示例#1
0
    def __init__(self, filename=None):
        SupervisedDataSet.__init__(self, 0, 0)

        self.nCls = 0
        self.nSamples = 0
        self.classHist = {}
        self.filename = ''
        if filename is not None:
            self.loadData(filename)
示例#2
0
    def _setDataFields(self, x, y):
        if not len(x): raise Exception("no input data found")
        SupervisedDataSet.__init__(self, len(x[0]), 1)
        self.setField('input', x)
        self.setField('target', y)

        flat_labels = list(self.getField('target').flatten())
        classes = list(set(flat_labels))
        self._classes = classes
        self.nClasses = len(classes)
        for class_ in classes:
            self.classHist[class_] = flat_labels.count(class_)
 def __init__(self, inp, target=1, nb_classes=0, class_labels=None):
     """Initialize an empty dataset. 
     
     `inp` is used to specify the dimensionality of the input. While the 
     number of targets is given by implicitly by the training samples, it can
     also be set explicity by `nb_classes`. To give the classes names, supply
     an iterable of strings as `class_labels`."""
     # FIXME: hard to keep nClasses synchronized if appendLinked() etc. is used.
     SupervisedDataSet.__init__(self, inp, target)
     self.addField('class', 1)
     self.nClasses = nb_classes
     if len(self) > 0:
         # calculate class histogram, if we already have data
         self.calculateStatistics()
     self.convertField('target', int)
     if class_labels is None:
         self.class_labels = list(set(self.getField('target').flatten()))
     else:
         self.class_labels = class_labels
     # copy classes (may be changed into other representation)
     self.setField('class', self.getField('target'))