示例#1
0
    def test_sigmoid(self):
        a = pybamm.Scalar(1)
        b = pybamm.StateVector(slice(0, 1))
        sigm = pybamm.sigmoid(a, b, 10)
        self.assertAlmostEqual(sigm.evaluate(y=np.array([2]))[0, 0], 1)
        self.assertEqual(sigm.evaluate(y=np.array([1])), 0.5)
        self.assertAlmostEqual(sigm.evaluate(y=np.array([0]))[0, 0], 0)
        self.assertEqual(str(sigm), "(1.0 + tanh(10.0 * (y[0:1] - 1.0))) / 2.0")

        sigm = pybamm.sigmoid(b, a, 10)
        self.assertAlmostEqual(sigm.evaluate(y=np.array([2]))[0, 0], 0)
        self.assertEqual(sigm.evaluate(y=np.array([1])), 0.5)
        self.assertAlmostEqual(sigm.evaluate(y=np.array([0]))[0, 0], 1)
        self.assertEqual(str(sigm), "(1.0 + tanh(10.0 * (1.0 - y[0:1]))) / 2.0")
示例#2
0
 def __ge__(self, other):
     """return a :class:`EqualHeaviside` object, or a smooth approximation."""
     k = pybamm.settings.heaviside_smoothing
     # Return exact approximation if that is the setting or the outcome is a constant
     # (i.e. no need for smoothing)
     if k == "exact" or (is_constant(self) and is_constant(other)):
         out = pybamm.EqualHeaviside(other, self)
     else:
         out = pybamm.sigmoid(other, self, k)
     return pybamm.simplify_if_constant(out)
示例#3
0
    def test_sigmoid(self):
        # Test that smooth heaviside is used when the setting is changed
        a = pybamm.Symbol("a")
        b = pybamm.Symbol("b")

        pybamm.settings.heaviside_smoothing = 10

        self.assertEqual(str(a < b), str(pybamm.sigmoid(a, b, 10)))
        self.assertEqual(str(a <= b), str(pybamm.sigmoid(a, b, 10)))
        self.assertEqual(str(a > b), str(pybamm.sigmoid(b, a, 10)))
        self.assertEqual(str(a >= b), str(pybamm.sigmoid(b, a, 10)))

        # But exact heavisides should still be used if both variables are constant
        a = pybamm.Scalar(1)
        b = pybamm.Scalar(2)
        self.assertEqual(str(a < b), str(pybamm.Scalar(1)))
        self.assertEqual(str(a <= b), str(pybamm.Scalar(1)))
        self.assertEqual(str(a > b), str(pybamm.Scalar(0)))
        self.assertEqual(str(a >= b), str(pybamm.Scalar(0)))

        # Change setting back for other tests
        pybamm.settings.heaviside_smoothing = "exact"
示例#4
0
    def set_up(self, model, inputs=None, t_eval=None):
        """Unpack model, perform checks, and calculate jacobian.

        Parameters
        ----------
        model : :class:`pybamm.BaseModel`
            The model whose solution to calculate. Must have attributes rhs and
            initial_conditions
        inputs : dict, optional
            Any input parameters to pass to the model when solving
        t_eval : numeric type, optional
            The times (in seconds) at which to compute the solution

        """
        pybamm.logger.info("Start solver set-up")

        # Check model.algebraic for ode solvers
        if self.ode_solver is True and len(model.algebraic) > 0:
            raise pybamm.SolverError(
                "Cannot use ODE solver '{}' to solve DAE model".format(self.name)
            )
        # Check model.rhs for algebraic solvers
        if self.algebraic_solver is True and len(model.rhs) > 0:
            raise pybamm.SolverError(
                """Cannot use algebraic solver to solve model with time derivatives"""
            )
        # casadi solver won't allow solving algebraic model so we have to raise an
        # error here
        if isinstance(self, pybamm.CasadiSolver) and len(model.rhs) == 0:
            raise pybamm.SolverError(
                "Cannot use CasadiSolver to solve algebraic model, "
                "use CasadiAlgebraicSolver instead"
            )
        # Discretise model if it isn't already discretised
        # This only works with purely 0D models, as otherwise the mesh and spatial
        # method should be specified by the user
        if model.is_discretised is False:
            try:
                disc = pybamm.Discretisation()
                disc.process_model(model)
            except pybamm.DiscretisationError as e:
                raise pybamm.DiscretisationError(
                    "Cannot automatically discretise model, "
                    "model should be discretised before solving ({})".format(e)
                )

        inputs = inputs or {}

        # Set model timescale
        model.timescale_eval = model.timescale.evaluate(inputs=inputs)
        # Set model lengthscales
        model.length_scales_eval = {
            domain: scale.evaluate(inputs=inputs)
            for domain, scale in model.length_scales.items()
        }
        if (
            isinstance(self, (pybamm.CasadiSolver, pybamm.CasadiAlgebraicSolver))
        ) and model.convert_to_format != "casadi":
            pybamm.logger.warning(
                "Converting {} to CasADi for solving with CasADi solver".format(
                    model.name
                )
            )
            model.convert_to_format = "casadi"
        if (
            isinstance(self.root_method, pybamm.CasadiAlgebraicSolver)
            and model.convert_to_format != "casadi"
        ):
            pybamm.logger.warning(
                "Converting {} to CasADi for calculating ICs with CasADi".format(
                    model.name
                )
            )
            model.convert_to_format = "casadi"

        if model.convert_to_format != "casadi":
            # Create Jacobian from concatenated rhs and algebraic
            y = pybamm.StateVector(slice(0, model.concatenated_initial_conditions.size))
            # set up Jacobian object, for re-use of dict
            jacobian = pybamm.Jacobian()
        else:
            # Convert model attributes to casadi
            t_casadi = casadi.MX.sym("t")
            y_diff = casadi.MX.sym("y_diff", model.concatenated_rhs.size)
            y_alg = casadi.MX.sym("y_alg", model.concatenated_algebraic.size)
            y_casadi = casadi.vertcat(y_diff, y_alg)
            p_casadi = {}
            for name, value in inputs.items():
                if isinstance(value, numbers.Number):
                    p_casadi[name] = casadi.MX.sym(name)
                else:
                    p_casadi[name] = casadi.MX.sym(name, value.shape[0])
            p_casadi_stacked = casadi.vertcat(*[p for p in p_casadi.values()])

        def process(func, name, use_jacobian=None):
            def report(string):
                # don't log event conversion
                if "event" not in string:
                    pybamm.logger.verbose(string)

            if use_jacobian is None:
                use_jacobian = model.use_jacobian
            if model.convert_to_format != "casadi":
                # Process with pybamm functions

                if model.convert_to_format == "jax":
                    report(f"Converting {name} to jax")
                    jax_func = pybamm.EvaluatorJax(func)

                if use_jacobian:
                    report(f"Calculating jacobian for {name}")
                    jac = jacobian.jac(func, y)
                    if model.convert_to_format == "python":
                        report(f"Converting jacobian for {name} to python")
                        jac = pybamm.EvaluatorPython(jac)
                    elif model.convert_to_format == "jax":
                        report(f"Converting jacobian for {name} to jax")
                        jac = jax_func.get_jacobian()
                    jac = jac.evaluate
                else:
                    jac = None

                if model.convert_to_format == "python":
                    report(f"Converting {name} to python")
                    func = pybamm.EvaluatorPython(func)
                if model.convert_to_format == "jax":
                    report(f"Converting {name} to jax")
                    func = jax_func

                func = func.evaluate

            else:
                # Process with CasADi
                report(f"Converting {name} to CasADi")
                func = func.to_casadi(t_casadi, y_casadi, inputs=p_casadi)
                if use_jacobian:
                    report(f"Calculating jacobian for {name} using CasADi")
                    jac_casadi = casadi.jacobian(func, y_casadi)
                    jac = casadi.Function(
                        name, [t_casadi, y_casadi, p_casadi_stacked], [jac_casadi]
                    )
                else:
                    jac = None
                func = casadi.Function(
                    name, [t_casadi, y_casadi, p_casadi_stacked], [func]
                )
            if name == "residuals":
                func_call = Residuals(func, name, model)
            else:
                func_call = SolverCallable(func, name, model)
            if jac is not None:
                jac_call = SolverCallable(jac, name + "_jac", model)
            else:
                jac_call = None
            return func, func_call, jac_call

        # Check for heaviside and modulo functions in rhs and algebraic and add
        # discontinuity events if these exist.
        # Note: only checks for the case of t < X, t <= X, X < t, or X <= t, but also
        # accounts for the fact that t might be dimensional
        # Only do this for DAE models as ODE models can deal with discontinuities fine
        if len(model.algebraic) > 0:
            for symbol in itertools.chain(
                model.concatenated_rhs.pre_order(),
                model.concatenated_algebraic.pre_order(),
            ):
                if isinstance(symbol, pybamm.Heaviside):
                    found_t = False
                    # Dimensionless
                    if symbol.right.id == pybamm.t.id:
                        expr = symbol.left
                        found_t = True
                    elif symbol.left.id == pybamm.t.id:
                        expr = symbol.right
                        found_t = True
                    # Dimensional
                    elif symbol.right.id == (pybamm.t * model.timescale_eval).id:
                        expr = symbol.left.new_copy() / symbol.right.right.new_copy()
                        found_t = True
                    elif symbol.left.id == (pybamm.t * model.timescale_eval).id:
                        expr = symbol.right.new_copy() / symbol.left.right.new_copy()
                        found_t = True

                    # Update the events if the heaviside function depended on t
                    if found_t:
                        model.events.append(
                            pybamm.Event(
                                str(symbol),
                                expr.new_copy(),
                                pybamm.EventType.DISCONTINUITY,
                            )
                        )
                elif isinstance(symbol, pybamm.Modulo):
                    found_t = False
                    # Dimensionless
                    if symbol.left.id == pybamm.t.id:
                        expr = symbol.right
                        found_t = True
                    # Dimensional
                    elif symbol.left.id == (pybamm.t * model.timescale_eval).id:
                        expr = symbol.right.new_copy() / symbol.left.right.new_copy()
                        found_t = True

                    # Update the events if the modulo function depended on t
                    if found_t:
                        if t_eval is None:
                            N_events = 200
                        else:
                            N_events = t_eval[-1] // expr.value

                        for i in np.arange(N_events):
                            model.events.append(
                                pybamm.Event(
                                    str(symbol),
                                    expr.new_copy() * pybamm.Scalar(i + 1),
                                    pybamm.EventType.DISCONTINUITY,
                                )
                            )

        # Process initial conditions
        initial_conditions = process(
            model.concatenated_initial_conditions,
            "initial_conditions",
            use_jacobian=False,
        )[0]
        init_eval = InitialConditions(initial_conditions, model)

        # Process rhs, algebraic and event expressions
        rhs, rhs_eval, jac_rhs = process(model.concatenated_rhs, "RHS")
        algebraic, algebraic_eval, jac_algebraic = process(
            model.concatenated_algebraic, "algebraic"
        )

        # Calculate initial conditions
        model.y0 = init_eval(inputs)

        casadi_terminate_events = []
        terminate_events_eval = []
        interpolant_extrapolation_events_eval = []
        discontinuity_events_eval = []
        for n, event in enumerate(model.events):
            if event.event_type == pybamm.EventType.DISCONTINUITY:
                # discontinuity events are evaluated before the solver is called,
                # so don't need to process them
                discontinuity_events_eval.append(event)
            elif event.event_type == pybamm.EventType.SWITCH:
                if (
                    isinstance(self, pybamm.CasadiSolver)
                    and self.mode == "fast with events"
                    and model.algebraic != {}
                ):
                    # Save some events to casadi_terminate_events for the 'fast with
                    # events' mode of the casadi solver
                    # We only need to do this if the model is a DAE model
                    # see #1082
                    k = 20
                    init_sign = float(
                        np.sign(event.evaluate(0, model.y0.full(), inputs=inputs))
                    )
                    # We create a sigmoid for each event which will multiply the
                    # rhs. Doing * 2 - 1 ensures that when the event is crossed,
                    # the sigmoid is zero. Hence the rhs is zero and the solution
                    # stays constant for the rest of the simulation period
                    # We can then cut off the part after the event was crossed
                    event_sigmoid = (
                        pybamm.sigmoid(0, init_sign * event.expression, k) * 2 - 1
                    )
                    event_casadi = process(
                        event_sigmoid, f"event_{n}", use_jacobian=False
                    )[0]
                    # use the actual casadi object as this will go into the rhs
                    casadi_terminate_events.append(event_casadi)
            else:
                # use the function call
                event_eval = process(
                    event.expression, f"event_{n}", use_jacobian=False
                )[1]
                if event.event_type == pybamm.EventType.TERMINATION:
                    terminate_events_eval.append(event_eval)
                elif event.event_type == pybamm.EventType.INTERPOLANT_EXTRAPOLATION:
                    interpolant_extrapolation_events_eval.append(event_eval)

        # Add the solver attributes
        model.init_eval = init_eval
        model.rhs_eval = rhs_eval
        model.algebraic_eval = algebraic_eval
        model.jac_algebraic_eval = jac_algebraic
        model.casadi_terminate_events = casadi_terminate_events
        model.terminate_events_eval = terminate_events_eval
        model.discontinuity_events_eval = discontinuity_events_eval
        model.interpolant_extrapolation_events_eval = (
            interpolant_extrapolation_events_eval
        )

        # Save CasADi functions for the CasADi solver
        # Note: when we pass to casadi the ode part of the problem must be in explicit
        # form so we pre-multiply by the inverse of the mass matrix
        if isinstance(self.root_method, pybamm.CasadiAlgebraicSolver) or isinstance(
            self, (pybamm.CasadiSolver, pybamm.CasadiAlgebraicSolver)
        ):
            # can use DAE solver to solve model with algebraic equations only
            if len(model.rhs) > 0:
                mass_matrix_inv = casadi.MX(model.mass_matrix_inv.entries)
                explicit_rhs = mass_matrix_inv @ rhs(
                    t_casadi, y_casadi, p_casadi_stacked
                )
                model.casadi_rhs = casadi.Function(
                    "rhs", [t_casadi, y_casadi, p_casadi_stacked], [explicit_rhs]
                )
            model.casadi_algebraic = algebraic
        if len(model.rhs) == 0:
            # No rhs equations: residuals is algebraic only
            model.residuals_eval = Residuals(algebraic, "residuals", model)
            model.jacobian_eval = jac_algebraic
        elif len(model.algebraic) == 0:
            # No algebraic equations: residuals is rhs only
            model.residuals_eval = Residuals(rhs, "residuals", model)
            model.jacobian_eval = jac_rhs
        # Calculate consistent initial conditions for the algebraic equations
        else:
            all_states = pybamm.NumpyConcatenation(
                model.concatenated_rhs, model.concatenated_algebraic
            )
            # Process again, uses caching so should be quick
            residuals_eval, jacobian_eval = process(all_states, "residuals")[1:]
            model.residuals_eval = residuals_eval
            model.jacobian_eval = jacobian_eval

        pybamm.logger.info("Finish solver set-up")