示例#1
0
    def get_coupled_variables(self, variables):
        param = self.param
        delta_phi = variables[
            f"{self.domain} electrode surface potential difference"]
        c_e_n = variables[f"{self.domain} electrolyte concentration"]
        T = variables[f"{self.domain} electrode temperature"]
        eta_sei = variables[f"{self.domain} electrode SEI film overpotential"]
        c_plated_Li = variables[
            f"{self.domain} electrode lithium plating concentration"]
        j0_stripping = param.j0_stripping(c_e_n, c_plated_Li, T)
        j0_plating = param.j0_plating(c_e_n, c_plated_Li, T)
        phi_ref = param.U_n_ref / param.potential_scale
        eta_stripping = delta_phi + phi_ref + eta_sei
        eta_plating = -eta_stripping
        prefactor = 1 / (2 * (1 + self.param.Theta * T))
        j_stripping = j0_stripping * pybamm.exp(
            prefactor * eta_stripping) - j0_plating * pybamm.exp(
                prefactor * eta_plating)

        variables.update(
            self._get_standard_overpotential_variables(eta_stripping))
        variables.update(self._get_standard_reaction_variables(j_stripping))

        # Update whole cell variables, which also updates the "sum of" variables
        if ("Negative electrode lithium plating interfacial current density"
                in variables and
                "Positive electrode lithium plating interfacial current density"
                in variables and "Lithium plating interfacial current density"
                not in variables):
            variables.update(
                self._get_standard_whole_cell_interfacial_current_variables(
                    variables))

        return variables
示例#2
0
def electrolyte_diffusivity_Capiglia1999(c_e, T):
    """
    Diffusivity of LiPF6 in EC:DMC as a function of ion concentration. The original data
    is from [1]. The fit from Dualfoil [2].

    References
    ----------
    .. [1] C Capiglia et al. 7Li and 19F diffusion coefficients and thermal
    properties of non-aqueous electrolyte solutions for rechargeable lithium batteries.
    Journal of power sources 81 (1999): 859-862.
    .. [2] http://www.cchem.berkeley.edu/jsngrp/fortran.html

    Parameters
    ----------
    c_e: :class:`pybamm.Symbol`
        Dimensional electrolyte concentration
    T: :class:`pybamm.Symbol`
        Dimensional temperature


    Returns
    -------
    :class:`pybamm.Symbol`
        Solid diffusivity
    """

    D_c_e = 5.34e-10 * exp(-0.65 * c_e / 1000)
    E_D_e = 37040
    arrhenius = exp(E_D_e / constants.R * (1 / 298.15 - 1 / T))

    return D_c_e * arrhenius
def electrolyte_conductivity_Landesfeind2019_base(c_e, T, coeffs):
    """
    Conductivity of LiPF6 in solvent_X as a function of ion concentration and
    Temperature. The data comes from [1].
    References
    ----------
    .. [1] Landesfeind, J. and Gasteiger, H.A., 2019. Temperature and Concentration
    Dependence of the Ionic Transport Properties of Lithium-Ion Battery Electrolytes.
    Journal of The Electrochemical Society, 166(14), pp.A3079-A3097.
    ----------
    c_e: :class: `numpy.Array`
        Dimensional electrolyte concentration
    T: :class: `numpy.Array`
        Dimensional temperature
    coeffs: :class: `numpy.Array`
        Fitting parameter coefficients
    Returns
    -------
    :`numpy.Array`
        Electrolyte diffusivity
    """
    c = c_e / 1000  # mol.m-3 -> mol.l
    p1, p2, p3, p4, p5, p6 = coeffs
    A = p1 * (1 + (T - p2))
    B = 1 + p3 * sqrt(c) + p4 * (1 + p5 * exp(1000 / T)) * c
    C = 1 + c**4 * (p6 * exp(1000 / T))
    sigma_e = A * c * B / C  # mS.cm-1

    return sigma_e / 10
示例#4
0
def electrolyte_diffusivity_Landesfeind2019_base(c_e, T, coeffs):
    """
    Conductivity of LiPF6 in solvent_X as a function of ion concentration and
    Temperature. The data comes from [1].
    References
    ----------
    .. [1] Landesfeind, J. and Gasteiger, H.A., 2019. Temperature and Concentration
    Dependence of the Ionic Transport Properties of Lithium-Ion Battery Electrolytes.
    Journal of The Electrochemical Society, 166(14), pp.A3079-A3097.
    ----------
    c_e: :class:`pybamm.Symbol`
        Dimensional electrolyte concentration
    T: :class:`pybamm.Symbol`
        Dimensional temperature
    coeffs: :class:`pybamm.Symbol`
        Fitting parameter coefficients
    Returns
    -------
    :class:`pybamm.Symbol`
        Electrolyte diffusivity
    """
    c = c_e / 1000  # mol.m-3 -> mol.l
    p1, p2, p3, p4 = coeffs
    A = p1 * exp(p2 * c)
    B = exp(p3 / T)
    C = exp(p4 * c / T)
    D_e = A * B * C * 1e-10  # m2/s

    return D_e
def electrolyte_diffusivity_Kim2011(c_e, T, T_inf, E_D_e, R_g):
    """
    Diffusivity of LiPF6 in EC as a function of ion concentration from [1].

     References
    ----------
    .. [1] Kim, G. H., Smith, K., Lee, K. J., Santhanagopalan, S., & Pesaran, A.
    (2011). Multi-domain modeling of lithium-ion batteries encompassing
    multi-physics in varied length scales. Journal of The Electrochemical
    Society, 158(8), A955-A969.

    Parameters
    ----------
    c_e: :class: `numpy.Array`
        Dimensional electrolyte concentration
    T: :class: `numpy.Array`
        Dimensional temperature
    T_inf: double
        Reference temperature
    E_D_e: double
        Electrolyte diffusion activation energy
    R_g: double
        The ideal gas constant

    Returns
    -------
    :`numpy.Array`
        Solid diffusivity
    """

    D_c_e = (5.84 * 10**(-7) * exp(-2870 / T) * (c_e / 1000)**2 -
             33.9 * 10**(-7) * exp(-2920 / T) * (c_e / 1000) +
             129 * 10**(-7) * exp(-3200 / T))

    return D_c_e
示例#6
0
def nco_diffusivity_Ecker2015(sto, T):
    """
    NCO diffusivity as a function of stochiometry [1, 2, 3].

    References
    ----------
    .. [1] Ecker, Madeleine, et al. "Parameterization of a physico-chemical model of
    a lithium-ion battery i. determination of parameters." Journal of the
    Electrochemical Society 162.9 (2015): A1836-A1848.
    .. [2] Ecker, Madeleine, et al. "Parameterization of a physico-chemical model of
    a lithium-ion battery ii. model validation." Journal of The Electrochemical
    Society 162.9 (2015): A1849-A1857.
    .. [3] Richardson, Giles, et. al. "Generalised single particle models for
    high-rate operation of graded lithium-ion electrodes: Systematic derivation
    and validation." Electrochemica Acta 339 (2020): 135862

    Parameters
    ----------
    sto: :class:`pybamm.Symbol`
        Electrode stochiometry
    T: :class:`pybamm.Symbol`
        Dimensional temperature

    Returns
    -------
    :class:`pybamm.Symbol`
        Solid diffusivity
    """

    D_ref = 3.7e-13 - 3.4e-13 * exp(-12 * (sto - 0.62) * (sto - 0.62))
    E_D_s = 8.06e4
    arrhenius = exp(-E_D_s / (constants.R * T)) * exp(E_D_s / (constants.R * 296.15))

    return D_ref * arrhenius
def electrolyte_conductivity_Kim2011(c_e, T):
    """
    Conductivity of LiPF6 in EC as a function of ion concentration from [1].

    References
    ----------
    .. [1] Kim, G. H., Smith, K., Lee, K. J., Santhanagopalan, S., & Pesaran, A.
    (2011). Multi-domain modeling of lithium-ion batteries encompassing
    multi-physics in varied length scales. Journal of The Electrochemical
    Society, 158(8), A955-A969.

    Parameters
    ----------
    c_e: :class:`pybamm.Symbol`
        Dimensional electrolyte concentration
    T: :class:`pybamm.Symbol`
        Dimensional temperature


    Returns
    -------
    :class:`pybamm.Symbol`
        Solid diffusivity
    """

    sigma_e = (
        3.45 * exp(-798 / T) * (c_e / 1000) ** 3
        - 48.5 * exp(-1080 / T) * (c_e / 1000) ** 2
        + 244 * exp(-1440 / T) * (c_e / 1000)
    )

    return sigma_e
def electrolyte_diffusivity_Capiglia1999(c_e, T, T_inf, E_D_e, R_g):
    """
    Diffusivity of LiPF6 in EC:DMC as a function of ion concentration. The original data
    is from [1]. The fit from Dualfoil [2].

    References
    ----------
    .. [1] C Capiglia et al. 7Li and 19F diffusion coefficients and thermal
    properties of non-aqueous electrolyte solutions for rechargeable lithium batteries.
    Journal of power sources 81 (1999): 859-862.
    .. [2] http://www.cchem.berkeley.edu/jsngrp/fortran.html

    Parameters
    ----------
    c_e: :class: `numpy.Array`
        Dimensional electrolyte concentration
    T: :class: `numpy.Array`
        Dimensional temperature
    T_inf: double
        Reference temperature
    E_D_e: double
        Electrolyte diffusion activation energy
    R_g: double
        The ideal gas constant

    Returns
    -------
    :`numpy.Array`
        Solid diffusivity
    """

    D_c_e = 5.34e-10 * exp(-0.65 * c_e / 1000)
    arrhenius = exp(E_D_e / R_g * (1 / T_inf - 1 / T))

    return D_c_e * arrhenius
示例#9
0
    def test_advanced_functions(self):
        a = pybamm.StateVector(slice(0, 1))
        b = pybamm.StateVector(slice(1, 2))
        y = np.array([5, 3])

        #
        func = a * pybamm.exp(b)
        self.assertAlmostEqual(func.diff(a).evaluate(y=y)[0], np.exp(3))
        func = pybamm.exp(a + 2 * b + a * b) + a * pybamm.exp(b)
        self.assertEqual(
            func.diff(a).evaluate(y=y), (4 * np.exp(3 * 5 + 5 + 2 * 3) + np.exp(3))
        )
        self.assertEqual(
            func.diff(b).evaluate(y=y), np.exp(3) * (7 * np.exp(3 * 5 + 5 + 3) + 5)
        )
        #
        func = pybamm.sin(pybamm.cos(a * 4) / 2) * pybamm.cos(4 * pybamm.exp(b / 3))
        self.assertEqual(
            func.diff(a).evaluate(y=y),
            -2 * np.sin(20) * np.cos(np.cos(20) / 2) * np.cos(4 * np.exp(1)),
        )
        self.assertEqual(
            func.diff(b).evaluate(y=y),
            -4 / 3 * np.exp(1) * np.sin(4 * np.exp(1)) * np.sin(np.cos(20) / 2),
        )
        #
        func = pybamm.sin(a * b)
        self.assertEqual(func.diff(a).evaluate(y=y), 3 * np.cos(15))
def graphite_ocp_Ecker2015_function(sto):
    """
    Graphite OCP as a function of stochiometry [1, 2, 3].

    References
    ----------
     .. [1] Ecker, Madeleine, et al. "Parameterization of a physico-chemical model of
    a lithium-ion battery i. determination of parameters." Journal of the
    Electrochemical Society 162.9 (2015): A1836-A1848.
    .. [2] Ecker, Madeleine, et al. "Parameterization of a physico-chemical model of
    a lithium-ion battery ii. model validation." Journal of The Electrochemical
    Society 162.9 (2015): A1849-A1857.
    .. [3] Richardson, Giles, et. al. "Generalised single particle models for
    high-rate operation of graded lithium-ion electrodes: Systematic derivation
    and validation." Electrochemica Acta 339 (2020): 135862

    Parameters
    ----------
    sto: :class:`pybamm.Symbol`
        Electrode stochiometry

    Returns
    -------
    :class:`pybamm.Symbol`
        Open circuit potential
    """

    # Graphite negative electrode from Ecker, Kabitz, Laresgoiti et al.
    # Analytical fit (WebPlotDigitizer + gnuplot)
    a = 0.716502
    b = 369.028
    c = 0.12193
    d = 35.6478
    e = 0.0530947
    g = 0.0169644
    h = 27.1365
    i = 0.312832
    j = 0.0199313
    k = 28.5697
    m = 0.614221
    n = 0.931153
    o = 36.328
    p = 1.10743
    q = 0.140031
    r = 0.0189193
    s = 21.1967
    t = 0.196176

    u_eq = (
        a * exp(-b * sto)
        + c * exp(-d * (sto - e))
        - r * tanh(s * (sto - t))
        - g * tanh(h * (sto - i))
        - j * tanh(k * (sto - m))
        - n * exp(o * (sto - p))
        + q
    )

    return u_eq
示例#11
0
 def test_exp(self):
     a = pybamm.InputParameter("a")
     fun = pybamm.exp(a)
     self.assertIsInstance(fun, pybamm.Exponential)
     self.assertEqual(fun.children[0].id, a.id)
     self.assertEqual(fun.evaluate(inputs={"a": 3}), np.exp(3))
     h = 0.0000001
     self.assertAlmostEqual(
         fun.diff(a).evaluate(inputs={"a": 3}),
         (pybamm.exp(pybamm.Scalar(3 + h)).evaluate() -
          fun.evaluate(inputs={"a": 3})) / h,
         places=5,
     )
def electrolyte_diffusivity_Nyman2008(c_e, T, T_inf, E_D_e, R_g):
    """
    Diffusivity of LiPF6 in EC:EMC (3:7) as a function of ion concentration. The data
    comes from [1]
    References
    ----------
    .. [1] A. Nyman, M. Behm, and G. Lindbergh, "Electrochemical characterisation and
    modelling of the mass transport phenomena in LiPF6-EC-EMC electrolyte,"
    Electrochim. Acta, vol. 53, no. 22, pp. 6356–6365, 2008.
    Parameters
    ----------
    c_e: :class: `numpy.Array`
        Dimensional electrolyte concentration
    T: :class: `numpy.Array`
        Dimensional temperature
    T_inf: double
        Reference temperature
    E_D_e: double
        Electrolyte diffusion activation energy
    R_g: double
        The ideal gas constant
    Returns
    -------
    :`numpy.Array`
        Solid diffusivity
    """

    D_c_e = 8.794e-11 * (c_e / 1000) ** 2 - 3.972e-10 * (c_e / 1000) + 4.862e-10
    arrhenius = exp(E_D_e / R_g * (1 / T_inf - 1 / T))

    return D_c_e * arrhenius
示例#13
0
    def test_diff(self):
        a = pybamm.StateVector(slice(0, 1))
        b = pybamm.StateVector(slice(1, 2))
        y = np.array([5])
        func = pybamm.Function(test_function, a)
        self.assertEqual(func.diff(a).evaluate(y=y), 2)
        self.assertEqual(func.diff(func).evaluate(), 1)
        func = pybamm.sin(a)
        self.assertEqual(func.evaluate(y=y), np.sin(a.evaluate(y=y)))
        self.assertEqual(func.diff(a).evaluate(y=y), np.cos(a.evaluate(y=y)))
        func = pybamm.exp(a)
        self.assertEqual(func.evaluate(y=y), np.exp(a.evaluate(y=y)))
        self.assertEqual(func.diff(a).evaluate(y=y), np.exp(a.evaluate(y=y)))

        # multiple variables
        func = pybamm.Function(test_multi_var_function, 4 * a, 3 * a)
        self.assertEqual(func.diff(a).evaluate(y=y), 7)
        func = pybamm.Function(test_multi_var_function, 4 * a, 3 * b)
        self.assertEqual(func.diff(a).evaluate(y=np.array([5, 6])), 4)
        self.assertEqual(func.diff(b).evaluate(y=np.array([5, 6])), 3)
        func = pybamm.Function(test_multi_var_function_cube, 4 * a, 3 * b)
        self.assertEqual(func.diff(a).evaluate(y=np.array([5, 6])), 4)
        self.assertEqual(
            func.diff(b).evaluate(y=np.array([5, 6])), 3 * 3 * (3 * 6) ** 2
        )

        # exceptions
        func = pybamm.Function(
            test_multi_var_function_cube, 4 * a, 3 * b, derivative="derivative"
        )
        with self.assertRaises(ValueError):
            func.diff(a)
示例#14
0
def graphite_entropic_change_Moura2016(sto, c_n_max):
    """
        Graphite entropic change in open circuit potential (OCP) at a temperature of
        298.15K as a function of the stochiometry taken from Scott Moura's FastDFN code
        [1].

        References
        ----------
        .. [1] https://github.com/scott-moura/fastDFN

          Parameters
          ----------
          sto: double
               Stochiometry of material (li-fraction)

    """

    du_dT = (
        -1.5 * (120.0 / c_n_max) * exp(-120 * sto)
        + (0.0351 / (0.083 * c_n_max)) * ((cosh((sto - 0.286) / 0.083)) ** (-2))
        - (0.0045 / (0.119 * c_n_max)) * ((cosh((sto - 0.849) / 0.119)) ** (-2))
        - (0.035 / (0.05 * c_n_max)) * ((cosh((sto - 0.9233) / 0.05)) ** (-2))
        - (0.0147 / (0.034 * c_n_max)) * ((cosh((sto - 0.5) / 0.034)) ** (-2))
        - (0.102 / (0.142 * c_n_max)) * ((cosh((sto - 0.194) / 0.142)) ** (-2))
        - (0.022 / (0.0164 * c_n_max)) * ((cosh((sto - 0.9) / 0.0164)) ** (-2))
        - (0.011 / (0.0226 * c_n_max)) * ((cosh((sto - 0.124) / 0.0226)) ** (-2))
        + (0.0155 / (0.029 * c_n_max)) * ((cosh((sto - 0.105) / 0.029)) ** (-2))
    )

    return du_dT
def graphite_electrolyte_exchange_current_density_Ramadass2004(
        c_e, c_s_surf, T):
    """
    Exchange-current density for Butler-Volmer reactions between graphite and LiPF6 in
    EC:DMC.

    References
    ----------
    .. [1] P. Ramadass, Bala Haran, Parthasarathy M. Gomadam, Ralph White, and Branko
    N. Popov. "Development of First Principles Capacity Fade Model for Li-Ion Cells."
    (2004)

    Parameters
    ----------
    c_e : :class:`pybamm.Symbol`
        Electrolyte concentration [mol.m-3]
    c_s_surf : :class:`pybamm.Symbol`
        Particle concentration [mol.m-3]
    T : :class:`pybamm.Symbol`
        Temperature [K]

    Returns
    -------
    :class:`pybamm.Symbol`
        Exchange-current density [A.m-2]
    """
    m_ref = 4.854 * 10**(-6)  # (A/m2)(mol/m3)**1.5
    E_r = 37480
    arrhenius = exp(E_r / constants.R * (1 / 298.15 - 1 / T))

    c_n_max = standard_parameters_lithium_ion.c_n_max

    return (m_ref * arrhenius * c_e**0.5 * c_s_surf**0.5 *
            (c_n_max - c_s_surf)**0.5)
示例#16
0
 def test_exp(self):
     a = pybamm.Scalar(3)
     fun = pybamm.exp(a)
     self.assertIsInstance(fun, pybamm.Exponential)
     self.assertEqual(fun.children[0].id, a.id)
     self.assertEqual(fun.evaluate(), np.exp(3))
     self.assertEqual(fun.diff(a).evaluate(), np.exp(3))
示例#17
0
def NMC_entropic_change_PeymanMPM(sto):
    """
    Nickel Manganese Cobalt (NMC) entropic change in open circuit potential (OCP) at
    a temperature of 298.15K as a function of the OCP. The fit is taken from [1].

    References
    ----------
    .. [1] W. Le, I. Belharouak, D. Vissers, K. Amine, "In situ thermal study of
    li1+ x [ni1/ 3co1/ 3mn1/ 3] 1- x o2 using isothermal micro-clorimetric
    techniques",
    J. of the Electrochemical Society 153 (11) (2006) A2147–A2151.

    Parameters
    ----------
    sto : :class:`pybamm.Symbol`
        Stochiometry of material (li-fraction)

    """

    # Since the equation uses the OCP at each stoichiometry as input,
    # we need OCP function here

    u_eq = (4.3452 - 1.6518 * sto + 1.6225 * sto**2 - 2.0843 * sto**3 +
            3.5146 * sto**4 -
            0.5623 * 10**(-4) * pybamm.exp(109.451 * sto - 100.006))

    du_dT = (-800 + 779 * u_eq - 284 * u_eq**2 + 46 * u_eq**3 -
             2.8 * u_eq**4) * 10**(-3)

    return du_dT
def graphite_mcmb2528_ocp_Dualfoil1998(sto):
    """
    Graphite MCMB 2528 Open Circuit Potential (OCP) as a function of the
    stochiometry. The fit is taken from Dualfoil [1]. Dualfoil states that the data
    was measured by Chris Bogatu at Telcordia and PolyStor materials, 2000. However,
    we could not find any other records of this measurment.

    References
    ----------
    .. [1] http://www.cchem.berkeley.edu/jsngrp/fortran.html
    """

    u_eq = (
        0.194
        + 1.5 * exp(-120.0 * sto)
        + 0.0351 * tanh((sto - 0.286) / 0.083)
        - 0.0045 * tanh((sto - 0.849) / 0.119)
        - 0.035 * tanh((sto - 0.9233) / 0.05)
        - 0.0147 * tanh((sto - 0.5) / 0.034)
        - 0.102 * tanh((sto - 0.194) / 0.142)
        - 0.022 * tanh((sto - 0.9) / 0.0164)
        - 0.011 * tanh((sto - 0.124) / 0.0226)
        + 0.0155 * tanh((sto - 0.105) / 0.029)
    )

    return u_eq
    def get_coupled_variables(self, variables):
        L_sei_inner = variables["Inner " + self.domain.lower() +
                                " electrode sei thickness"]
        phi_s_n = variables[self.domain + " electrode potential"]

        if self.domain == "Negative":
            C_sei = pybamm.sei_parameters.C_sei_inter_n

        j_sei = -pybamm.exp(-phi_s_n) / (C_sei * L_sei_inner)

        alpha = 0.5
        j_inner = alpha * j_sei
        j_outer = (1 - alpha) * j_sei

        variables.update(
            self._get_standard_reaction_variables(j_inner, j_outer))

        # Update whole cell variables, which also updates the "sum of" variables
        if ("Negative electrode sei interfacial current density" in variables
                and "Positive electrode sei interfacial current density"
                in variables
                and "Sei interfacial current density" not in variables):
            variables.update(
                self._get_standard_whole_cell_interfacial_current_variables(
                    variables))

        return variables
示例#20
0
    def set_algebraic(self, variables):
        phi_s_n = variables[self.domain + " electrode potential"]
        phi_e_n = variables[self.domain + " electrolyte potential"]
        j_sei = variables["Outer " + self.domain.lower() +
                          " electrode sei interfacial current density"]
        L_sei = variables["Outer " + self.domain.lower() +
                          " electrode sei thickness"]
        c_ec = variables[self.domain + " electrode EC surface concentration"]

        # Look for current that contributes to the -IR drop
        # If we can't find the interfacial current density from the main reaction, j,
        # it's ok to fall back on the total interfacial current density, j_tot
        # This should only happen when the interface submodel is "InverseButlerVolmer"
        # in which case j = j_tot (uniform) anyway
        try:
            j = variables["Total " + self.domain.lower() +
                          " electrode interfacial current density"]
        except KeyError:
            j = variables["X-averaged " + self.domain.lower() +
                          " electrode total interfacial current density"]

        if self.domain == "Negative":
            C_sei_ec = self.param.C_sei_ec_n
            R_sei = self.param.R_sei_n

        # need to revise for thermal case
        self.algebraic = {
            j_sei:
            j_sei + C_sei_ec * c_ec *
            pybamm.exp(-0.5 * (phi_s_n - phi_e_n - j * L_sei * R_sei))
        }
示例#21
0
def graphite_LGM50_diffusivity_Chen2020(sto, T):
    """
      LG M50 Graphite diffusivity as a function of stochiometry, in this case the
      diffusivity is taken to be a constant. The value is taken from [1].

      References
      ----------
      .. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W.
      Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for
      Parameterization of Multi-scale Lithium-ion Battery Models." Journal of the
      Electrochemical Society 167 (2020): 080534.

      Parameters
      ----------
      sto: :class:`pybamm.Symbol`
         Electrode stochiometry
      T: :class:`pybamm.Symbol`
         Dimensional temperature

      Returns
      -------
      :class:`pybamm.Symbol`
         Solid diffusivity
   """

    D_ref = 3.3e-14
    E_D_s = 0  # to be implemented
    arrhenius = exp(E_D_s / constants.R * (1 / 298.15 - 1 / T))

    return D_ref * arrhenius
def graphite_LGM50_electrolyte_reaction_rate_Chen2020(T, T_inf, E_r, R_g):
    """
    Reaction rate for Butler-Volmer reactions between graphite and LiPF6 in EC:DMC.
    References
    ----------
    .. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W.
    Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for
    Parameterization of Multi-scale Lithium-ion Battery Models." Submitted for
    publication (2020).
    Parameters
    ----------
    T: :class: `numpy.Array`
        Dimensional temperature
    T_inf: double
        Reference temperature
    E_r: double
        Reaction activation energy
    R_g: double
        The ideal gas constant
    Returns
    -------
    :`numpy.Array`
        Reaction rate
    """

    m_ref = 6.48e-7
    arrhenius = exp(E_r / R_g * (1 / T_inf - 1 / T))

    return m_ref * arrhenius
def graphite_electrolyte_exchange_current_density_Dualfoil1998(
        c_e, c_s_surf, T):
    """
    Exchange-current density for Butler-Volmer reactions between graphite and LiPF6 in
    EC:DMC.

    References
    ----------
    .. [2] http://www.cchem.berkeley.edu/jsngrp/fortran.html

    Parameters
    ----------
    c_e : :class:`pybamm.Symbol`
        Electrolyte concentration [mol.m-3]
    c_s_surf : :class:`pybamm.Symbol`
        Particle concentration [mol.m-3]
    T : :class:`pybamm.Symbol`
        Temperature [K]

    Returns
    -------
    :class:`pybamm.Symbol`
        Exchange-current density [A.m-2]
    """
    m_ref = (1 * 10**(-11) * constants.F
             )  # (A/m2)(mol/m3)**1.5 - includes ref concentrations
    E_r = 5000  # activation energy for Temperature Dependent Reaction Constant [J/mol]
    arrhenius = exp(E_r / constants.R * (1 / 298.15 - 1 / T))

    c_n_max = Parameter(
        "Maximum concentration in negative electrode [mol.m-3]")

    return (m_ref * arrhenius * c_e**0.5 * c_s_surf**0.5 *
            (c_n_max - c_s_surf)**0.5)
 def beta(T):
     T_inf = pybamm.FunctionParameter("T_inf", {"x": self.x})
     h = pybamm.Parameter("h")
     eps0 = pybamm.Parameter("eps0")
     return (1e-4 * (1.0 + 5.0 * pybamm.sin(3 * np.pi * T / 200.0) +
                     pybamm.exp(0.02 * T)) / eps0 + h * (T_inf - T) /
             (T_inf**4 - T**4) / eps0)
示例#25
0
def nmc_LGM50_electrolyte_exchange_current_density_Chen2020(c_e, c_s_surf, T):
    """
    Exchange-current density for Butler-Volmer reactions between NMC and LiPF6 in
    EC:DMC.

    References
    ----------
    .. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W.
    Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for
    Parameterization of Multi-scale Lithium-ion Battery Models." Journal of the
    Electrochemical Society 167 (2020): 080534.

    Parameters
    ----------
    c_e : :class:`pybamm.Symbol`
        Electrolyte concentration [mol.m-3]
    c_s_surf : :class:`pybamm.Symbol`
        Particle concentration [mol.m-3]
    T : :class:`pybamm.Symbol`
        Temperature [K]

    Returns
    -------
    :class:`pybamm.Symbol`
        Exchange-current density [A.m-2]
    """
    m_ref = 3.42e-6  # (A/m2)(mol/m3)**1.5 - includes ref concentrations
    E_r = 17800
    arrhenius = exp(E_r / constants.R * (1 / 298.15 - 1 / T))

    c_p_max = standard_parameters_lithium_ion.c_p_max

    return (
        m_ref * arrhenius * c_e ** 0.5 * c_s_surf ** 0.5 * (c_p_max - c_s_surf) ** 0.5
    )
示例#26
0
def lico2_diffusivity_Dualfoil1998(sto, T):
    """
    LiCo2 diffusivity as a function of stochiometry, in this case the
    diffusivity is taken to be a constant. The value is taken from Dualfoil [1].

    References
    ----------
    .. [1] http://www.cchem.berkeley.edu/jsngrp/fortran.html

    Parameters
    ----------
    sto: :class:`pybamm.Symbol`
        Electrode stochiometry
    T: :class:`pybamm.Symbol`
        Dimensional temperature, [K]

    Returns
    -------
    :class:`pybamm.Symbol`
        Solid diffusivity [m2.s-1]
    """
    D_ref = 5.387 * 10**(-15)
    E_D_s = 5000
    T_ref = Parameter("Reference temperature [K]")
    arrhenius = exp(E_D_s / constants.R * (1 / T_ref - 1 / T))
    return D_ref * arrhenius
示例#27
0
def graphite_diffusivity_PeymanMPM(sto, T):
    """
    Graphite diffusivity as a function of stochiometry, in this case the
    diffusivity is taken to be a constant. The value is taken from Peyman MPM.

    References
    ----------
    .. [1] http://www.cchem.berkeley.edu/jsngrp/fortran.html

    Parameters
    ----------
    sto: :class:`pybamm.Symbol`
        Electrode stochiometry
    T: :class:`pybamm.Symbol`
        Dimensional temperature

    Returns
    -------
    :class:`pybamm.Symbol`
        Solid diffusivity
    """

    D_ref = 5.0 * 10**(-15)
    E_D_s = 42770
    arrhenius = exp(E_D_s / constants.R * (1 / 298.15 - 1 / T))

    return D_ref * arrhenius
示例#28
0
 def _get_dj_ddeltaphi(self, variables):
     "See :meth:`pybamm.interface.kinetics.BaseKinetics._get_dj_ddeltaphi`"
     _, delta_phi, j0, ne, ocp, T = self._get_interface_variables_for_first_order(
         variables)
     eta_r = delta_phi - ocp
     return (2 * j0 * (ne / (2 * (1 + self.param.Theta * T))) * pybamm.exp(
         (ne / 2) * eta_r))
示例#29
0
def NMC_electrolyte_exchange_current_density_PeymanMPM(c_e, c_s_surf, T):
    """
    Exchange-current density for Butler-Volmer reactions between NMC and LiPF6 in
    EC:DMC.

    References
    ----------
    .. Peyman MPM manuscript (to be submitted)

    Parameters
    ----------
    c_e : :class:`pybamm.Symbol`
        Electrolyte concentration [mol.m-3]
    c_s_surf : :class:`pybamm.Symbol`
        Particle concentration [mol.m-3]
    T : :class:`pybamm.Symbol`
        Temperature [K]

    Returns
    -------
    :class:`pybamm.Symbol`
        Exchange-current density [A.m-2]
    """
    m_ref = 4.824 * 10 ** (-6)  # (A/m2)(mol/m3)**1.5 - includes ref concentrations
    E_r = 39570
    arrhenius = exp(E_r / constants.R * (1 / 298.15 - 1 / T))

    c_p_max = Parameter("Maximum concentration in positive electrode [mol.m-3]")

    return (
        m_ref * arrhenius * c_e ** 0.5 * c_s_surf ** 0.5 * (c_p_max - c_s_surf) ** 0.5
    )
def graphite_LGM50_diffusivity_Chen2020(sto, T, T_inf, E_D_s, R_g):
    """
      LG M50 Graphite diffusivity as a function of stochiometry, in this case the
      diffusivity is taken to be a constant. The value is taken from [1].
      References
      ----------
      .. [1] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W.
      Dhammika Widanage, and Emma Kendrick. "Development of Experimental Techniques for
      Parameterization of Multi-scale Lithium-ion Battery Models." Submitted for
      publication (2020).
      Parameters
      ----------
      sto: :class: `numpy.Array`
         Electrode stochiometry
      T: :class: `numpy.Array`
         Dimensional temperature
      T_inf: double
         Reference temperature
      E_D_s: double
         Solid diffusion activation energy
      R_g: double
         The ideal gas constant
      Returns
      -------
      : double
         Solid diffusivity
   """

    D_ref = 3.3e-14
    arrhenius = exp(E_D_s / R_g * (1 / T_inf - 1 / T))

    return D_ref * arrhenius