def compute_jacobian(robot, link, positions=None):
    joints = get_movable_joints(robot)
    if positions is None:
        positions = get_joint_positions(robot, joints)
    assert len(joints) == len(positions)
    velocities = [0.0] * len(positions)
    accelerations = [0.0] * len(positions)
    translate, rotate = p.calculateJacobian(robot,
                                            link,
                                            unit_point(),
                                            positions,
                                            velocities,
                                            accelerations,
                                            physicsClientId=CLIENT)
    #movable_from_joints(robot, joints)
    return list(zip(*translate)), list(zip(*rotate))  # len(joints) x 3
def select_solution(body,
                    joints,
                    solutions,
                    nearby_conf=True,
                    random=False,
                    **kwargs):
    """select one joint configuration given a list of them

    Parameters
    ----------
    body : pybullet body
        This can be any pybullet body, including the robot
    joints : a list of pybullet joint
    solutions : a list of float-lists
        joint values
    nearby_conf : bool
        return the joint conf that is closest to the current conf in pybullet env,
        defaults to True
    random : bool
        randomly chose one
    **kwargs : optional
        additional arguments for the cost function when ranking

    Returns
    -------
    a list of lists or one list
        the joint configuration(s)
    """
    if not solutions:
        return None
    if random and not nearby_conf:
        return random.choice(solutions)
    if nearby_conf:
        nearby_conf = get_joint_positions(body, joints)
        # TODO: sort by distance before collision checking
        # TODO: search over neighborhood of sampled joints when nearby_conf != None
        return min(solutions,
                   key=lambda conf: get_distance(nearby_conf, conf, **kwargs))
    else:
        return random.choice(solutions)
def plan_nonholonomic_motion(body,
                             joints,
                             end_conf,
                             obstacles=[],
                             attachments=[],
                             self_collisions=True,
                             disabled_collisions=set(),
                             weights=None,
                             resolutions=None,
                             reversible=True,
                             max_distance=MAX_DISTANCE,
                             custom_limits={},
                             **kwargs):
    from pybullet_planning.interfaces.robots.joint import get_joint_positions

    assert len(joints) == len(end_conf)
    sample_fn = get_sample_fn(body, joints, custom_limits=custom_limits)
    distance_fn = get_nonholonomic_distance_fn(body,
                                               joints,
                                               weights=weights,
                                               reversible=reversible)
    extend_fn = get_nonholonomic_extend_fn(body,
                                           joints,
                                           resolutions=resolutions,
                                           reversible=reversible)
    collision_fn = get_collision_fn(body,
                                    joints,
                                    obstacles,
                                    attachments,
                                    self_collisions,
                                    disabled_collisions,
                                    custom_limits=custom_limits,
                                    max_distance=max_distance)

    start_conf = get_joint_positions(body, joints)
    if not check_initial_end(start_conf, end_conf, collision_fn):
        return None
    return birrt(start_conf, end_conf, distance_fn, sample_fn, extend_fn,
                 collision_fn, **kwargs)
示例#4
0
def plan_joint_motion(body,
                      joints,
                      end_conf,
                      obstacles=[],
                      attachments=[],
                      self_collisions=True,
                      disabled_collisions=set(),
                      extra_disabled_collisions=set(),
                      weights=None,
                      resolutions=None,
                      max_distance=MAX_DISTANCE,
                      custom_limits={},
                      diagnosis=False,
                      **kwargs):
    """call birrt to plan a joint trajectory from the robot's **current** conf to ``end_conf``.
    """
    assert len(joints) == len(end_conf)
    sample_fn = get_sample_fn(body, joints, custom_limits=custom_limits)
    distance_fn = get_distance_fn(body, joints, weights=weights)
    extend_fn = get_extend_fn(body, joints, resolutions=resolutions)
    collision_fn = get_collision_fn(
        body,
        joints,
        obstacles=obstacles,
        attachments=attachments,
        self_collisions=self_collisions,
        disabled_collisions=disabled_collisions,
        extra_disabled_collisions=extra_disabled_collisions,
        custom_limits=custom_limits,
        max_distance=max_distance)

    start_conf = get_joint_positions(body, joints)

    if not check_initial_end(
            start_conf, end_conf, collision_fn, diagnosis=diagnosis):
        return None
    return birrt(start_conf, end_conf, distance_fn, sample_fn, extend_fn,
                 collision_fn, **kwargs)
示例#5
0
def plan_waypoints_joint_motion(body,
                                joints,
                                waypoints,
                                start_conf=None,
                                obstacles=[],
                                attachments=[],
                                self_collisions=True,
                                disabled_collisions=set(),
                                resolutions=None,
                                custom_limits={},
                                max_distance=MAX_DISTANCE):
    extend_fn = get_extend_fn(body, joints, resolutions=resolutions)
    collision_fn = get_collision_fn(body,
                                    joints,
                                    obstacles,
                                    attachments,
                                    self_collisions,
                                    disabled_collisions,
                                    custom_limits=custom_limits,
                                    max_distance=max_distance)
    if start_conf is None:
        start_conf = get_joint_positions(body, joints)
    else:
        assert len(start_conf) == len(joints)

    for i, waypoint in enumerate([start_conf] + list(waypoints)):
        if collision_fn(waypoint):
            #print("Warning: waypoint configuration {}/{} is in collision".format(i, len(waypoints)))
            return None
    path = [start_conf]
    for waypoint in waypoints:
        assert len(joints) == len(waypoint)
        for q in extend_fn(path[-1], waypoint):
            if collision_fn(q):
                return None
            path.append(q)
    return path
def get_ik_tool_link_pose(fk_fn, robot, ik_joints, base_link, \
                          joint_values=None, use_current=False):
    """Use the given forward_kinematics function to compute ik_tool_link pose
    based on current joint configurations in pybullet.

    Note: The resulting FK pose is relative to the world frame, not the robot's base frame.

    Parameters
    ----------
    fk_fn : function handle
        fk(a 6-list) : point, rot_matrix
    robot : pybullet robot
    ik_joint : list of int
        a list of pybullet joint index that is registered for IK/FK
        can be obtained by e.g.: ``ik_joints = joints_from_names(robot, ik_joint_names)``
    base_link : int
        robot base link index, can be obtained from ``link_from_name(robot, base_link_name)``
    joint_values : list of float
        robot joint values for FK computation, value correponds to ik_joint_names, default to None
    use_current: bool
        if true, use the current configuration in pybullet env for FK, default
        to False

    Returns
    -------
    pybullet Pose
        Pose = (point, quat) = ([x,y,z], [4-list])
    """
    if use_current:
        conf = get_joint_positions(robot, ik_joints)
    else:
        assert joint_values
        conf = joint_values

    base_from_tool = compute_forward_kinematics(fk_fn, conf)
    world_from_base = get_link_pose(robot, base_link)
    return multiply(world_from_base, base_from_tool)
示例#7
0
def plan_cartesian_motion_lg(robot,
                             joints,
                             waypoint_poses,
                             sample_ik_fn=None,
                             collision_fn=None,
                             sample_ee_fn=None,
                             max_sample_ee_iter=MAX_SAMPLE_ITER,
                             custom_vel_limits={},
                             ee_vel=None,
                             jump_threshold={},
                             **kwargs):
    """ladder graph cartesian planning, better leveraging ikfast for sample_ik_fn

    Parameters
    ----------
    robot : [type]
        [description]
    joints : [type]
        [description]
    waypoint_poses : [type]
        [description]
    sample_ik_fn : [type], optional
        [description], by default None
    collision_fn : [type], optional
        [description], by default None
    ee_sample_fn : [type], optional
        please please please remember to put an end to the sampling loop!
    jump_threshold : [type], optional

    Returns
    -------
    [type]
        [description]
    """

    assert sample_ik_fn is not None, 'Sample fn must be specified!'
    # TODO sanity check samplers
    ik_sols = [[] for _ in range(len(waypoint_poses))]
    for i, task_pose in enumerate(waypoint_poses):
        candidate_poses = [task_pose]
        if sample_ee_fn is not None:
            # extra dof release, copy to reuse generator
            current_ee_fn = copy(sample_ee_fn)
            cnt = 0
            for p in current_ee_fn(task_pose):
                if cnt > max_sample_ee_iter:
                    warnings.warn('EE dof release generator is called over {} times, likely that you forget to put an exit in the generator. ' + \
                        'We stop generating here for you.')
                    break
                candidate_poses.append(p)
                cnt += 1
        for ee_pose in candidate_poses:
            conf_list = sample_ik_fn(ee_pose)
            if collision_fn is not None:
                conf_list = [
                    conf for conf in conf_list
                    if conf and not collision_fn(conf, **kwargs)
                ]
            ik_sols[i].extend(conf_list)

    # assemble the ladder graph
    dof = len(joints)
    graph = LadderGraph(dof)
    graph.resize(len(ik_sols))

    # assign rung data
    for pt_id, ik_confs_pt in enumerate(ik_sols):
        graph.assign_rung(pt_id, ik_confs_pt)

    joint_jump_threshold = []
    for joint in joints:
        if joint in custom_vel_limits:
            joint_jump_threshold.append(custom_vel_limits[joint])
        else:
            joint_jump_threshold.append(INF)

    # build edges within current pose family
    for i in range(graph.get_rungs_size() - 1):
        st_rung_id = i
        end_rung_id = i + 1
        jt1_list = graph.get_data(st_rung_id)
        jt2_list = graph.get_data(end_rung_id)
        st_size = graph.get_rung_vert_size(st_rung_id)
        end_size = graph.get_rung_vert_size(end_rung_id)
        # if st_size == 0 or end_size == 0:
        #     print(ik_sols)

        assert st_size > 0, 'Ladder graph not valid: rung {}/{} is a zero size rung'.format(
            st_rung_id, graph.get_rungs_size())
        assert end_size > 0, 'Ladder graph not valid: rung {}/{} is a zero size rung'.format(
            end_rung_id, graph.get_rungs_size())

        # TODO: preference_cost using pose deviation
        # fully-connected ladder graph
        edge_builder = EdgeBuilder(st_size,
                                   end_size,
                                   dof,
                                   jump_threshold=joint_jump_threshold,
                                   preference_cost=1.0)
        for k in range(st_size):
            st_jt_id = k * dof
            for j in range(end_size):
                end_jt_id = j * dof
                edge_builder.consider(jt1_list[st_jt_id:st_jt_id + dof],
                                      jt2_list[end_jt_id:end_jt_id + dof], j)
            edge_builder.next(k)

        # print(edge_builder.max_dtheta_)
        # print(edge_builder.edge_scratch_)
        # print(edge_builder.result)
        # TODO: more report information here
        if not edge_builder.has_edges:
            print(
                'Ladder graph: no edge built between {}-{} | joint threshold: {}, max delta jt: {}'
                .format(st_rung_id, end_rung_id, joint_jump_threshold,
                        edge_builder.max_dtheta_))
            return None, None

        edges = edge_builder.result
        graph.assign_edges(i, edges)

    # * use current conf in the env as start_conf
    start_conf = get_joint_positions(robot, joints)
    st_graph = LadderGraph(graph.dof)
    st_graph.resize(1)
    st_graph.assign_rung(0, [start_conf])
    # TODO: upper_tim here
    unified_graph = append_ladder_graph(st_graph,
                                        graph,
                                        jump_threshold=joint_jump_threshold)
    if unified_graph is None:
        return None, None

    # perform DAG search
    dag_search = DAGSearch(unified_graph)
    min_cost = dag_search.run()
    # list of confs
    path = dag_search.shortest_path()
    # delete the start conf
    del path[0]

    assert len(path) == len(waypoint_poses)
    if len(path) == 0:
        return None, None
    return path, min_cost
示例#8
0
def clone_body(body, links=None, collision=True, visual=True, client=None):
    from pybullet_planning.utils import get_client
    # TODO: names are not retained
    # TODO: error with createMultiBody link poses on PR2
    # localVisualFrame_position: position of local visual frame, relative to link/joint frame
    # localVisualFrame orientation: orientation of local visual frame relative to link/joint frame
    # parentFramePos: joint position in parent frame
    # parentFrameOrn: joint orientation in parent frame
    client = get_client(client) # client is the new client for the body
    if links is None:
        links = get_links(body)
    #movable_joints = [joint for joint in links if is_movable(body, joint)]
    new_from_original = {}
    base_link = get_link_parent(body, links[0]) if links else BASE_LINK
    new_from_original[base_link] = -1

    masses = []
    collision_shapes = []
    visual_shapes = []
    positions = [] # list of local link positions, with respect to parent
    orientations = [] # list of local link orientations, w.r.t. parent
    inertial_positions = [] # list of local inertial frame pos. in link frame
    inertial_orientations = [] # list of local inertial frame orn. in link frame
    parent_indices = []
    joint_types = []
    joint_axes = []
    for i, link in enumerate(links):
        new_from_original[link] = i
        joint_info = get_joint_info(body, link)
        dynamics_info = get_dynamics_info(body, link)
        masses.append(dynamics_info.mass)
        collision_shapes.append(clone_collision_shape(body, link, client) if collision else -1)
        visual_shapes.append(clone_visual_shape(body, link, client) if visual else -1)
        point, quat = get_local_link_pose(body, link)
        positions.append(point)
        orientations.append(quat)
        inertial_positions.append(dynamics_info.local_inertial_pos)
        inertial_orientations.append(dynamics_info.local_inertial_orn)
        parent_indices.append(new_from_original[joint_info.parentIndex] + 1) # TODO: need the increment to work
        joint_types.append(joint_info.jointType)
        joint_axes.append(joint_info.jointAxis)
    # https://github.com/bulletphysics/bullet3/blob/9c9ac6cba8118544808889664326fd6f06d9eeba/examples/pybullet/gym/pybullet_utils/urdfEditor.py#L169

    base_dynamics_info = get_dynamics_info(body, base_link)
    base_point, base_quat = get_link_pose(body, base_link)
    new_body = p.createMultiBody(baseMass=base_dynamics_info.mass,
                                 baseCollisionShapeIndex=clone_collision_shape(body, base_link, client) if collision else -1,
                                 baseVisualShapeIndex=clone_visual_shape(body, base_link, client) if visual else -1,
                                 basePosition=base_point,
                                 baseOrientation=base_quat,
                                 baseInertialFramePosition=base_dynamics_info.local_inertial_pos,
                                 baseInertialFrameOrientation=base_dynamics_info.local_inertial_orn,
                                 linkMasses=masses,
                                 linkCollisionShapeIndices=collision_shapes,
                                 linkVisualShapeIndices=visual_shapes,
                                 linkPositions=positions,
                                 linkOrientations=orientations,
                                 linkInertialFramePositions=inertial_positions,
                                 linkInertialFrameOrientations=inertial_orientations,
                                 linkParentIndices=parent_indices,
                                 linkJointTypes=joint_types,
                                 linkJointAxis=joint_axes,
                                 physicsClientId=client)
    #set_configuration(new_body, get_joint_positions(body, movable_joints)) # Need to use correct client
    for joint, value in zip(range(len(links)), get_joint_positions(body, links)):
        # TODO: check if movable?
        p.resetJointState(new_body, joint, value, targetVelocity=0, physicsClientId=client)
    return new_body
def plan_cartesian_motion_lg(robot,
                             joints,
                             waypoint_poses,
                             sample_ik_fn=None,
                             collision_fn=None,
                             sample_ee_fn=None,
                             max_sample_ee_iter=MAX_SAMPLE_ITER,
                             custom_vel_limits={},
                             ee_vel=None,
                             **kwargs):
    """ladder graph cartesian planning, better leveraging ikfast for sample_ik_fn

    Parameters
    ----------
    robot : [type]
        [description]
    joints : [type]
        [description]
    waypoint_poses : [type]
        [description]
    sample_ik_fn : [type], optional
        [description], by default None
    collision_fn : [type], optional
        [description], by default None
    ee_sample_fn : [type], optional
        please please please remember to put an end to the sampling loop!

    Returns
    -------
    [type]
        [description]
    """

    assert sample_ik_fn is not None, 'Sample fn must be specified!'
    # TODO sanity check samplers
    ik_sols = [[] for _ in range(len(waypoint_poses))]
    upper_times = np.ones(len(waypoint_poses)) * np.inf
    for i, task_pose in enumerate(waypoint_poses):
        candidate_poses = [task_pose]
        if sample_ee_fn is not None:
            # * extra dof release, copy to reuse generator

            # yaw_sample_size = 20
            # yaw_gen = np.linspace(0.0, 2*np.pi, num=yaw_sample_size)
            # from pybullet_planning import multiply, Pose, Euler
            # for yaw in yaw_gen:
            #     new_p = multiply(task_pose, Pose(euler=Euler(yaw=yaw)))
            #     candidate_poses.append(new_p)

            current_ee_fn = copy(sample_ee_fn)
            cnt = 0
            for p in current_ee_fn(task_pose):
                if cnt > max_sample_ee_iter:
                    warnings.warn('EE dof release generator is called over {} times, likely that you forget to put an exit in the generator. ' + \
                        'We stop generating here for you.')
                    break
                candidate_poses.append(p)
                cnt += 1
        for ee_pose in candidate_poses:
            conf_list = sample_ik_fn(ee_pose)
            if collision_fn is None:
                conf_list = [
                    conf for conf in conf_list
                    if conf and not collision_fn(conf, **kwargs)
                ]
            ik_sols[i].extend(conf_list)
            if ee_vel is not None:
                assert ee_vel > 0
                upper_times[i] = get_distance(task_pose[0], waypoint_poses[
                    i - 1][0]) / ee_vel if i > 0 else np.inf
                if abs(upper_times[i]) < EPS:
                    upper_times[i] = np.inf
            else:
                upper_times[i] = np.inf
                # upper_times[i] = 0.5

    # assemble the ladder graph
    dof = len(joints)
    graph = LadderGraph(dof)
    graph.resize(len(ik_sols))

    # assign rung data
    for pt_id, ik_confs_pt in enumerate(ik_sols):
        graph.assign_rung(pt_id, ik_confs_pt)

    joint_vel_limits = get_custom_max_velocity(robot, joints,
                                               custom_vel_limits)
    print('joint vel limit: ', joint_vel_limits)

    # build edges within current pose family
    for i in range(graph.get_rungs_size() - 1):
        st_rung_id = i
        end_rung_id = i + 1
        jt1_list = graph.get_data(st_rung_id)
        jt2_list = graph.get_data(end_rung_id)
        st_size = graph.get_rung_vert_size(st_rung_id)
        end_size = graph.get_rung_vert_size(end_rung_id)
        # if st_size == 0 or end_size == 0:
        #     print(ik_sols)

        assert st_size > 0, 'Ladder graph not valid: rung {}/{} is a zero size rung'.format(
            st_rung_id, graph.get_rungs_size())
        assert end_size > 0, 'Ladder graph not valid: rung {}/{} is a zero size rung'.format(
            end_rung_id, graph.get_rungs_size())

        # TODO: preference_cost
        # fully-connected ladder graph
        edge_builder = EdgeBuilder(st_size, end_size, dof, upper_tm=upper_times[i], \
            joint_vel_limits=joint_vel_limits, preference_cost=1.0)
        for k in range(st_size):
            st_jt_id = k * dof
            for j in range(end_size):
                end_jt_id = j * dof
                edge_builder.consider(jt1_list[st_jt_id:st_jt_id + dof],
                                      jt2_list[end_jt_id:end_jt_id + dof], j)
            edge_builder.next(k)
        edges = edge_builder.result

        # TODO: more report information here
        assert edge_builder.has_edges, 'no edge built between {}-{}'.format(
            st_rung_id, end_rung_id)
        # if not edge_builder.has_edges:
        #     print('no edge built between {}-{}'.format(st_id, end_id))
        #     return None

        graph.assign_edges(i, edges)

    # * use current conf in the env as start_conf
    start_conf = get_joint_positions(robot, joints)
    st_graph = LadderGraph(graph.dof)
    st_graph.resize(1)
    st_graph.assign_rung(0, [start_conf])
    # TODO: upper_tim here
    unified_graph = append_ladder_graph(st_graph,
                                        graph,
                                        upper_tm=0.5,
                                        joint_vel_limits=joint_vel_limits)
    if unified_graph is None:
        return None

    # perform DAG search
    dag_search = DAGSearch(unified_graph)
    min_cost = dag_search.run()
    # list of confs
    path = dag_search.shortest_path()
    # delete the start conf
    del path[0]

    assert len(path) == len(waypoint_poses)
    if len(path) == 0:
        return None
    return path, min_cost