n_inducing_points=10, logits=False, random_state=random_state), "GPcalib_approx": calm.GPCalibration(n_classes=2, maxiter=1000, n_inducing_points=10, logits=False, random_state=random_state, inf_mean_approx=True), "Platt": calm.PlattScaling(random_state=random_state), "Isotonic": calm.IsotonicRegression(), "Beta": calm.BetaCalibration(), "BBQ": calm.BayesianBinningQuantiles(), "Temp": calm.TemperatureScaling() } # Create benchmark object kitti_benchmark = pycalib.benchmark.KITTIBinaryData( run_dir=run_dir, clf_output_dir=clf_output_dir, classifier_names=classifier_names, cal_methods=list(cal_methods.values()), cal_method_names=list(cal_methods.keys()), n_splits=10, test_size=8000,
miscal_function_names = { 'identity': f_id, 'root': f_root, "power": f_power } # Define calibration methods cal_methods_dict = { "No_Calibration": cm.NoCalibration(), "Platt_scaling": cm.PlattScaling(), "Isotonic_Regression": cm.IsotonicRegression(), "Beta_Calibration": cm.BetaCalibration(params='abm'), "Histogram_Binning": cm.HistogramBinning(mode='equal_freq'), "Bayesian_Binning_into_Quantiles": cm.BayesianBinningQuantiles(), "Temperature_Scaling": cm.TemperatureScaling(verbose=False), "GP_calibration": cm.GPCalibration(n_classes=n_classes, maxiter=300, n_inducing_points=100) } # Evaluate calibration methods sb = bm.SyntheticBeta( run_dir=dir_out,