示例#1
0
def calculate_volume_changes(dDEM,
                             glacier_shapes,
                             burn_handle=None,
                             ind_glac_vals=None):
    if type(glacier_shapes) is str:
        ind_glac_mask, ind_glac_vals = it.rasterize_polygons(
            dDEM, glacier_shapes, burn_handle=burn_handle)
    elif type(glacier_shapes) is np.array:
        if ind_glac_vals is None:
            ind_glac_vals = np.unique(glacier_shapes)
        elif type(ind_glac_vals) is list:
            ind_glac_vals = np.array(ind_glac_vals)
        ind_glac_mask = glacier_shapes

    ind_vol_chgs = np.nan * np.zeros(ind_glac_vals.shape)

    for i, ind in enumerate(ind_glac_vals):
        glac_inds = np.where(ind_glac_mask == ind)
        if glac_inds[0].size == 0:
            continue
        glac_chgs = dDEM.img[glac_inds]
        # get the volume change by summing dh/dt, multiplying by cell
        ind_vol_chgs[i] = np.nansum(glac_chgs) * np.abs(dDEM.dx) * np.abs(
            dDEM.dy)

    return ind_glac_vals, ind_vol_chgs
示例#2
0
def fill_holes_individually(dDEM,
                            glacshapes,
                            functype,
                            burn_handle=None,
                            **kwargs):
    # first, get the individual glacier mask.
    ind_glac_mask, ind_glac_vals = it.rasterize_polygons(
        dDEM, glacshapes, burn_handle)

    filled_ddem = dDEM.copy()

    # if we already have a glacier mask defined, remove it.
    if 'glacier_mask' in kwargs:
        del kwargs['glacier_mask']

    for glac in ind_glac_vals:
        tmp_mask = ind_glac_mask == glac
        try:
            tmp_dem = fill_holes(dDEM,
                                 elevation_function,
                                 glacier_mask=tmp_mask,
                                 functype=functype,
                                 **kwargs)
            filled_ddem.img[tmp_mask] = tmp_dem.img[tmp_mask]
        except:
            continue
    return filled_ddem
示例#3
0
def normalize_glacier_elevations(DEM, glacshapes, burn_handle=None):
    ind_glac_mask, raw_inds = it.rasterize_polygons(DEM, glacshapes,
                                                    burn_handle)
    normed_els = DEM.copy().img

    ind_glac_vals = clean_glacier_indices(DEM, ind_glac_mask, raw_inds)

    for i in ind_glac_vals:
        glac_inds = np.where(ind_glac_mask == i)
        glac_els = DEM.img[glac_inds]
        if glac_els.size > 0:
            max_el = np.nanmax(glac_els)
            min_el = np.nanmin(glac_els)
            normed_els[glac_inds] = (glac_els - min_el) / (max_el - min_el)

    normDEM = DEM.copy(new_raster=normed_els)

    return normDEM, ind_glac_mask, ind_glac_vals
示例#4
0
def main():
    parser = _argparser()
    args = parser.parse_args()

    if args.plot_curves:
        # set font stuff
        font = {'family': 'sans',
                'weight': 'normal',
                'size': 22}
        #    legend_font = {'family': 'sans',
        #                   'weight': 'normal',
        #                   'size': '16'}
        matplotlib.rc('font', **font)

    # load base dem
    print('Loading DEM {}'.format(args.basedem))
    basedem = GeoImg(args.basedem)
    print('DEM loaded.')
    # get glacier masks
    if args.glac_mask is None:
        print('Rasterizing glacier polygons to DEM extent.')
        master_mask, master_glacs = it.rasterize_polygons(basedem, args.glac_outlines, burn_handle='fid')
        master_mask[master_mask < 0] = np.nan
    else:
        print('Loading raster of glacier polygons {}'.format(args.glac_mask))
        master_mask_geo = GeoImg(args.glac_mask)
        master_mask = master_mask_geo.img
        master_glacs = np.unique(master_mask[np.isfinite(master_mask)])
    # master_mask = np.logical_and(master_mask, np.isfinite(basedem.img))
    # get names
    gshp = gpd.read_file(args.glac_outlines)
    print('Glacier masks loaded.')
    # create output folder if it doesn't already exist
    os.system('mkdir -p {}'.format(args.out_folder))

    # create folders to store glacier dH curve figures
    for g in gshp[args.namefield]:
        os.system('mkdir -p {}'.format(os.path.sep.join([args.out_folder, g])))

    print('Getting glacier AADs.')
    # get aad
    aad_bins, aads = area_alt_dist(basedem, master_mask, glacier_inds=master_glacs)
    # initialize pd dataframes for dH_curves
    df_list = [pd.DataFrame(aad_bin, columns=['elevation']) for aad_bin in aad_bins]
    g_list = [str(gshp[args.namefield][gshp['fid'] == glac].values[0]) for glac in master_glacs]
    df_dict = dict(zip(g_list, df_list))

    # turn aad_bins, aads into dicts with RGIId as keys
    bin_dict = dict(zip(g_list, aad_bins))
    aad_dict = dict(zip(g_list, aads))
    
    for i, df in enumerate(df_list):
        df['area'] = pd.Series(aads[i], index=df.index)
    
    # now that we have the AADs, make sure we preserve that distribution when we reproject.
    bin_widths = [np.diff(b)[0] for b in aad_bins]  
    basedem.img[np.isnan(master_mask)] = np.nan # remove all elevations outside of the glacier mask
    for i, g in enumerate(master_glacs):
        basedem.img[master_mask == g] = np.floor(basedem.img[master_mask == g] / bin_widths[i]) * bin_widths[i]

    # get a list of all dH
    dH_list = glob('{}/*.tif'.format(args.dH_folder))
    
    # initialize ur_dataframe
    ur_df = pd.DataFrame([os.path.basename(x) for x in dH_list], columns=['filename'])
    ur_df['dem1'] = [nice_split(x)[0] for x in ur_df['filename']]
    ur_df['dem2'] = [nice_split(x)[1] for x in ur_df['filename']]
    date1 = [parse_filename(x) for x in ur_df['dem1']]
    date2 = [parse_filename(x) for x in ur_df['dem2']]
    ur_df['date1'] = date1
    ur_df['date2'] = date2
    ur_df['delta_t'] = [(x - y).days / 365.2425 for x, y in list(zip(date1, date2))]
    ur_df['centerdate'] = [(y + dt.timedelta((x - y).days / 2)) for x, y in list(zip(date1, date2))]

    print('Found {} files in {}'.format(len(dH_list), args.dH_folder))
    print('Getting dH curves.')
    for i, dHfile in enumerate(dH_list):
        dH = GeoImg(dHfile)
        print('{} ({}/{})'.format(dH.filename, i+1, len(dH_list)))
        if args.glac_mask is None:
            dh_mask, dh_glacs = it.rasterize_polygons(dH, args.glac_outlines, burn_handle='fid')
        else:
            tmp_dh_mask = master_mask_geo.reproject(dH, method=GRA_NearestNeighbour)
            dh_mask = tmp_dh_mask.img
            dh_glacs = np.unique(dh_mask[np.isfinite(dh_mask)])
        tmp_basedem = basedem.reproject(dH, method=GRA_NearestNeighbour)
        deltat = ur_df.loc[i, 'delta_t']
        this_fname = ur_df.loc[i, 'filename']
        for i, glac in enumerate(dh_glacs):
            this_name = str(gshp[args.namefield][gshp['fid'] == glac].values[0])
            this_dem = tmp_basedem.img[dh_mask == glac]
            this_ddem = dH.img[dh_mask == glac]
            this_ddem[np.abs(this_ddem) > args.outlier] = np.nan
            if np.count_nonzero(np.isfinite(this_ddem)) / this_ddem.size < 0.25:
                continue
            # these_bins = get_bins(this_dem, dh_mask)
            filtered_ddem = outlier_filter(bin_dict[this_name], this_dem, this_ddem)
            # _, odH_curve = get_dH_curve(this_dem, this_ddem, dh_mask, bins=aad_bins)
            _, fdH_curve, fbin_area = get_dH_curve(this_dem, filtered_ddem, dh_mask, bins=bin_dict[this_name])
            _, fdH_median, _ = get_dH_curve(this_dem, filtered_ddem, dh_mask, bins=bin_dict[this_name], mode='median')
            fbin_area = 100 * fbin_area * np.abs(dH.dx) * np.abs(dH.dy) / aad_dict[this_name]
            if args.plot_curves:
                plot_dH_curve(this_ddem, this_dem, bin_dict[this_name], fdH_curve,
                              fdH_median, fbin_area, dH.filename.strip('.tif'))
                plt.savefig(os.path.join(args.out_folder, this_name, dH.filename.strip('.tif') + '.png'),
                            bbox_inches='tight', dpi=200)
                plt.close()
            # write dH curve in units of dH/dt (so divide by deltat)
            this_fname = this_fname.rsplit('.tif', 1)[0]
            df_dict[this_name][this_fname + '_mean'] = pd.Series(fdH_curve / deltat, index=df_dict[this_name].index)
            df_dict[this_name][this_fname + '_med'] = pd.Series(fdH_median / deltat, index=df_dict[this_name].index)
            df_dict[this_name][this_fname + '_pct'] = pd.Series(fbin_area, index=df_dict[this_name].index)

    print('Writing dH curves to {}'.format(args.out_folder))
    # write all dH_curves
    for g in df_dict.keys():
        print(g)
        df_dict[g].to_csv(os.path.sep.join([args.out_folder, '{}_dH_curves.csv'.format(g)]), index=False)