示例#1
0
    def _resample_sigma(self, stats):
        ysq, yxT, xxT, n = stats
        AAT = np.array([np.outer(a,a) for a in self.A])

        alpha = self.alpha_0 + n / 2.0

        beta = self.beta_0
        beta += 0.5 * ysq
        beta += -1.0 * np.sum(yxT * self.A, axis=1)
        beta += 0.5 * np.sum(AAT * xxT, axis=(1,2))

        self.sigmasq_flat = np.reshape(sample_invgamma(alpha, beta), (self.D_out,))
示例#2
0
    def _resample_eta(self, datas):
        N, B = self.N, self.B

        alpha = self.a_0
        beta = self.b_0
        for data in datas:
            X, y = self.extract_data(data)
            T = X.shape[0]

            alpha += T / 2.0
            beta += np.sum((y-self.mean(X))**2)

        self.eta = sample_invgamma(alpha, beta)
示例#3
0
    def _resample_eta(self, datas):
        N, B = self.N, self.B

        alpha = self.a_0
        beta = self.b_0
        for data in datas:
            X, y = self.extract_data(data)
            T = X.shape[0]

            alpha += T / 2.0
            beta += np.sum((y - self.mean(X))**2)

        self.eta = sample_invgamma(alpha, beta)
示例#4
0
    def __init__(self, N, B, a_0=2.0, b_0=2.0, eta=None, **kwargs):
        super(SparseGaussianRegression, self).__init__(N, B, **kwargs)

        # Initialize the noise model
        assert np.isscalar(a_0) and a_0 > 0
        assert np.isscalar(b_0) and a_0 > 0
        self.a_0, self.b_0 = a_0, b_0
        if eta is not None:
            assert np.isscalar(eta) and eta > 0
            self.eta = eta
        else:
            # Sample eta from its inverse gamma prior
            self.eta = sample_invgamma(self.a_0, self.b_0)
示例#5
0
    def __init__(self, N, B,
                 a_0=2.0, b_0=2.0, eta=None,
                 **kwargs):
        super(SparseGaussianRegression, self).__init__(N, B, **kwargs)

        # Initialize the noise model
        assert np.isscalar(a_0) and a_0 > 0
        assert np.isscalar(b_0) and a_0 > 0
        self.a_0, self.b_0 = a_0, b_0
        if eta is not None:
            assert np.isscalar(eta) and eta > 0
            self.eta = eta
        else:
            # Sample eta from its inverse gamma prior
            self.eta = sample_invgamma(self.a_0, self.b_0)
示例#6
0
 def resample_from_mf(self):
     for d in range(self.D_out):
         self.A[d] = sample_gaussian(J=self.mf_J_A[d], h=self.mf_h_A[d])
     self.sigmasq_flat = sample_invgamma(self.mf_alpha,
                                         self.mf_beta) * np.ones(self.D_out)
示例#7
0
 def resample_from_mf(self):
     for d in range(self.D_out):
         self.A[d] = sample_gaussian(J=self.mf_J_A[d], h=self.mf_h_A[d])
     self.sigmasq_flat = sample_invgamma(self.mf_alpha, self.mf_beta) * np.ones(self.D_out)