blocksize, Dinv=Dinv)
        return
    else:
        raise ValueError("valid sweep directions are 'forward', 'backward', and 'symmetric'")


    for iter in xrange(iterations):
        amg_core.block_gauss_seidel(A.indptr, A.indices, numpy.ravel(A.data),
                                    x, b, numpy.ravel(Dinv),
                                    row_start, row_stop, row_step, blocksize)
示例#2
0
def block_gauss_seidel(A,
                       x,
                       b,
                       iterations=1,
                       sweep='forward',
                       blocksize=1,
                       Dinv=None):
    """Perform block Gauss-Seidel iteration on the linear system Ax=b

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix
    x : ndarray
        Approximate solution (length N)
    b : ndarray
        Right-hand side (length N)
    iterations : int
        Number of iterations to perform
    sweep : {'forward','backward','symmetric'}
        Direction of sweep
    Dinv : array
        Array holding block diagonal inverses of A 
        size (N/blocksize, blocksize, blocksize)
    blocksize : int
        Desired dimension of blocks


    Returns
    -------
    Nothing, x will be modified in place.

    Examples
    --------
    >>> ## Use Gauss-Seidel as a Stand-Alone Solver
    >>> from pyamg.relaxation import *
    >>> from pyamg.gallery import poisson
    >>> from pyamg.util.linalg import norm
    >>> import numpy
    >>> A = poisson((10,10), format='csr')
    >>> x0 = numpy.zeros((A.shape[0],1))
    >>> b = numpy.ones((A.shape[0],1))
    >>> block_gauss_seidel(A, x0, b, iterations=10, blocksize=4, sweep='symmetric')
    >>> print norm(b-A*x0)
    0.958333817624
    >>> #
    >>> ## Use Gauss-Seidel as the Multigrid Smoother
    >>> from pyamg import smoothed_aggregation_solver
    >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)),
    ...        coarse_solver='pinv2', max_coarse=50,
    ...        presmoother=('block_gauss_seidel', {'sweep':'symmetric', 'blocksize' : 4}), 
    ...        postsmoother=('block_gauss_seidel', {'sweep':'symmetric', 'blocksize' : 4}))
    >>> x0=numpy.zeros((A.shape[0],1))
    >>> residuals=[]
    >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals)
    """
    A, x, b = make_system(A, x, b, formats=['csr', 'bsr'])
    A = A.tobsr(blocksize=(blocksize, blocksize))

    if Dinv == None:
        Dinv = get_block_diag(A, blocksize=blocksize, inv_flag=True)
    elif Dinv.shape[0] != A.shape[0] / blocksize:
        raise ValueError('Dinv and A have incompatible dimensions')
    elif (Dinv.shape[1] != blocksize) or (Dinv.shape[2] != blocksize):
        raise ValueError('Dinv and blocksize are incompatible')

    if sweep == 'forward':
        row_start, row_stop, row_step = 0, len(x) / blocksize, 1
    elif sweep == 'backward':
        row_start, row_stop, row_step = len(x) / blocksize - 1, -1, -1
    elif sweep == 'symmetric':
        for iter in xrange(iterations):
            block_gauss_seidel(A,
                               x,
                               b,
                               iterations=1,
                               sweep='forward',
                               blocksize=blocksize,
                               Dinv=Dinv)
            block_gauss_seidel(A,
                               x,
                               b,
                               iterations=1,
                               sweep='backward',
                               blocksize=blocksize,
                               Dinv=Dinv)
        return
    else:
        raise ValueError(
            "valid sweep directions are 'forward', 'backward', and 'symmetric'"
        )

    for iter in xrange(iterations):
        amg_core.block_gauss_seidel(A.indptr,
                                    A.indices, numpy.ravel(A.data), x, b,
                                    numpy.ravel(Dinv), row_start, row_stop,
                                    row_step, blocksize)