示例#1
0
def analyze_cluster_size_per_scan_parameter(input_file_hits,
                                            output_file_cluster_size,
                                            parameter='GDAC',
                                            max_chunk_size=10000000,
                                            overwrite_output_files=False,
                                            output_pdf=None):
    ''' This method takes multiple hit files and determines the cluster size for different scan parameter values of

     Parameters
    ----------
    input_files_hits: string
    output_file_cluster_size: string
        The data file with the results
    parameter: string
        The name of the parameter to separate the data into (e.g.: PlsrDAC)
    max_chunk_size: int
        the maximum chunk size used during read, if too big memory error occurs, if too small analysis takes longer
    overwrite_output_files: bool
        Set to true to overwrite the output file if it already exists
    output_pdf: PdfPages
        PdfPages file object, if none the plot is printed to screen, if False nothing is printed
    '''
    logging.info('Analyze the cluster sizes for different ' + parameter +
                 ' settings for ' + input_file_hits)
    if os.path.isfile(
            output_file_cluster_size
    ) and not overwrite_output_files:  # skip analysis if already done
        logging.info('Analyzed cluster size file ' + output_file_cluster_size +
                     ' already exists. Skip cluster size analysis.')
    else:
        with tb.open_file(
                output_file_cluster_size,
                mode="w") as out_file_h5:  # file to write the data into
            filter_table = tb.Filters(
                complib='blosc', complevel=5,
                fletcher32=False)  # compression of the written data
            parameter_goup = out_file_h5.create_group(
                out_file_h5.root, parameter,
                title=parameter)  # note to store the data
            cluster_size_total = None  # final array for the cluster size per GDAC
            with tb.open_file(
                    input_file_hits,
                    mode="r+") as in_hit_file_h5:  # open the actual hit file
                meta_data_array = in_hit_file_h5.root.meta_data[:]
                scan_parameter = analysis_utils.get_scan_parameter(
                    meta_data_array)  # get the scan parameters
                if scan_parameter:  # if a GDAC scan parameter was used analyze the cluster size per GDAC setting
                    scan_parameter_values = scan_parameter[
                        parameter]  # scan parameter settings used
                    if len(
                            scan_parameter_values
                    ) == 1:  # only analyze per scan step if there are more than one scan step
                        logging.warning('The file ' + str(input_file_hits) +
                                        ' has no different ' + str(parameter) +
                                        ' parameter values. Omit analysis.')
                    else:
                        logging.info('Analyze ' + input_file_hits +
                                     ' per scan parameter ' + parameter +
                                     ' for ' +
                                     str(len(scan_parameter_values)) +
                                     ' values from ' +
                                     str(np.amin(scan_parameter_values)) +
                                     ' to ' +
                                     str(np.amax(scan_parameter_values)))
                        event_numbers = analysis_utils.get_meta_data_at_scan_parameter(
                            meta_data_array, parameter
                        )['event_number']  # get the event numbers in meta_data where the scan parameter changes
                        parameter_ranges = np.column_stack(
                            (scan_parameter_values,
                             analysis_utils.get_ranges_from_array(
                                 event_numbers)))
                        hit_table = in_hit_file_h5.root.Hits
                        analysis_utils.index_event_number(hit_table)
                        total_hits, total_hits_2, index = 0, 0, 0
                        chunk_size = max_chunk_size
                        # initialize the analysis and set settings
                        analyze_data = AnalyzeRawData()
                        analyze_data.create_cluster_size_hist = True
                        analyze_data.create_cluster_tot_hist = True
                        analyze_data.histogram.set_no_scan_parameter(
                        )  # one has to tell histogram the # of scan parameters for correct occupancy hist allocation
                        progress_bar = progressbar.ProgressBar(
                            widgets=[
                                '',
                                progressbar.Percentage(), ' ',
                                progressbar.Bar(marker='*',
                                                left='|',
                                                right='|'), ' ',
                                progressbar.AdaptiveETA()
                            ],
                            maxval=hit_table.shape[0],
                            term_width=80)
                        progress_bar.start()
                        for parameter_index, parameter_range in enumerate(
                                parameter_ranges
                        ):  # loop over the selected events
                            analyze_data.reset(
                            )  # resets the data of the last analysis
                            logging.debug(
                                'Analyze GDAC = ' + str(parameter_range[0]) +
                                ' ' + str(
                                    int(
                                        float(
                                            float(parameter_index) /
                                            float(len(parameter_ranges)) *
                                            100.0))) + '%')
                            start_event_number = parameter_range[1]
                            stop_event_number = parameter_range[2]
                            logging.debug('Data from events = [' +
                                          str(start_event_number) + ',' +
                                          str(stop_event_number) + '[')
                            actual_parameter_group = out_file_h5.create_group(
                                parameter_goup,
                                name=parameter + '_' + str(parameter_range[0]),
                                title=parameter + '_' +
                                str(parameter_range[0]))
                            # loop over the hits in the actual selected events with optimizations: variable chunk size, start word index given
                            readout_hit_len = 0  # variable to calculate a optimal chunk size value from the number of hits for speed up
                            for hits, index in analysis_utils.data_aligned_at_events(
                                    hit_table,
                                    start_event_number=start_event_number,
                                    stop_event_number=stop_event_number,
                                    start_index=index,
                                    chunk_size=chunk_size):
                                total_hits += hits.shape[0]
                                analyze_data.analyze_hits(
                                    hits
                                )  # analyze the selected hits in chunks
                                readout_hit_len += hits.shape[0]
                                progress_bar.update(index)
                            chunk_size = int(1.05 * readout_hit_len) if int(
                                1.05 * readout_hit_len
                            ) < max_chunk_size else max_chunk_size  # to increase the readout speed, estimated the number of hits for one read instruction
                            if chunk_size < 50:  # limit the lower chunk size, there can always be a crazy event with more than 20 hits
                                chunk_size = 50
                            # get occupancy hist
                            occupancy = analyze_data.histogram.get_occupancy(
                            )  # just check here if histogram is consistent

                            # store and plot cluster size hist
                            cluster_size_hist = analyze_data.clusterizer.get_cluster_size_hist(
                            )
                            cluster_size_hist_table = out_file_h5.create_carray(
                                actual_parameter_group,
                                name='HistClusterSize',
                                title='Cluster Size Histogram',
                                atom=tb.Atom.from_dtype(
                                    cluster_size_hist.dtype),
                                shape=cluster_size_hist.shape,
                                filters=filter_table)
                            cluster_size_hist_table[:] = cluster_size_hist
                            if output_pdf is not False:
                                plotting.plot_cluster_size(
                                    hist=cluster_size_hist,
                                    title='Cluster size (' +
                                    str(np.sum(cluster_size_hist)) +
                                    ' entries) for ' + parameter + ' = ' +
                                    str(scan_parameter_values[parameter_index]
                                        ),
                                    filename=output_pdf)
                            if cluster_size_total is None:  # true if no data was appended to the array yet
                                cluster_size_total = cluster_size_hist
                            else:
                                cluster_size_total = np.vstack(
                                    [cluster_size_total, cluster_size_hist])

                            total_hits_2 += np.sum(occupancy)
                        progress_bar.finish()
                        if total_hits != total_hits_2:
                            logging.warning(
                                'Analysis shows inconsistent number of hits. Check needed!'
                            )
                        logging.info('Analyzed %d hits!', total_hits)
            cluster_size_total_out = out_file_h5.create_carray(
                out_file_h5.root,
                name='AllHistClusterSize',
                title='All Cluster Size Histograms',
                atom=tb.Atom.from_dtype(cluster_size_total.dtype),
                shape=cluster_size_total.shape,
                filters=filter_table)
            cluster_size_total_out[:] = cluster_size_total
示例#2
0
def analyse_n_cluster_per_event(scan_base,
                                include_no_cluster=False,
                                time_line_absolute=True,
                                combine_n_readouts=1000,
                                chunk_size=10000000,
                                plot_n_cluster_hists=False,
                                output_pdf=None,
                                output_file=None):
    ''' Determines the number of cluster per event as a function of time. Therefore the data of a fixed number of read outs are combined ('combine_n_readouts').

    Parameters
    ----------
    scan_base: list of str
        scan base names (e.g.:  ['//data//SCC_50_fei4_self_trigger_scan_390', ]
    include_no_cluster: bool
        Set to true to also consider all events without any hit.
    combine_n_readouts: int
        the number of read outs to combine (e.g. 1000)
    max_chunk_size: int
        the maximum chunk size used during read, if too big memory error occurs, if too small analysis takes longer
    output_pdf: PdfPages
        PdfPages file object, if none the plot is printed to screen
    '''

    time_stamp = []
    n_cluster = []

    start_time_set = False

    for data_file in scan_base:
        with tb.open_file(data_file + '_interpreted.h5',
                          mode="r+") as in_cluster_file_h5:
            # get data and data pointer
            meta_data_array = in_cluster_file_h5.root.meta_data[:]
            cluster_table = in_cluster_file_h5.root.Cluster

            # determine the event ranges to analyze (timestamp_start, start_event_number, stop_event_number)
            parameter_ranges = np.column_stack(
                (analysis_utils.get_ranges_from_array(
                    meta_data_array['timestamp_start'][::combine_n_readouts]),
                 analysis_utils.get_ranges_from_array(
                     meta_data_array['event_number'][::combine_n_readouts])))

            # create a event_numer index (important for speed)
            analysis_utils.index_event_number(cluster_table)

            # initialize the analysis and set settings
            analyze_data = AnalyzeRawData()
            analyze_data.create_tot_hist = False
            analyze_data.create_bcid_hist = False

            # variables for read speed up
            index = 0  # index where to start the read out, 0 at the beginning, increased during looping
            best_chunk_size = chunk_size

            total_cluster = cluster_table.shape[0]

            progress_bar = progressbar.ProgressBar(widgets=[
                '',
                progressbar.Percentage(), ' ',
                progressbar.Bar(marker='*', left='|', right='|'), ' ',
                progressbar.AdaptiveETA()
            ],
                                                   maxval=total_cluster,
                                                   term_width=80)
            progress_bar.start()

            # loop over the selected events
            for parameter_index, parameter_range in enumerate(
                    parameter_ranges):
                logging.debug('Analyze time stamp ' + str(parameter_range[0]) +
                              ' and data from events = [' +
                              str(parameter_range[2]) + ',' +
                              str(parameter_range[3]) + '[ ' + str(
                                  int(
                                      float(
                                          float(parameter_index) /
                                          float(len(parameter_ranges)) *
                                          100.0))) + '%')
                analyze_data.reset()  # resets the data of the last analysis

                # loop over the cluster in the actual selected events with optimizations: determine best chunk size, start word index given
                readout_cluster_len = 0  # variable to calculate a optimal chunk size value from the number of hits for speed up
                hist = None
                for clusters, index in analysis_utils.data_aligned_at_events(
                        cluster_table,
                        start_event_number=parameter_range[2],
                        stop_event_number=parameter_range[3],
                        start_index=index,
                        chunk_size=best_chunk_size):
                    n_cluster_per_event = analysis_utils.get_n_cluster_in_events(
                        clusters['event_number']
                    )[:,
                      1]  # array with the number of cluster per event, cluster per event are at least 1
                    if hist is None:
                        hist = np.histogram(n_cluster_per_event,
                                            bins=10,
                                            range=(0, 10))[0]
                    else:
                        hist = np.add(
                            hist,
                            np.histogram(n_cluster_per_event,
                                         bins=10,
                                         range=(0, 10))[0])
                    if include_no_cluster and parameter_range[
                            3] is not None:  # happend for the last readout
                        hist[0] = (parameter_range[3] -
                                   parameter_range[2]) - len(
                                       n_cluster_per_event
                                   )  # add the events without any cluster
                    readout_cluster_len += clusters.shape[0]
                    total_cluster -= len(clusters)
                    progress_bar.update(index)
                best_chunk_size = int(1.5 * readout_cluster_len) if int(
                    1.05 * readout_cluster_len
                ) < chunk_size else chunk_size  # to increase the readout speed, estimated the number of hits for one read instruction

                if plot_n_cluster_hists:
                    plotting.plot_1d_hist(
                        hist,
                        title='Number of cluster per event at ' +
                        str(parameter_range[0]),
                        x_axis_title='Number of cluster',
                        y_axis_title='#',
                        log_y=True,
                        filename=output_pdf)
                hist = hist.astype('f4') / np.sum(
                    hist)  # calculate fraction from total numbers

                if time_line_absolute:
                    time_stamp.append(parameter_range[0])
                else:
                    if not start_time_set:
                        start_time = parameter_ranges[0, 0]
                        start_time_set = True
                    time_stamp.append((parameter_range[0] - start_time) / 60.0)
                n_cluster.append(hist)
            progress_bar.finish()
            if total_cluster != 0:
                logging.warning(
                    'Not all clusters were selected during analysis. Analysis is therefore not exact'
                )

    if time_line_absolute:
        plotting.plot_scatter_time(
            time_stamp,
            n_cluster,
            title='Number of cluster per event as a function of time',
            marker_style='o',
            filename=output_pdf,
            legend=('0 cluster', '1 cluster', '2 cluster',
                    '3 cluster') if include_no_cluster else
            ('0 cluster not plotted', '1 cluster', '2 cluster', '3 cluster'))
    else:
        plotting.plot_scatter(
            time_stamp,
            n_cluster,
            title='Number of cluster per event as a function of time',
            x_label='time [min.]',
            marker_style='o',
            filename=output_pdf,
            legend=('0 cluster', '1 cluster', '2 cluster',
                    '3 cluster') if include_no_cluster else
            ('0 cluster not plotted', '1 cluster', '2 cluster', '3 cluster'))
    if output_file:
        with tb.open_file(output_file, mode="a") as out_file_h5:
            cluster_array = np.array(n_cluster)
            rec_array = np.array(zip(time_stamp, cluster_array[:, 0],
                                     cluster_array[:, 1], cluster_array[:, 2],
                                     cluster_array[:, 3], cluster_array[:, 4],
                                     cluster_array[:, 5]),
                                 dtype=[('time_stamp', float),
                                        ('cluster_0', float),
                                        ('cluster_1', float),
                                        ('cluster_2', float),
                                        ('cluster_3', float),
                                        ('cluster_4', float),
                                        ('cluster_5', float)
                                        ]).view(np.recarray)
            try:
                n_cluster_table = out_file_h5.create_table(
                    out_file_h5.root,
                    name='n_cluster',
                    description=rec_array,
                    title='Cluster per event',
                    filters=tb.Filters(complib='blosc',
                                       complevel=5,
                                       fletcher32=False))
                n_cluster_table[:] = rec_array
            except tb.exceptions.NodeError:
                logging.warning(
                    output_file +
                    ' has already a Beamspot note, do not overwrite existing.')
    return time_stamp, n_cluster
示例#3
0
def analyze_beam_spot(scan_base,
                      combine_n_readouts=1000,
                      chunk_size=10000000,
                      plot_occupancy_hists=False,
                      output_pdf=None,
                      output_file=None):
    ''' Determines the mean x and y beam spot position as a function of time. Therefore the data of a fixed number of read outs are combined ('combine_n_readouts'). The occupancy is determined
    for the given combined events and stored into a pdf file. At the end the beam x and y is plotted into a scatter plot with absolute positions in um.

     Parameters
    ----------
    scan_base: list of str
        scan base names (e.g.:  ['//data//SCC_50_fei4_self_trigger_scan_390', ]
    combine_n_readouts: int
        the number of read outs to combine (e.g. 1000)
    max_chunk_size: int
        the maximum chunk size used during read, if too big memory error occurs, if too small analysis takes longer
    output_pdf: PdfPages
        PdfPages file object, if none the plot is printed to screen
    '''
    time_stamp = []
    x = []
    y = []

    for data_file in scan_base:
        with tb.open_file(data_file + '_interpreted.h5',
                          mode="r+") as in_hit_file_h5:
            # get data and data pointer
            meta_data_array = in_hit_file_h5.root.meta_data[:]
            hit_table = in_hit_file_h5.root.Hits

            # determine the event ranges to analyze (timestamp_start, start_event_number, stop_event_number)
            parameter_ranges = np.column_stack(
                (analysis_utils.get_ranges_from_array(
                    meta_data_array['timestamp_start'][::combine_n_readouts]),
                 analysis_utils.get_ranges_from_array(
                     meta_data_array['event_number'][::combine_n_readouts])))

            # create a event_numer index (important)
            analysis_utils.index_event_number(hit_table)

            # initialize the analysis and set settings
            analyze_data = AnalyzeRawData()
            analyze_data.create_tot_hist = False
            analyze_data.create_bcid_hist = False
            analyze_data.histogram.set_no_scan_parameter()

            # variables for read speed up
            index = 0  # index where to start the read out, 0 at the beginning, increased during looping
            best_chunk_size = chunk_size

            progress_bar = progressbar.ProgressBar(widgets=[
                '',
                progressbar.Percentage(), ' ',
                progressbar.Bar(marker='*', left='|', right='|'), ' ',
                progressbar.AdaptiveETA()
            ],
                                                   maxval=hit_table.shape[0],
                                                   term_width=80)
            progress_bar.start()

            # loop over the selected events
            for parameter_index, parameter_range in enumerate(
                    parameter_ranges):
                logging.debug('Analyze time stamp ' + str(parameter_range[0]) +
                              ' and data from events = [' +
                              str(parameter_range[2]) + ',' +
                              str(parameter_range[3]) + '[ ' + str(
                                  int(
                                      float(
                                          float(parameter_index) /
                                          float(len(parameter_ranges)) *
                                          100.0))) + '%')
                analyze_data.reset()  # resets the data of the last analysis

                # loop over the hits in the actual selected events with optimizations: determine best chunk size, start word index given
                readout_hit_len = 0  # variable to calculate a optimal chunk size value from the number of hits for speed up
                for hits, index in analysis_utils.data_aligned_at_events(
                        hit_table,
                        start_event_number=parameter_range[2],
                        stop_event_number=parameter_range[3],
                        start_index=index,
                        chunk_size=best_chunk_size):
                    analyze_data.analyze_hits(
                        hits)  # analyze the selected hits in chunks
                    readout_hit_len += hits.shape[0]
                    progress_bar.update(index)
                best_chunk_size = int(1.5 * readout_hit_len) if int(
                    1.05 * readout_hit_len
                ) < chunk_size else chunk_size  # to increase the readout speed, estimated the number of hits for one read instruction

                # get and store results
                occupancy_array = analyze_data.histogram.get_occupancy()
                projection_x = np.sum(occupancy_array, axis=0).ravel()
                projection_y = np.sum(occupancy_array, axis=1).ravel()
                x.append(
                    analysis_utils.get_mean_from_histogram(projection_x,
                                                           bin_positions=range(
                                                               0, 80)))
                y.append(
                    analysis_utils.get_mean_from_histogram(projection_y,
                                                           bin_positions=range(
                                                               0, 336)))
                time_stamp.append(parameter_range[0])
                if plot_occupancy_hists:
                    plotting.plot_occupancy(
                        occupancy_array[:, :, 0],
                        title='Occupancy for events between ' + time.strftime(
                            '%H:%M:%S', time.localtime(parameter_range[0])) +
                        ' and ' + time.strftime(
                            '%H:%M:%S', time.localtime(parameter_range[1])),
                        filename=output_pdf)
            progress_bar.finish()
    plotting.plot_scatter([i * 250 for i in x], [i * 50 for i in y],
                          title='Mean beam position',
                          x_label='x [um]',
                          y_label='y [um]',
                          marker_style='-o',
                          filename=output_pdf)
    if output_file:
        with tb.open_file(output_file, mode="a") as out_file_h5:
            rec_array = np.array(zip(time_stamp, x, y),
                                 dtype=[('time_stamp', float), ('x', float),
                                        ('y', float)])
            try:
                beam_spot_table = out_file_h5.create_table(
                    out_file_h5.root,
                    name='Beamspot',
                    description=rec_array,
                    title='Beam spot position',
                    filters=tb.Filters(complib='blosc',
                                       complevel=5,
                                       fletcher32=False))
                beam_spot_table[:] = rec_array
            except tb.exceptions.NodeError:
                logging.warning(
                    output_file +
                    ' has already a Beamspot note, do not overwrite existing.')
    return time_stamp, x, y
示例#4
0
文件: analysis.py 项目: makoc/pyBAR
def analyze_cluster_size_per_scan_parameter(
    input_file_hits,
    output_file_cluster_size,
    parameter="GDAC",
    max_chunk_size=10000000,
    overwrite_output_files=False,
    output_pdf=None,
):
    """ This method takes multiple hit files and determines the cluster size for different scan parameter values of

     Parameters
    ----------
    input_files_hits: string
    output_file_cluster_size: string
        The data file with the results
    parameter: string
        The name of the parameter to separate the data into (e.g.: PlsrDAC)
    max_chunk_size: int
        the maximum chunk size used during read, if too big memory error occurs, if too small analysis takes longer
    overwrite_output_files: bool
        Set to true to overwrite the output file if it already exists
    output_pdf: PdfPages
        PdfPages file object, if none the plot is printed to screen, if False nothing is printed
    """
    logging.info("Analyze the cluster sizes for different " + parameter + " settings for " + input_file_hits)
    if os.path.isfile(output_file_cluster_size) and not overwrite_output_files:  # skip analysis if already done
        logging.info(
            "Analyzed cluster size file " + output_file_cluster_size + " already exists. Skip cluster size analysis."
        )
    else:
        with tb.openFile(output_file_cluster_size, mode="w") as out_file_h5:  # file to write the data into
            filter_table = tb.Filters(complib="blosc", complevel=5, fletcher32=False)  # compression of the written data
            parameter_goup = out_file_h5.createGroup(
                out_file_h5.root, parameter, title=parameter
            )  # note to store the data
            cluster_size_total = None  # final array for the cluster size per GDAC
            with tb.openFile(input_file_hits, mode="r+") as in_hit_file_h5:  # open the actual hit file
                meta_data_array = in_hit_file_h5.root.meta_data[:]
                scan_parameter = analysis_utils.get_scan_parameter(meta_data_array)  # get the scan parameters
                if scan_parameter:  # if a GDAC scan parameter was used analyze the cluster size per GDAC setting
                    scan_parameter_values = scan_parameter[parameter]  # scan parameter settings used
                    if (
                        len(scan_parameter_values) == 1
                    ):  # only analyze per scan step if there are more than one scan step
                        logging.warning(
                            "The file "
                            + str(input_file_hits)
                            + " has no different "
                            + str(parameter)
                            + " parameter values. Omit analysis."
                        )
                    else:
                        logging.info(
                            "Analyze "
                            + input_file_hits
                            + " per scan parameter "
                            + parameter
                            + " for "
                            + str(len(scan_parameter_values))
                            + " values from "
                            + str(np.amin(scan_parameter_values))
                            + " to "
                            + str(np.amax(scan_parameter_values))
                        )
                        event_numbers = analysis_utils.get_meta_data_at_scan_parameter(meta_data_array, parameter)[
                            "event_number"
                        ]  # get the event numbers in meta_data where the scan parameter changes
                        parameter_ranges = np.column_stack(
                            (scan_parameter_values, analysis_utils.get_ranges_from_array(event_numbers))
                        )
                        hit_table = in_hit_file_h5.root.Hits
                        analysis_utils.index_event_number(hit_table)
                        total_hits, total_hits_2, index = 0, 0, 0
                        chunk_size = max_chunk_size
                        # initialize the analysis and set settings
                        analyze_data = AnalyzeRawData()
                        analyze_data.create_cluster_size_hist = True
                        analyze_data.create_cluster_tot_hist = True
                        analyze_data.histograming.set_no_scan_parameter()  # one has to tell the histogramer the # of scan parameters for correct occupancy hist allocation
                        progress_bar = progressbar.ProgressBar(
                            widgets=[
                                "",
                                progressbar.Percentage(),
                                " ",
                                progressbar.Bar(marker="*", left="|", right="|"),
                                " ",
                                analysis_utils.ETA(),
                            ],
                            maxval=hit_table.shape[0],
                            term_width=80,
                        )
                        progress_bar.start()
                        for parameter_index, parameter_range in enumerate(
                            parameter_ranges
                        ):  # loop over the selected events
                            analyze_data.reset()  # resets the data of the last analysis
                            logging.debug(
                                "Analyze GDAC = "
                                + str(parameter_range[0])
                                + " "
                                + str(int(float(float(parameter_index) / float(len(parameter_ranges)) * 100.0)))
                                + "%"
                            )
                            start_event_number = parameter_range[1]
                            stop_event_number = parameter_range[2]
                            logging.debug(
                                "Data from events = [" + str(start_event_number) + "," + str(stop_event_number) + "["
                            )
                            actual_parameter_group = out_file_h5.createGroup(
                                parameter_goup,
                                name=parameter + "_" + str(parameter_range[0]),
                                title=parameter + "_" + str(parameter_range[0]),
                            )
                            # loop over the hits in the actual selected events with optimizations: variable chunk size, start word index given
                            readout_hit_len = (
                                0
                            )  # variable to calculate a optimal chunk size value from the number of hits for speed up
                            for hits, index in analysis_utils.data_aligned_at_events(
                                hit_table,
                                start_event_number=start_event_number,
                                stop_event_number=stop_event_number,
                                start=index,
                                chunk_size=chunk_size,
                            ):
                                total_hits += hits.shape[0]
                                analyze_data.analyze_hits(hits)  # analyze the selected hits in chunks
                                readout_hit_len += hits.shape[0]
                                progress_bar.update(index)
                            chunk_size = (
                                int(1.05 * readout_hit_len)
                                if int(1.05 * readout_hit_len) < max_chunk_size
                                else max_chunk_size
                            )  # to increase the readout speed, estimated the number of hits for one read instruction
                            if (
                                chunk_size < 50
                            ):  # limit the lower chunk size, there can always be a crazy event with more than 20 hits
                                chunk_size = 50
                            # get occupancy hist
                            occupancy = (
                                analyze_data.histograming.get_occupancy()
                            )  # just here to check histograming is consistend

                            # store and plot cluster size hist
                            cluster_size_hist = analyze_data.clusterizer.get_cluster_size_hist()
                            cluster_size_hist_table = out_file_h5.createCArray(
                                actual_parameter_group,
                                name="HistClusterSize",
                                title="Cluster Size Histogram",
                                atom=tb.Atom.from_dtype(cluster_size_hist.dtype),
                                shape=cluster_size_hist.shape,
                                filters=filter_table,
                            )
                            cluster_size_hist_table[:] = cluster_size_hist
                            if output_pdf is not False:
                                plotting.plot_cluster_size(
                                    hist=cluster_size_hist,
                                    title="Cluster size ("
                                    + str(np.sum(cluster_size_hist))
                                    + " entries) for "
                                    + parameter
                                    + " = "
                                    + str(scan_parameter_values[parameter_index]),
                                    filename=output_pdf,
                                )
                            if cluster_size_total is None:  # true if no data was appended to the array yet
                                cluster_size_total = cluster_size_hist
                            else:
                                cluster_size_total = np.vstack([cluster_size_total, cluster_size_hist])

                            total_hits_2 += np.sum(occupancy)
                        progress_bar.finish()
                        if total_hits != total_hits_2:
                            logging.warning("Analysis shows inconsistent number of hits. Check needed!")
                        logging.info("Analyzed %d hits!", total_hits)
            cluster_size_total_out = out_file_h5.createCArray(
                out_file_h5.root,
                name="AllHistClusterSize",
                title="All Cluster Size Histograms",
                atom=tb.Atom.from_dtype(cluster_size_total.dtype),
                shape=cluster_size_total.shape,
                filters=filter_table,
            )
            cluster_size_total_out[:] = cluster_size_total
示例#5
0
文件: analysis.py 项目: makoc/pyBAR
def analyse_n_cluster_per_event(
    scan_base,
    include_no_cluster=False,
    time_line_absolute=True,
    combine_n_readouts=1000,
    chunk_size=10000000,
    plot_n_cluster_hists=False,
    output_pdf=None,
    output_file=None,
):
    """ Determines the number of cluster per event as a function of time. Therefore the data of a fixed number of read outs are combined ('combine_n_readouts').

    Parameters
    ----------
    scan_base: list of str
        scan base names (e.g.:  ['//data//SCC_50_fei4_self_trigger_scan_390', ]
    include_no_cluster: bool
        Set to true to also consider all events without any hit.
    combine_n_readouts: int
        the number of read outs to combine (e.g. 1000)
    max_chunk_size: int
        the maximum chunk size used during read, if too big memory error occurs, if too small analysis takes longer
    output_pdf: PdfPages
        PdfPages file object, if none the plot is printed to screen
    """

    time_stamp = []
    n_cluster = []

    start_time_set = False

    for data_file in scan_base:
        with tb.openFile(data_file + "_interpreted.h5", mode="r+") as in_cluster_file_h5:
            # get data and data pointer
            meta_data_array = in_cluster_file_h5.root.meta_data[:]
            cluster_table = in_cluster_file_h5.root.Cluster

            # determine the event ranges to analyze (timestamp_start, start_event_number, stop_event_number)
            parameter_ranges = np.column_stack(
                (
                    analysis_utils.get_ranges_from_array(meta_data_array["timestamp_start"][::combine_n_readouts]),
                    analysis_utils.get_ranges_from_array(meta_data_array["event_number"][::combine_n_readouts]),
                )
            )

            # create a event_numer index (important for speed)
            analysis_utils.index_event_number(cluster_table)

            # initialize the analysis and set settings
            analyze_data = AnalyzeRawData()
            analyze_data.create_tot_hist = False
            analyze_data.create_bcid_hist = False

            # variables for read speed up
            index = 0  # index where to start the read out, 0 at the beginning, increased during looping
            best_chunk_size = chunk_size

            total_cluster = cluster_table.shape[0]

            progress_bar = progressbar.ProgressBar(
                widgets=[
                    "",
                    progressbar.Percentage(),
                    " ",
                    progressbar.Bar(marker="*", left="|", right="|"),
                    " ",
                    analysis_utils.ETA(),
                ],
                maxval=total_cluster,
                term_width=80,
            )
            progress_bar.start()

            # loop over the selected events
            for parameter_index, parameter_range in enumerate(parameter_ranges):
                logging.debug(
                    "Analyze time stamp "
                    + str(parameter_range[0])
                    + " and data from events = ["
                    + str(parameter_range[2])
                    + ","
                    + str(parameter_range[3])
                    + "[ "
                    + str(int(float(float(parameter_index) / float(len(parameter_ranges)) * 100.0)))
                    + "%"
                )
                analyze_data.reset()  # resets the data of the last analysis

                # loop over the cluster in the actual selected events with optimizations: determine best chunk size, start word index given
                readout_cluster_len = (
                    0
                )  # variable to calculate a optimal chunk size value from the number of hits for speed up
                hist = None
                for clusters, index in analysis_utils.data_aligned_at_events(
                    cluster_table,
                    start_event_number=parameter_range[2],
                    stop_event_number=parameter_range[3],
                    start=index,
                    chunk_size=best_chunk_size,
                ):
                    n_cluster_per_event = analysis_utils.get_n_cluster_in_events(clusters["event_number"])[
                        :, 1
                    ]  # array with the number of cluster per event, cluster per event are at least 1
                    if hist is None:
                        hist = np.histogram(n_cluster_per_event, bins=10, range=(0, 10))[0]
                    else:
                        hist = np.add(hist, np.histogram(n_cluster_per_event, bins=10, range=(0, 10))[0])
                    if include_no_cluster and parameter_range[3] is not None:  # happend for the last readout
                        hist[0] = (parameter_range[3] - parameter_range[2]) - len(
                            n_cluster_per_event
                        )  # add the events without any cluster
                    readout_cluster_len += clusters.shape[0]
                    total_cluster -= len(clusters)
                    progress_bar.update(index)
                best_chunk_size = (
                    int(1.5 * readout_cluster_len) if int(1.05 * readout_cluster_len) < chunk_size else chunk_size
                )  # to increase the readout speed, estimated the number of hits for one read instruction

                if plot_n_cluster_hists:
                    plotting.plot_1d_hist(
                        hist,
                        title="Number of cluster per event at " + str(parameter_range[0]),
                        x_axis_title="Number of cluster",
                        y_axis_title="#",
                        log_y=True,
                        filename=output_pdf,
                    )
                hist = hist.astype("f4") / np.sum(hist)  # calculate fraction from total numbers

                if time_line_absolute:
                    time_stamp.append(parameter_range[0])
                else:
                    if not start_time_set:
                        start_time = parameter_ranges[0, 0]
                        start_time_set = True
                    time_stamp.append((parameter_range[0] - start_time) / 60.0)
                n_cluster.append(hist)
            progress_bar.finish()
            if total_cluster != 0:
                logging.warning("Not all clusters were selected during analysis. Analysis is therefore not exact")

    if time_line_absolute:
        plotting.plot_scatter_time(
            time_stamp,
            n_cluster,
            title="Number of cluster per event as a function of time",
            marker_style="o",
            filename=output_pdf,
            legend=("0 cluster", "1 cluster", "2 cluster", "3 cluster")
            if include_no_cluster
            else ("0 cluster not plotted", "1 cluster", "2 cluster", "3 cluster"),
        )
    else:
        plotting.plot_scatter(
            time_stamp,
            n_cluster,
            title="Number of cluster per event as a function of time",
            x_label="time [min.]",
            marker_style="o",
            filename=output_pdf,
            legend=("0 cluster", "1 cluster", "2 cluster", "3 cluster")
            if include_no_cluster
            else ("0 cluster not plotted", "1 cluster", "2 cluster", "3 cluster"),
        )
    if output_file:
        with tb.openFile(output_file, mode="a") as out_file_h5:
            cluster_array = np.array(n_cluster)
            rec_array = np.array(
                zip(
                    time_stamp,
                    cluster_array[:, 0],
                    cluster_array[:, 1],
                    cluster_array[:, 2],
                    cluster_array[:, 3],
                    cluster_array[:, 4],
                    cluster_array[:, 5],
                ),
                dtype=[
                    ("time_stamp", float),
                    ("cluster_0", float),
                    ("cluster_1", float),
                    ("cluster_2", float),
                    ("cluster_3", float),
                    ("cluster_4", float),
                    ("cluster_5", float),
                ],
            ).view(np.recarray)
            try:
                n_cluster_table = out_file_h5.createTable(
                    out_file_h5.root,
                    name="n_cluster",
                    description=rec_array,
                    title="Cluster per event",
                    filters=tb.Filters(complib="blosc", complevel=5, fletcher32=False),
                )
                n_cluster_table[:] = rec_array
            except tb.exceptions.NodeError:
                logging.warning(output_file + " has already a Beamspot note, do not overwrite existing.")
    return time_stamp, n_cluster
示例#6
0
文件: analysis.py 项目: makoc/pyBAR
def analyze_beam_spot(
    scan_base,
    combine_n_readouts=1000,
    chunk_size=10000000,
    plot_occupancy_hists=False,
    output_pdf=None,
    output_file=None,
):
    """ Determines the mean x and y beam spot position as a function of time. Therefore the data of a fixed number of read outs are combined ('combine_n_readouts'). The occupancy is determined
    for the given combined events and stored into a pdf file. At the end the beam x and y is plotted into a scatter plot with absolute positions in um.

     Parameters
    ----------
    scan_base: list of str
        scan base names (e.g.:  ['//data//SCC_50_fei4_self_trigger_scan_390', ]
    combine_n_readouts: int
        the number of read outs to combine (e.g. 1000)
    max_chunk_size: int
        the maximum chunk size used during read, if too big memory error occurs, if too small analysis takes longer
    output_pdf: PdfPages
        PdfPages file object, if none the plot is printed to screen
    """
    time_stamp = []
    x = []
    y = []

    for data_file in scan_base:
        with tb.openFile(data_file + "_interpreted.h5", mode="r+") as in_hit_file_h5:
            # get data and data pointer
            meta_data_array = in_hit_file_h5.root.meta_data[:]
            hit_table = in_hit_file_h5.root.Hits

            # determine the event ranges to analyze (timestamp_start, start_event_number, stop_event_number)
            parameter_ranges = np.column_stack(
                (
                    analysis_utils.get_ranges_from_array(meta_data_array["timestamp_start"][::combine_n_readouts]),
                    analysis_utils.get_ranges_from_array(meta_data_array["event_number"][::combine_n_readouts]),
                )
            )

            # create a event_numer index (important)
            analysis_utils.index_event_number(hit_table)

            # initialize the analysis and set settings
            analyze_data = AnalyzeRawData()
            analyze_data.create_tot_hist = False
            analyze_data.create_bcid_hist = False
            analyze_data.histograming.set_no_scan_parameter()

            # variables for read speed up
            index = 0  # index where to start the read out, 0 at the beginning, increased during looping
            best_chunk_size = chunk_size

            progress_bar = progressbar.ProgressBar(
                widgets=[
                    "",
                    progressbar.Percentage(),
                    " ",
                    progressbar.Bar(marker="*", left="|", right="|"),
                    " ",
                    analysis_utils.ETA(),
                ],
                maxval=hit_table.shape[0],
                term_width=80,
            )
            progress_bar.start()

            # loop over the selected events
            for parameter_index, parameter_range in enumerate(parameter_ranges):
                logging.debug(
                    "Analyze time stamp "
                    + str(parameter_range[0])
                    + " and data from events = ["
                    + str(parameter_range[2])
                    + ","
                    + str(parameter_range[3])
                    + "[ "
                    + str(int(float(float(parameter_index) / float(len(parameter_ranges)) * 100.0)))
                    + "%"
                )
                analyze_data.reset()  # resets the data of the last analysis

                # loop over the hits in the actual selected events with optimizations: determine best chunk size, start word index given
                readout_hit_len = (
                    0
                )  # variable to calculate a optimal chunk size value from the number of hits for speed up
                for hits, index in analysis_utils.data_aligned_at_events(
                    hit_table,
                    start_event_number=parameter_range[2],
                    stop_event_number=parameter_range[3],
                    start=index,
                    chunk_size=best_chunk_size,
                ):
                    analyze_data.analyze_hits(hits)  # analyze the selected hits in chunks
                    readout_hit_len += hits.shape[0]
                    progress_bar.update(index)
                best_chunk_size = (
                    int(1.5 * readout_hit_len) if int(1.05 * readout_hit_len) < chunk_size else chunk_size
                )  # to increase the readout speed, estimated the number of hits for one read instruction

                # get and store results
                occupancy_array = analyze_data.histograming.get_occupancy()
                projection_x = np.sum(occupancy_array, axis=0).ravel()
                projection_y = np.sum(occupancy_array, axis=1).ravel()
                x.append(analysis_utils.get_mean_from_histogram(projection_x, bin_positions=range(0, 80)))
                y.append(analysis_utils.get_mean_from_histogram(projection_y, bin_positions=range(0, 336)))
                time_stamp.append(parameter_range[0])
                if plot_occupancy_hists:
                    plotting.plot_occupancy(
                        occupancy_array[:, :, 0],
                        title="Occupancy for events between "
                        + time.strftime("%H:%M:%S", time.localtime(parameter_range[0]))
                        + " and "
                        + time.strftime("%H:%M:%S", time.localtime(parameter_range[1])),
                        filename=output_pdf,
                    )
            progress_bar.finish()
    plotting.plot_scatter(
        [i * 250 for i in x],
        [i * 50 for i in y],
        title="Mean beam position",
        x_label="x [um]",
        y_label="y [um]",
        marker_style="-o",
        filename=output_pdf,
    )
    if output_file:
        with tb.openFile(output_file, mode="a") as out_file_h5:
            rec_array = np.array(zip(time_stamp, x, y), dtype=[("time_stamp", float), ("x", float), ("y", float)])
            try:
                beam_spot_table = out_file_h5.createTable(
                    out_file_h5.root,
                    name="Beamspot",
                    description=rec_array,
                    title="Beam spot position",
                    filters=tb.Filters(complib="blosc", complevel=5, fletcher32=False),
                )
                beam_spot_table[:] = rec_array
            except tb.exceptions.NodeError:
                logging.warning(output_file + " has already a Beamspot note, do not overwrite existing.")
    return time_stamp, x, y