示例#1
0
    #numVectors = len(lsaData.pz)
    numVectors = 2

    lsaVector.append(lsaData.pwz[:, 3])
    lsaVector.append(lsaData.pwz[:, 4])

    #Stip down to the optimal number }
    #for i in range (0, numVectors):
    #    lsaVector.append(lsaData.pwz[:, index[i]])
    #lsaVector.append(lsaData.pwz[:, i])

    projections = []
    for v in lsaVector:
        projections.append([])
        for d in dVector:
            projections[-1].append(analysis.lsaProjection(d, v))

    pr = []
    for s in range(len(projections[0])):
        tmp = []
        for r in range(len(projections)):
            tmp.append(projections[r][s])
        pr.append(tmp)

    pointsPlot = [[] for i in range(2)]
    numtosplit = 20
    dim = 2
    for s in range(len(times)):
        spot = int(s / numtosplit)
        pointsPlot[spot].append((pr[s][0:dim], str(times[s])))
示例#2
0
        #if len(tmpDoc) >= minBehaviour:
        dVector.append(tmpDoc)
        times.append(oldSplit)

        oldSplit = newSplit

    
    #Load plsa data
    lsaData = dataio.loadData(lsaLocation)
    
    #Take counts data and lsa data to make graph.
    index = [ i for (i,j) in sorted(enumerate(lsaData.pz), key=operator.itemgetter(1))]
    
    #numVectors = len(lsaData.pz)
    numVectors = 2

    lsaVector.append(lsaData.pwz[:, 0])
    lsaVector.append(lsaData.pwz[:, 3])

    projections = []
    for v in lsaVector:
        projections.append([])
        for d in dVector:
            projections[-1].append(analysis.lsaProjection(d, v))
    
    x = range(splitLength, numSplits + splitLength)
    x *= skipLength
    
    
    visualizer.plotLines(x, projections)
示例#3
0
        print tmpDoc

        lsaVector = []

        index = [
            i for (
                i,
                j) in sorted(enumerate(lsaData.pz), key=operator.itemgetter(1))
        ]

        #Stip down to the optimal number
        for i in range(numVectors):
            lsaVector.append(lsaData.pwz[:, index[i]])

        ranges = [[(0, 1)], [(0, 1)]]

        for t in range(len(lsaVector)):
            #Now project this document to each latent class and store the results
            val = analysis.lsaProjection(tmpDoc, lsaVector[t])

            yProj[t].append(val)

        ct += slide
        xProj.append(count)
        count += 1

    xProj = numpy.array(xProj)

    visualizer.makeLatentTimeGraph(xProj, yProj, ranges)
示例#4
0
        print tmpDoc
        
        lsaVector = []
        
        index = [ i for (i,j) in sorted(enumerate(lsaData.pz), key=operator.itemgetter(1))]

        
        #Stip down to the optimal number
        for i in range (numVectors):
            lsaVector.append(lsaData.pwz[:, index[i]])
        
        ranges = [[(0, 1)], [(0, 1)]]
        
        
        for t in range(len(lsaVector)):
            #Now project this document to each latent class and store the results
            val = analysis.lsaProjection(tmpDoc, lsaVector[t])
            
            yProj[t].append(val)
            
            
        ct += slide
        xProj.append(count)
        count += 1
        
    xProj = numpy.array(xProj)
            
    visualizer.makeLatentTimeGraph(xProj, yProj, ranges)