示例#1
0
def RedMission(): # Red Run (Bench Mission (including backrest removal))
    # UP BUTTON
    #!/usr/bin/env pybricks-micropython
    from pybricks.hubs import EV3Brick
    from pybricks.ev3devices import (Motor, TouchSensor, ColorSensor,
                                    InfraredSensor, UltrasonicSensor, GyroSensor)
    from pybricks.parameters import Port, Stop, Direction, Button, Color
    from pybricks.tools import wait, StopWatch, DataLog
    from pybricks.robotics import DriveBase
    from pybricks.media.ev3dev import SoundFile, ImageFile


    # This program requires LEGO EV3 MicroPython v2.0 or higher.
    # Click "Open user guide" on the EV3 extension tab for more information.


    # Create your objects here.
    ev3 = EV3Brick()

    left_motor = Motor(Port.C)
    right_motor = Motor(Port.B)
    wheel_diameter = 56
    axle_track = 115

    robot = DriveBase(left_motor, right_motor, wheel_diameter, axle_track)

    Medium_Motor = Motor(Port.A)
    Large_Motor = Motor(Port.D)

    leftcolorsensor = ColorSensor(Port.S3)
    rightcolorsensor = ColorSensor(Port.S2)

    robot.settings(500)
    robot.straight(290)
    robot.stop(Stop.BRAKE)
    robot.settings(700,400,700,400)
    robot.turn(110)
    robot.stop(Stop.BRAKE)
    while True:
        robot.drive(200,0)
        if leftcolorsensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break 
    robot.stop(Stop.BRAKE)
    ev3.speaker.beep(3)
    robot.turn(-110)
    robot.straight(80)
    BLACK = 9
    WHITE = 85
    threshold = (BLACK + WHITE) / 2
    # Set the drive speed at 100 millimeters per second.
    DRIVE_SPEED = 100
    # Set the gain of the proportional line controller. This means that for every
    PROPORTIONAL_GAIN = 1.2
    runWhile = True
    robot.reset()
    ev3.speaker.beep()
    
    while True:
        # Calculate the deviation from the threshold.
        deviation = rightcolorsensor.reflection() - threshold
        # Calculate the turn rate.
        turn_rate = PROPORTIONAL_GAIN * deviation
        # Set the drive base speed and turn rate.
        robot.drive(DRIVE_SPEED, turn_rate)
        wait(10)
        print(rightcolorsensor.color())
        
        if robot.distance() >= 100:
            robot.stop(Stop.BRAKE)
            break
    robot.stop(Stop.BRAKE)
    BLACK = 9
    WHITE = 85
    threshold = (BLACK + WHITE) / 2
    # Set the drive speed at 100 millimeters per second.
    DRIVE_SPEED = 100
    # Set the gain of the proportional line controller. This means that for every
    PROPORTIONAL_GAIN = 1.2
    runWhile = True
    robot.reset()
    
    while True:
        # Calculate the deviation from the threshold.
        deviation = rightcolorsensor.reflection() - threshold
        # Calculate the turn rate.
        turn_rate = PROPORTIONAL_GAIN * deviation
        # Set the drive base speed and turn rate.
        robot.drive(DRIVE_SPEED, turn_rate)
        wait(10)
        print(rightcolorsensor.color())
        
        if leftcolorsensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break

    robot.turn(-25)
    robot.straight(230)
    Large_Motor.run_angle(50,100,then = Stop.HOLD, wait = True)
    
    robot.straight(-60)
    robot.turn(35)
    robot.straight(-10)
    Large_Motor.run_angle(50,-50,then = Stop.HOLD, wait = True)
    robot.straight(-85)
    robot.turn(-85)
    robot.straight(500)
    robot.turn(-20)
    robot.straight(250)
    Large_Motor.run_angle(50,-70,then = Stop.HOLD, wait = False)
    robot.turn(110)
    robot.stop(Stop.BRAKE)
示例#2
0
def BlueMission(): # Blue Run (Step Counter, Pull-Up Bar, Boccia Aim, Slide, Health Unit - 1)
    # DOWN BUTTON
    #!/usr/bin/env pybricks-micropython
    from pybricks.hubs import EV3Brick
    from pybricks.ev3devices import (Motor, TouchSensor, ColorSensor,
                                    InfraredSensor, UltrasonicSensor, GyroSensor)
    from pybricks.parameters import Port, Stop, Direction, Button, Color
    from pybricks.tools import wait, StopWatch, DataLog
    from pybricks.robotics import DriveBase
    from pybricks.media.ev3dev import SoundFile, ImageFile


    # This program requires LEGO EV3 MicroPython v2.0 or higher.
    # Click "Open user guide" on the EV3 extension tab for more information.

    #define your variables
    ev3 = EV3Brick()
    left_motor = Motor(Port.C)
    right_motor = Motor(Port.B)
    medium_motor = Motor(Port.A)
    large_motor = Motor(Port.D)
    wheel_diameter = 56
    axle_track = 115  
    line_sensor = ColorSensor(Port.S2)
    line_sensor1 = ColorSensor(Port.S3)
    robot = DriveBase(left_motor, right_motor, wheel_diameter, axle_track)
  
    # Go towards the step counter mission from base
    robot.settings(800) # Speed Change
    robot.straight(650)
    robot.stop(Stop.BRAKE)
    wait(20)

    # Slow the robot down to succesfully push the step counter. 
    robot.settings(200)

    # Slowly pushes the step counter by going backward and forward a couple times to increase reliability. 
    robot.straight(230)
    robot.straight(-20)
    robot.straight(50)
    robot.stop(Stop.BRAKE)
    
    #robot.straight(-45)
    #robot.stop(Stop.BRAKE)
    #robot.straight(120) 
    #robot.stop(Stop.BRAKE)
    
    robot.straight(-60)
    robot.stop(Stop.BRAKE)
    
    # The robot then turns and goes backwards until the right color sensor detects black. 
    #robot.settings(250,300,250,300)
    robot.turn(45)
    robot.straight(-100)

    while True:
        robot.drive(-100,0)
        if line_sensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break 

    #The large motor attatchment comes down at the same time the robot takes a turn towards 
    #the black line underneath the pull up bar
    left_motor.run_angle(50,-300,then=Stop.HOLD, wait=True)
    
    # The robot then goes straight towards the line under the pull-up bar. 
    robot.straight(120)
    robot.stop(Stop.BRAKE)
    
    # Robot continues to go forwards until the left color sensor detects black.
    while True:
        robot.drive(115,0)
        if line_sensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break 
    right_motor.run_angle(100,150,then=Stop.HOLD, wait=True)
    
    # The robot turns using the right motor until it detects black.
    while True:
        right_motor.run(100)
        if line_sensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break
    robot.straight(-90)
    large_motor.run_angle(100,150,then=Stop.HOLD, wait=True)

    robot.stop(Stop.BRAKE)
    
    robot.stop(Stop.BRAKE)

    while True:
        right_motor.run(40)
        if line_sensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break

    robot.stop(Stop.BRAKE)

    ev3.speaker.beep()
    
    BLACK = 9
    WHITE = 85
    threshold = (BLACK + WHITE) / 2
    # Set the drive speed at 100 millimeters per second.
    DRIVE_SPEED = 100
    # Set the gain of the proportional line controller. This means that for every
    PROPORTIONAL_GAIN = 1.2
    runWhile = True
    robot.reset()
    ev3.speaker.beep()
    while True:
        # Calculate the deviation from the threshold.
        deviation = line_sensor.reflection() - threshold
        # Calculate the turn rate.
        turn_rate = PROPORTIONAL_GAIN * deviation
        # Set the drive base speed and turn rate.
        robot.drive(DRIVE_SPEED, turn_rate)
        wait(10)
        print(line_sensor1.color())
        if line_sensor1.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break
    robot.stop(Stop.BRAKE)

    
    robot.stop(Stop.BRAKE)
    large_motor.run_angle(-150, 150, then=Stop.HOLD, wait=False)
    robot.turn(20)
    robot.stop(Stop.BRAKE)
    robot.settings(800)
    robot.straight(280)
    ev3.speaker.beep(3)
    while True:
        robot.drive(-115,0)
        if line_sensor.color() == Color.BLACK:
            ev3.speaker.beep(10)
            robot.stop(Stop.BRAKE)
            break 
    robot.stop(Stop.BRAKE)
    # robot.straight(-10)
    robot.stop(Stop.BRAKE)
    robot.turn(50)
    
    # left_motor.run_angle(100, 150)
    '''
    large_motor.run_angle(30,-20,then=Stop.HOLD, wait=False)
    robot.turn(10)
    robot.stop(Stop.BRAKE)
    
    large_motor.run_angle(100, -50, then=Stop.HOLD, wait=False)
    robot.turn(90)
    robot.stop(Stop.BRAKE)
    
    '''
    BLACK = 9
    WHITE = 85
    threshold = (BLACK + WHITE) / 2
    # Set the drive speed at 100 millimeters per second.
    DRIVE_SPEED = 100
    # Set the gain of the proportional line controller. This means that for every
    PROPORTIONAL_GAIN = 1.2
    runWhile = True
    robot.reset()
    ev3.speaker.beep()
    while True:
        # Calculate the deviation from the threshold.
        deviation = line_sensor.reflection() - threshold
        # Calculate the turn rate.
        turn_rate = PROPORTIONAL_GAIN * deviation
        # Set the drive base speed and turn rate.
        robot.drive(DRIVE_SPEED, turn_rate)
        wait(10)
        print(line_sensor.color())
        if robot.distance() >= 500:
            robot.stop(Stop.BRAKE)
            break
    ev3.speaker.beep(3)

    while True:
        robot.drive(40,0)
        if line_sensor1.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break

    robot.stop(Stop.BRAKE)
    ev3.speaker.beep()
    robot.straight(30)
    robot.turn(-100)
    robot.straight(70)
    large_motor.run_angle(600,150,then=Stop.HOLD, wait=True)

    while True:
        robot.drive(-50, 0)
        if line_sensor1.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break
    robot.stop(Stop.BRAKE)

    right_motor.run_angle(600,500,then=Stop.HOLD,wait=True)

    
    robot.straight(20)
    BLACK = 9
    WHITE = 85
    threshold = (BLACK + WHITE) / 2
    # Set the drive speed at 100 millimeters per second.
    DRIVE_SPEED = 100
    # Set the gain of the proportional line controller. This means that for every
    PROPORTIONAL_GAIN = 1.2
    runWhile = True
    robot.reset()
    ev3.speaker.beep()
    while True:
        # Calculate the deviation from the threshold.
        deviation = line_sensor1.reflection() - threshold
        # Calculate the turn rate.
        turn_rate = PROPORTIONAL_GAIN * deviation
        # Set the drive base speed and turn rate.
        robot.drive(DRIVE_SPEED, turn_rate)
        wait(10)
        print(line_sensor1.color())
        if robot.distance() >= 580:
            robot.stop(Stop.BRAKE)
            break
    robot.stop(Stop.BRAKE)
    
    while True:
        robot.drive(50, 0)
        if line_sensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break
    robot.stop(Stop.BRAKE)
    ev3.speaker.beep(3)

    robot.turn(-45)
    robot.stop(Stop.BRAKE)
    
    robot.straight(30)
    
    large_motor.run_angle(1000,-150,then=Stop.HOLD, wait=True)
    robot.straight(-40)
    large_motor.run_angle(1000,150,then=Stop.HOLD, wait=True)
    robot.straight(40)
    large_motor.run_angle(1000,-150,then=Stop.HOLD, wait=True)

    robot.straight(-115)
    robot.turn(95)
    robot.straight(420)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
    robot.turn(-100)
    robot.turn(100)
示例#3
0
def BlackandGreen():

    #!/usr/bin/env pybricks-micropython
    from pybricks.hubs import EV3Brick
    from pybricks.ev3devices import (Motor, TouchSensor, ColorSensor,
                                     InfraredSensor, UltrasonicSensor,
                                     GyroSensor)
    from pybricks.parameters import Port, Stop, Direction, Button, Color
    from pybricks.tools import wait, StopWatch, DataLog
    from pybricks.robotics import DriveBase
    from pybricks.media.ev3dev import SoundFile, ImageFile

    # This program requires LEGO EV3 MicroPython v2.0 or higher.
    # Click "Open user guide" on the EV3 extension tab for more information.

    #define your variables
    ev3 = EV3Brick()
    left_motor = Motor(Port.C)
    right_motor = Motor(Port.B)
    medium_motor = Motor(Port.A)
    large_motor = Motor(Port.D)
    wheel_diameter = 56
    axle_track = 115
    line_sensor = ColorSensor(Port.S2)
    line_sensor1 = ColorSensor(Port.S3)
    robot = DriveBase(left_motor, right_motor, wheel_diameter, axle_track)
    #follows the line underneath the pull up bar until the leftsensor detects black
    BLACK = 9
    WHITE = 85
    threshold = (BLACK + WHITE) / 2
    # Set the drive speed at 100 millimeters per second.
    DRIVE_SPEED = 100
    # Set the gain of the proportional line controller. This means that for every
    PROPORTIONAL_GAIN = 1.2
    runWhile = True
    #goes straight to get ready for line following then resets the distance
    robot.straight(250)
    robot.reset()
    #starts to follow the line towards the replay logo
    while True:
        # Calculate the deviation from the threshold.
        deviation = line_sensor.reflection() - threshold
        # Calculate the turn rate.
        turn_rate = PROPORTIONAL_GAIN * deviation
        # Set the drive base speed and turn rate.
        robot.drive(DRIVE_SPEED, turn_rate)
        wait(10)
        print(robot.distance())
        if (robot.distance() >= 450):
            robot.stop(Stop.BRAKE)
            break
    #the robot pushes the phone into the replay logo and moves back to get ready to drop the health units into the replay logo
    robot.straight(-75)
    robot.stop(Stop.BRAKE)
    #the robot then turns so it is going to be perfectly into the replay logo
    robot.turn(-35)
    #the robot drops the health units
    large_motor.run_angle(100, 150)
    #then turns to an angle to go back to base
    robot.turn(50)
    robot.straight(-1000)

    wait(50)

    #!/usr/bin/env pybricks-micropython
    from pybricks.hubs import EV3Brick
    from pybricks.ev3devices import (Motor, TouchSensor, ColorSensor,
                                     InfraredSensor, UltrasonicSensor,
                                     GyroSensor)
    from pybricks.parameters import Port, Stop, Direction, Button, Color
    from pybricks.tools import wait, StopWatch, DataLog
    from pybricks.robotics import DriveBase
    from pybricks.media.ev3dev import SoundFile, ImageFile

    # This program requires LEGO EV3 MicroPython v2.0 or higher.
    # Click "Open user guide" on the EV3 extension tab for more information.

    # Create your objects here.
    ev3 = EV3Brick()

    left_motor = Motor(Port.C)
    right_motor = Motor(Port.B)
    medium_motor = Motor(Port.A)
    front_largeMotor = Motor(Port.D)

    wheel_diameter = 56
    axle_track = 114.3

    robot = DriveBase(left_motor, right_motor, wheel_diameter, axle_track)

    ## Write your code here:

    ## The robot goes straight until the Boccia Mission's target.
    robot.straight(1060)

    ## The robot moves the large motor down to drop the cubes in the target.
    front_largeMotor.run_angle(80, 70, then=Stop.HOLD, wait=True)
    front_largeMotor.run_angle(-80, 70, then=Stop.HOLD, wait=True)

    ## Dance Mission

    ## The robot moves backwards to reach the Dance Floor so it can Dance as the last mission.
    robot.straight(-185)
    robot.turn(-70)
    robot.straight(138)

    ## The following code is all the dance moves we do for the Dance Mission.

    robot.turn(160)
    robot.turn(-160)
    robot.straight(60)
    front_largeMotor.run_target(500, 60)
    front_largeMotor.run_target(500, -40)
    robot.straight(-60)
    robot.turn(260)
    robot.turn(-260)
    robot.turn(100)
    robot.straight(40)
    robot.turn(100)
    front_largeMotor.run_angle(500, 30)
示例#4
0
def BlueMission():

    #!/usr/bin/env pybricks-micropython
    from pybricks.hubs import EV3Brick
    from pybricks.ev3devices import (Motor, TouchSensor, ColorSensor,
                                     InfraredSensor, UltrasonicSensor,
                                     GyroSensor)
    from pybricks.parameters import Port, Stop, Direction, Button, Color
    from pybricks.tools import wait, StopWatch, DataLog
    from pybricks.robotics import DriveBase
    from pybricks.media.ev3dev import SoundFile, ImageFile

    # This program requires LEGO EV3 MicroPython v2.0 or higher.
    # Click "Open user guide" on the EV3 extension tab for more information.

    #define your variables
    ev3 = EV3Brick()
    left_motor = Motor(Port.C)
    right_motor = Motor(Port.B)
    medium_motor = Motor(Port.A)
    large_motor = Motor(Port.D)
    wheel_diameter = 56
    axle_track = 115
    line_sensor = ColorSensor(Port.S2)
    line_sensor1 = ColorSensor(Port.S3)
    robot = DriveBase(left_motor, right_motor, wheel_diameter, axle_track)

    #go front towards the step counter
    robot.straight(650)
    robot.stop(Stop.BRAKE)
    wait(20)

    #makes the robot go slower
    robot.settings(40)

    #slowly pushes the step counter by going back and front 2 times
    robot.straight(140)
    robot.stop(Stop.BRAKE)
    robot.straight(-45)
    robot.stop(Stop.BRAKE)
    robot.straight(120)
    robot.stop(Stop.BRAKE)
    robot.settings(100)
    robot.straight(-30)
    robot.stop(Stop.BRAKE)
    #the robot then turns and goes backwards
    robot.turn(45)
    robot.straight(-100)
    # the robot then goes back until the right color sensor detects back
    while True:
        robot.drive(-30, 0)
        if line_sensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break
    #the large motor attatchment comes down at the same time the robot takes a turn towards the black line underneath the pull up bar
    large_motor.run_angle(50, 170, then=Stop.HOLD, wait=False)
    left_motor.run_angle(50, -300, then=Stop.HOLD, wait=True)
    #the robot then goes straight towards that line
    robot.straight(120)
    robot.stop(Stop.BRAKE)
    #robot continues to go forwards until the left color sensor detects black
    while True:
        robot.drive(30, 0)
        if line_sensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break
    right_motor.run_angle(50, 150, then=Stop.HOLD, wait=True)
    #the robot then turns with the right motor until it detects black
    while True:
        right_motor.run(85)
        if line_sensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break
    #follows the line underneath the pull up bar until the leftsensor detects black
    BLACK = 9
    WHITE = 85
    threshold = (BLACK + WHITE) / 2
    # Set the drive speed at 100 millimeters per second.
    DRIVE_SPEED = 100
    # Set the gain of the proportional line controller. This means that for every
    PROPORTIONAL_GAIN = 1.2
    runWhile = True
    robot.reset()
    while True:
        # Calculate the deviation from the threshold.
        deviation = line_sensor.reflection() - threshold
        # Calculate the turn rate.
        turn_rate = PROPORTIONAL_GAIN * deviation
        # Set the drive base speed and turn rate.
        robot.drive(DRIVE_SPEED, turn_rate)
        wait(10)
        print(line_sensor.color())
        if line_sensor1.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break
    #the robot then turns towards the boccia aim and moves straight to push it towards the target and finishes the misison
    robot.straight(100)  #after line following, it goes straight for 100 mm
    robot.turn(50)
    robot.straight(100)
    robot.straight(-30)
    large_motor.run_angle(100, -65)
    robot.straight(-60)
    #the robot then takes a turn (at the same time bringing the attatchment down) towards the slide mission and completes the mission
    large_motor.run_angle(50, 80, then=Stop.HOLD, wait=False)
    robot.turn(-195)
    robot.straight(165)
    large_motor.run_angle(300, -120, then=Stop.HOLD, wait=True)
    robot.straight(-30)
    large_motor.run_angle(200, 120, then=Stop.HOLD, wait=True)
    ## The robot moves straight towards the mission, getting ready to attempt to push the slide figures off once more. (In case it didn't work before.)
    robot.straight(30)
    large_motor.run_angle(300, -120, then=Stop.HOLD, wait=True)
    robot.straight(-50)
    '''
示例#5
0
right_motor = Motor(Port.C , positive_direction=Direction.COUNTERCLOCKWISE, gears=[40,8])
gyro_sensor = GyroSensor(Port.S3)
# Initialize the color sensor.
#line_sensor = ColorSensor(Port.S3)
left_motor.reset_angle(0)
right_motor.reset_angle(0)
gyro_sensor.reset_angle(0)

fudge=1
speed=100
angle=0


robot = DriveBase(left_motor, right_motor, wheel_diameter=30, axle_track=135)
initial_distance = 0
robot.reset()
while ((robot.distance() - initial_distance) < 350) :
    robot.drive(speed,angle)
    drift = gyro_sensor.angle()
    angle = (drift * fudge) * -1      
wait(3) 
i=0
robot.stop()
speed=50
while (i<2 ):
    fruit = gyro_sensor.angle()
    fruit = fruit * (-1)
    robot.drive(speed,fruit)
    wait(3)
    robot.drive((speed* (-1)),fruit) 
    i = i + 1
示例#6
0
def BlueMission():
    #!/usr/bin/env pybricks-micropython
    from pybricks.hubs import EV3Brick
    from pybricks.ev3devices import (Motor, TouchSensor, ColorSensor,
                                    InfraredSensor, UltrasonicSensor, GyroSensor)
    from pybricks.parameters import Port, Stop, Direction, Button, Color
    from pybricks.tools import wait, StopWatch, DataLog
    from pybricks.robotics import DriveBase
    from pybricks.media.ev3dev import SoundFile, ImageFile


    # This program requires LEGO EV3 MicroPython v2.0 or higher.
    # Click "Open user guide" on the EV3 extension tab for more information.

    #define your variables
    ev3 = EV3Brick()
    left_motor = Motor(Port.C)
    right_motor = Motor(Port.B)
    medium_motor = Motor(Port.A)
    large_motor = Motor(Port.D)
    wheel_diameter = 56
    axle_track = 115  
    line_sensor = ColorSensor(Port.S2)
    line_sensor1 = ColorSensor(Port.S3)
    robot = DriveBase(left_motor, right_motor, wheel_diameter, axle_track)

    #go front towards the step counter
    robot.settings(250)
    robot.straight(650)
    robot.stop(Stop.BRAKE)
    wait(20)

    #makes the robot go slower 
    robot.settings(40)

    #slowly pushes the step counter by going back and front 2 times
    robot.straight(140)
    robot.stop(Stop.BRAKE)
    robot.straight(-45)
    robot.stop(Stop.BRAKE)
    robot.straight(120) 
    robot.stop(Stop.BRAKE)
    robot.straight(-30)
    robot.stop(Stop.BRAKE)
    #the robot then turns and goes backwards
    robot.settings(250,500,250,500)
    robot.turn(45)
    robot.straight(-100)
    # the robot then goes back until the right color sensor detects back
    while True:
        robot.drive(-115,0)
        if line_sensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break 
    #the large motor attatchment comes down at the same time the robot takes a turn towards the black line underneath the pull up bar
    large_motor.run_angle(50,200,then=Stop.HOLD, wait=False)
    left_motor.run_angle(50,-300,then=Stop.HOLD, wait=True)
    #the robot then goes straight towards that line
    robot.straight(120)
    robot.stop(Stop.BRAKE)
    #robot continues to go forwards until the left color sensor detects black
    while True:
        robot.drive(115,0)
        if line_sensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break 
    right_motor.run_angle(50,150,then=Stop.HOLD, wait=True)
    #the robot then turns with the right motor until it detects black
    while True:
        right_motor.run(85)
        if line_sensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break
    #follows the line underneath the pull up bar until the leftsensor detects black
        #follows the line underneath the pull up bar until the leftsensor detects black
    BLACK = 9
    WHITE = 85
    threshold = (BLACK + WHITE) / 2
    # Set the drive speed at 100 millimeters per second.
    DRIVE_SPEED = 100
    # Set the gain of the proportional line controller. This means that for every
    PROPORTIONAL_GAIN = 1.2
    runWhile = True
    robot.reset()
    while True:
        # Calculate the deviation from the threshold.
        deviation = line_sensor.reflection() - threshold
        # Calculate the turn rate.
        turn_rate = PROPORTIONAL_GAIN * deviation
        # Set the drive base speed and turn rate.
        robot.drive(DRIVE_SPEED, turn_rate)
        wait(10)
        print(line_sensor1.color())
        if line_sensor1.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break
    #the robot then turns towards the boccia aim and moves straight to push it towards the target and finishes the misison 
    robot.turn(25)
    robot.straight(250)
    robot.straight(-50)
    # this is importate kekekekee
    large_motor.run_angle(75,-65)
    robot.straight(-60)
    while True:
        robot.drive(-70,0)
        if line_sensor.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            ev3.speaker.beep()
            break 
    while True:
        left_motor.run(-50)
        if line_sensor1.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            ev3.speaker.beep()
            break
    left_motor.run_angle(50, -20)
    right_motor.run_angle(50, 20)
    robot.settings(200)
    robot.straight(60)
    robot.turn(-137)
    #this is also importante jekeke
    large_motor.run_angle(50,80)
    robot.straight(143)
    large_motor.run_angle(550, -120)
    robot.straight(-40)
    large_motor.run_angle(550, 120)
    robot.straight(40)
    large_motor.run_angle(550, -120)
    large_motor.run_angle(300, 30, then=Stop.HOLD, wait=True)
    #robot.straight(40)
    large_motor.run_angle(300, -100, then=Stop.HOLD, wait=True)
    #goes to collect the health unit near the basketball (goes back to base)
    robot.straight(-200)
    robot.turn(40)
    robot.straight(556)
    robot.straight(50)
    robot.stop(Stop.BRAKE)
    while True:
        left_motor.run(50)
        if line_sensor1.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            ev3.speaker.beep()
            break
    robot.stop(Stop.BRAKE)
    
    robot.reset()
    # Calculate the light threshold. Choose values based on your measurements.
    BLACK = 9
    WHITE = 85
    threshold = (BLACK + WHITE) / 2

    # Set the drive speed at 100 millimeters per second.
    DRIVE_SPEED = 100

    # Set the gain of the proportional line controller. This means that for every
    # percentage point of light deviating from the threshold, we set the turn
    # rate of the drivebase to 1.2 degrees per second.

    # For example, if the light value deviates from the threshold by 10, the robot
    # steers at 10*1.2 = 12 degrees per second.
    PROPORTIONAL_GAIN = 1.2
    runWhile = True
    # Start following the line endlessly.
    while runWhile:
        # Calculate the deviation from the threshold.
        deviation = line_sensor1.reflection() - threshold

        # Calculate the turn rate.
        turn_rate = PROPORTIONAL_GAIN * deviation

        # Set the drive base speed and turn rate.
        robot.drive(DRIVE_SPEED, turn_rate)

        if robot.distance() >= 210:
            runWhile = False
            break
    robot.stop(Stop.BRAKE)
    robot.turn(5.244312)
    robot.straight(700)
    #the robot then goes back until the right color sensor detects back
    '''
    while True:
        if line_sensor1.color() == Color.BLACK:
            robot.stop(Stop.BRAKE)
            break 
    
    #robot.straight(980)
    '''
    robot.stop(Stop.BRAKE) 
line_sensor = ColorSensor(Port.S2)

left_motor.reset_angle(0)
right_motor.reset_angle(0)
gyro_sensor.reset_angle(0)


fudge=1
speed=100
angle=0


robot = DriveBase(left_motor, right_motor, wheel_diameter=30, axle_track=135)
left_motor.dc(90)
right_motor.dc(90)
""" initial_distance = 0
robot.reset()
while ((robot.distance() - initial_distance) < 350) :
     drift = gyro_sensor.angle()
     print(gyro_sensor.angle())
     angle = (drift * fudge) * -1      
wait(10) 
i=0
speed=200
 """





# Calculate the light threshold. Choose values based on your measurements.