示例#1
0
 def generate(self, **kwargs):
     """Generates a waveform, applies a time shift and the detector response
     function from the given kwargs.
     """
     self.current_params.update(kwargs)
     rfparams = {
         param: self.current_params[param]
         for param in kwargs if param not in self.location_args
     }
     hp, hc = self.rframe_generator.generate(**rfparams)
     if isinstance(hp, TimeSeries):
         df = self.current_params['delta_f']
         hp = hp.to_frequencyseries(delta_f=df)
         hc = hc.to_frequencyseries(delta_f=df)
         # time-domain waveforms will not be shifted so that the peak amp
         # happens at the end of the time series (as they are for f-domain),
         # so we add an additional shift to account for it
         tshift = 1. / df - abs(hp._epoch)
     else:
         tshift = 0.
     hp._epoch = hc._epoch = self._epoch
     h = {}
     if self.detector_names != ['RF']:
         for detname, det in self.detectors.items():
             # apply detector response function
             fp, fc = det.antenna_pattern(
                 self.current_params['ra'], self.current_params['dec'],
                 self.current_params['polarization'],
                 self.current_params['tc'])
             thish = fp * hp + fc * hc
             # apply the time shift
             tc = self.current_params['tc'] + \
                 det.time_delay_from_earth_center(self.current_params['ra'],
                      self.current_params['dec'], self.current_params['tc'])
             h[detname] = apply_fd_time_shift(thish,
                                              tc + tshift,
                                              copy=False)
             if self.recalib:
                 # recalibrate with given calibration model
                 h[detname] = \
                     self.recalib[detname].map_to_adjust(h[detname],
                         **self.current_params)
     else:
         # no detector response, just use the + polarization
         if 'tc' in self.current_params:
             hp = apply_fd_time_shift(hp,
                                      self.current_params['tc'] + tshift,
                                      copy=False)
         h['RF'] = hp
     if self.gates is not None:
         # resize all to nearest power of 2
         for d in h.values():
             d.resize(ceilpow2(len(d) - 1) + 1)
         h = strain.apply_gates_to_fd(h, self.gates)
     return h
示例#2
0
 def generate(self, **kwargs):
     """Generates a waveform, applies a time shift and the detector response
     function from the given kwargs.
     """
     self.current_params.update(kwargs)
     rfparams = {param: self.current_params[param]
         for param in kwargs if param not in self.location_args}
     hp, hc = self.rframe_generator.generate(**rfparams)
     if isinstance(hp, TimeSeries):
         df = self.current_params['delta_f']
         hp = hp.to_frequencyseries(delta_f=df)
         hc = hc.to_frequencyseries(delta_f=df)
         # time-domain waveforms will not be shifted so that the peak amp
         # happens at the end of the time series (as they are for f-domain),
         # so we add an additional shift to account for it
         tshift = 1./df - abs(hp._epoch)
     else:
         tshift = 0.
     hp._epoch = hc._epoch = self._epoch
     h = {}
     if self.detector_names != ['RF']:
         for detname, det in self.detectors.items():
             # apply detector response function
             fp, fc = det.antenna_pattern(self.current_params['ra'],
                         self.current_params['dec'],
                         self.current_params['polarization'],
                         self.current_params['tc'])
             thish = fp*hp + fc*hc
             # apply the time shift
             tc = self.current_params['tc'] + \
                 det.time_delay_from_earth_center(self.current_params['ra'],
                      self.current_params['dec'], self.current_params['tc'])
             h[detname] = apply_fd_time_shift(thish, tc+tshift, copy=False)
             if self.recalib:
                 # recalibrate with given calibration model
                 h[detname] = \
                     self.recalib[detname].map_to_adjust(h[detname],
                         **self.current_params)
     else:
         # no detector response, just use the + polarization
         if 'tc' in self.current_params:
             hp = apply_fd_time_shift(hp, self.current_params['tc']+tshift,
                                      copy=False)
         h['RF'] = hp
     if self.gates is not None:
         # resize all to nearest power of 2
         for d in h.values():
             d.resize(ceilpow2(len(d)-1) + 1)
         h = gate.apply_gates_to_fd(h, self.gates)
     return h
示例#3
0
    def generate(self, **kwargs):
        """Generates and returns a waveform decompsed into separate modes.

        Returns
        -------
        dict :
            Dictionary of ``detector names -> modes -> (ulm, vlm)``, where
            ``ulm, vlm`` are the frequency-domain representations of the real
            and imaginary parts, respectively, of the complex time series
            representation of the ``hlm``.
        """
        self.current_params.update(kwargs)
        rfparams = {param: self.current_params[param]
            for param in kwargs if param not in self.location_args}
        hlms = self.rframe_generator.generate(**rfparams)
        h = {det: {} for det in self.detectors}
        for mode in hlms:
            ulm, vlm = hlms[mode]
            if isinstance(ulm, TimeSeries):
                df = self.current_params['delta_f']
                ulm = ulm.to_frequencyseries(delta_f=df)
                vlm = vlm.to_frequencyseries(delta_f=df)
                # time-domain waveforms will not be shifted so that the peak
                # amplitude happens at the end of the time series (as they are
                # for f-domain), so we add an additional shift to account for
                # it
                tshift = 1./df - abs(ulm._epoch)
            else:
                tshift = 0.
            ulm._epoch = vlm._epoch = self._epoch
            if self.detector_names != ['RF']:
                for detname, det in self.detectors.items():
                    # apply the time shift
                    tc = self.current_params['tc'] + \
                        det.time_delay_from_earth_center(
                            self.current_params['ra'],
                            self.current_params['dec'],
                            self.current_params['tc'])
                    detulm = apply_fd_time_shift(ulm, tc+tshift, copy=True)
                    detvlm = apply_fd_time_shift(vlm, tc+tshift, copy=True)
                    if self.recalib:
                        # recalibrate with given calibration model
                        detulm = self.recalib[detname].map_to_adjust(
                            detulm, **self.current_params)
                        detvlm = self.recalib[detname].map_to_adjust(
                            detvlm, **self.current_params)
                    h[detname][mode] = (detulm, detvlm)
            else:
                # no detector response, just apply time shift
                if 'tc' in self.current_params:
                    ulm = apply_fd_time_shift(ulm,
                                              self.current_params['tc']+tshift,
                                              copy=False)
                    vlm = apply_fd_time_shift(vlm,
                                              self.current_params['tc']+tshift,
                                              copy=False)
                h['RF'][mode] = (ulm, vlm)
            if self.gates is not None:
                # resize all to nearest power of 2
                ulms = {}
                vlms = {}
                for det in h:
                    ulm, vlm = h[det][mode]
                    ulm.resize(ceilpow2(len(ulm)-1) + 1)
                    vlm.resize(ceilpow2(len(vlm)-1) + 1)
                    ulms[det] = ulm
                    vlms[det] = vlm
                ulms = strain.apply_gates_to_fd(ulms, self.gates)
                vlms = strain.apply_gates_to_fd(ulms, self.gates)
                for det in ulms:
                    h[det][mode] = (ulms[det], vlms[det])
        return h
示例#4
0
    def generate(self, **kwargs):
        """Generates a waveform polarizations and applies a time shift.

        Returns
        -------
        dict :
            Dictionary of ``detector names -> (hp, hc)``, where ``hp, hc`` are
            the plus and cross polarization, respectively.
        """
        self.current_params.update(kwargs)
        rfparams = {param: self.current_params[param]
            for param in kwargs if param not in self.location_args}
        hp, hc = self.rframe_generator.generate(**rfparams)
        if isinstance(hp, TimeSeries):
            df = self.current_params['delta_f']
            hp = hp.to_frequencyseries(delta_f=df)
            hc = hc.to_frequencyseries(delta_f=df)
            # time-domain waveforms will not be shifted so that the peak amp
            # happens at the end of the time series (as they are for f-domain),
            # so we add an additional shift to account for it
            tshift = 1./df - abs(hp._epoch)
        else:
            tshift = 0.
        hp._epoch = hc._epoch = self._epoch
        h = {}
        if self.detector_names != ['RF']:
            for detname, det in self.detectors.items():
                # apply the time shift
                tc = self.current_params['tc'] + \
                    det.time_delay_from_earth_center(self.current_params['ra'],
                         self.current_params['dec'], self.current_params['tc'])
                dethp = apply_fd_time_shift(hp, tc+tshift, copy=True)
                dethc = apply_fd_time_shift(hc, tc+tshift, copy=True)
                if self.recalib:
                    # recalibrate with given calibration model
                    dethp = self.recalib[detname].map_to_adjust(
                        dethp, **self.current_params)
                    dethc = self.recalib[detname].map_to_adjust(
                        dethc, **self.current_params)
                h[detname] = (dethp, dethc)
        else:
            # no detector response, just use the + polarization
            if 'tc' in self.current_params:
                hp = apply_fd_time_shift(hp, self.current_params['tc']+tshift,
                                         copy=False)
                hc = apply_fd_time_shift(hc, self.current_params['tc']+tshift,
                                         copy=False)
            h['RF'] = (hp, hc)
        if self.gates is not None:
            # resize all to nearest power of 2
            hps = {}
            hcs = {}
            for det in h:
                hp = h[det]
                hc = h[det]
                hp.resize(ceilpow2(len(hp)-1) + 1)
                hc.resize(ceilpow2(len(hc)-1) + 1)
                hps[det] = hp
                hcs[det] = hc
            hps = strain.apply_gates_to_fd(hps, self.gates)
            hcs = strain.apply_gates_to_fd(hps, self.gates)
            h = {det: (hps[det], hcs[det]) for det in h}
        return h
示例#5
0
def spa_tmplt(**kwds):
    """ Generate a minimal TaylorF2 approximant with optimations for the sin/cos
    """
    # Pull out the input arguments
    f_lower = kwds['f_lower']
    delta_f = kwds['delta_f']
    distance = kwds['distance']
    mass1 = kwds['mass1']
    mass2 = kwds['mass2']
    s1z = kwds['spin1z']
    s2z = kwds['spin2z']
    phase_order = int(kwds['phase_order'])
    #amplitude_order = int(kwds['amplitude_order'])
    spin_order = int(kwds['spin_order'])

    if 'out' in kwds:
        out = kwds['out']
    else:
        out = None

    amp_factor = spa_amplitude_factor(mass1=mass1, mass2=mass2) / distance

    lal_pars = lal.CreateDict()
    if phase_order != -1:
        lalsimulation.SimInspiralWaveformParamsInsertPNPhaseOrder(
            lal_pars, phase_order)

    if spin_order != -1:
        lalsimulation.SimInspiralWaveformParamsInsertPNSpinOrder(
            lal_pars, spin_order)

    #Calculate the PN terms
    phasing = lalsimulation.SimInspiralTaylorF2AlignedPhasing(
        float(mass1), float(mass2), float(s1z), float(s2z), lal_pars)

    pfaN = phasing.v[0]
    pfa2 = phasing.v[2] / pfaN
    pfa3 = phasing.v[3] / pfaN
    pfa4 = phasing.v[4] / pfaN
    pfa5 = phasing.v[5] / pfaN
    pfa6 = (phasing.v[6] - phasing.vlogv[6] * log(4)) / pfaN
    pfa7 = phasing.v[7] / pfaN

    pfl5 = phasing.vlogv[5] / pfaN
    pfl6 = phasing.vlogv[6] / pfaN

    piM = lal.PI * (mass1 + mass2) * lal.MTSUN_SI

    kmin = int(f_lower / float(delta_f))

    vISCO = 1. / sqrt(6.)
    fISCO = vISCO * vISCO * vISCO / piM
    kmax = int(fISCO / delta_f)
    f_max = ceilpow2(fISCO)
    n = int(f_max / delta_f) + 1

    if not out:
        htilde = FrequencySeries(zeros(n, dtype=numpy.complex64),
                                 delta_f=delta_f,
                                 copy=False)
    else:
        if type(out) is not Array:
            raise TypeError("Output must be an instance of Array")
        if len(out) < kmax:
            kmax = len(out)
        if out.dtype != complex64:
            raise TypeError("Output array is the wrong dtype")
        htilde = FrequencySeries(out, delta_f=delta_f, copy=False)

    spa_tmplt_engine(htilde[kmin:kmax], kmin, phase_order, delta_f, piM, pfaN,
                     pfa2, pfa3, pfa4, pfa5, pfl5, pfa6, pfl6, pfa7,
                     amp_factor)
    return htilde
示例#6
0
def spintaylorf2(**kwds):
    """ Return a SpinTaylorF2 waveform using CUDA to generate the phase and amplitude
    """
    #####Pull out the input arguments#####
    f_lower = double(kwds['f_lower'])
    delta_f = double(kwds['delta_f'])
    distance = double(kwds['distance'])
    mass1 = double(kwds['mass1'])
    mass2 = double(kwds['mass2'])
    spin1x = double(kwds['spin1x'])
    spin1y = double(kwds['spin1y'])
    spin1z = double(kwds['spin1z'])
    phi0 = double(kwds['coa_phase'])               #Orbital Phase at coalescence
    phase_order = int(kwds['phase_order'])
    amplitude_order = int(kwds['amplitude_order'])
    inclination = double(kwds['inclination'])
    lnhatx = sin(inclination)
    lnhaty = 0.
    lnhatz = cos(inclination)
    psi = 0.

    tC= -1.0 / delta_f
    M = mass1 + mass2
    eta = mass1 * mass2 / (M * M)
    m_sec = M * lal.MTSUN_SI
    piM = lal.PI * m_sec

    vISCO = 1. / sqrt(6.)
    fISCO = vISCO * vISCO * vISCO / piM
    f_max = ceilpow2(fISCO)
    n = int(f_max / delta_f + 1)
    kmax = int(fISCO / delta_f)
    kmin = int(numpy.ceil(f_lower / delta_f))
    kmax = kmax if (kmax<n) else n

    #####Calculate the Orientation#####
    v0 = pow(piM *  kmin * delta_f,1./3)
    chi = sqrt(spin1x**2+spin1y**2+spin1z**2)
    kappa = (lnhatx*spin1x+lnhaty*spin1y+lnhatz*spin1z)/chi if (chi > 0.)  else 1.
    Jx0 = mass1*mass2*lnhatx/v0 + mass1*mass1*spin1x
    Jy0 = mass1*mass2*lnhaty/v0 + mass1*mass1*spin1y
    Jz0 = mass1*mass2*lnhatz/v0 + mass1*mass1*spin1z
    thetaJ = acos(Jz0 / sqrt(Jx0**2+Jy0**2+Jz0**2))
    psiJ = atan2(Jy0, -Jx0) # FIXME: check that Jy0 and Jx0 are not both 0
    # Rotate Lnhat back to frame where J is along z, to figure out initial alpha
    rotLx = lnhatx*cos(thetaJ)*cos(psiJ) - lnhaty*cos(thetaJ)*sin(psiJ) + lnhatz*sin(thetaJ)
    rotLy = lnhatx*sin(psiJ) + lnhaty*cos(psiJ)
    alpha0 = atan2(rotLy, rotLx) # FIXME: check that rotLy and rotLx are not both 0
    psiJ_P =psiJ + psi
    psiJ_C =psiJ + psi + lal.PI/4.

    #####Calculate the Coefficients#####
    quadparam = 1.
    gamma0 = mass1*chi/mass2
    #Calculate the spin corrections
    # FIXME should use pycbc's function, but sigma has different expression
    # in Andy's code, double check
    # pn_beta, pn_sigma, pn_gamma = pycbc.pnutils.mass1_mass2_spin1z_spin2z_to_beta_sigma_gamma(
    #                               mass1, mass2, chi*kappa, 0) # FIXME: spin2 is taken to be 0
    pn_beta = (113.*mass1/(12.*M) - 19.*eta/6.)*chi*kappa
    pn_sigma = (  (5.*(3.*kappa*kappa-1.)/2.) + (7. - kappa*kappa)/96.  ) * (mass1*mass1*chi*chi/M/M)
    pn_gamma = (5.*(146597. + 7056.*eta)*mass1/(2268.*M) - 10.*eta*(1276. + 153.*eta)/81.)*chi*kappa
    prec_fac0 = 5.*(4. + 3.*mass2/mass1)/64.
    dtdv2 = 743./336. + 11.*eta/4.
    dtdv3 = -4.*lal.PI + pn_beta
    dtdv4 = 3058673./1016064. + 5429.*eta/1008. + 617.*eta*eta/144. - pn_sigma
    dtdv5 = (-7729./672.+13.*eta/8.)*lal.PI + 9.*pn_gamma/40.

    #####Calculate the Initial Euler Angles alpha_ref, beta_ref=0 and zeta_ref#####
    gam = gamma0*v0
    sqrtfac = sqrt(1. + 2.*kappa*gam + gam*gam)
    logv0 = log(v0)
    logfac1 = log(1. + kappa*gam + sqrtfac)
    logfac2 = log(kappa + gam + sqrtfac)
    v02 = v0 * v0
    v03 = v0 * v02
    kappa2 = kappa * kappa
    kappa3 = kappa2 * kappa
    gamma02 = gamma0 * gamma0
    gamma03 = gamma02 *gamma0

    alpha_ref =prec_fac0*(  logfac2 *( dtdv2*gamma0 + dtdv3*kappa - dtdv5*kappa/(2.*gamma02) + dtdv4/(2.*gamma0) - dtdv4*kappa2/(2.*gamma0) + (dtdv5*kappa3)/(2.*gamma02) )  +  logfac1*( - dtdv2*gamma0*kappa - dtdv3 + kappa*gamma03/2. - gamma03*kappa3/2. ) + logv0 *( dtdv2*gamma0*kappa + dtdv3 - kappa*gamma03/2. + gamma03*kappa3/2. ) + sqrtfac *( dtdv3 + dtdv4*v0/2. + dtdv5/gamma02/3. + dtdv4*kappa/(2.*gamma0) + dtdv5*kappa*v0/(6.*gamma0) - dtdv5*kappa2/(2.*gamma02) - 1/(3.*v03) - gamma0*kappa/(6.*v02) - dtdv2/v0 - gamma02/(3.*v0) + gamma02*kappa2/(2.*v0) + dtdv5*v02/3. ))  - alpha0

    zeta_ref = prec_fac0*( dtdv3*gamma0*kappa*v0 + dtdv4*v0 + logfac2 *(-dtdv2*gamma0 - dtdv3*kappa + dtdv5*kappa/(2.*gamma02) - dtdv4/(2.*gamma0) + dtdv4*kappa2/(2.*gamma0) - dtdv5*kappa3/(2.*gamma02) ) + logv0 *( kappa*gamma03/2. - gamma03*kappa3/2. ) + logfac1 *( dtdv2*gamma0*kappa + dtdv3 - kappa*gamma03/2. + gamma03*kappa3/2. ) - 1/(3.*v03) - gamma0*kappa/(2.*v02) - dtdv2/v0 + dtdv4*gamma0*kappa*v02/2. + dtdv5*v02/2. + sqrtfac *( -dtdv3 - dtdv4*v0/2. - dtdv5/(3.*gamma02) - dtdv4*kappa/(2.*gamma0) - dtdv5*kappa*v0/(6.*gamma0) + dtdv5*kappa2/(2.*gamma02) + 1/(3.*v03) + gamma0*kappa/(6.*v02) + dtdv2/v0 + gamma02/(3.*v0) - gamma02*kappa2/(2.*v0) - dtdv5*v02/3. ) + dtdv5*gamma0*kappa*v03/3. )

    #####Calculate the Complex sideband factors, mm=2 is first entry#####
    RE_SBfac0= (1.+cos(thetaJ)**2)/2.
    RE_SBfac1= sin(2.*thetaJ)
    RE_SBfac2= 3.*sin(thetaJ)**2
    RE_SBfac3= -sin(2.*thetaJ)
    RE_SBfac4= (1.+cos(thetaJ)**2)/2.
    IM_SBfac0= -cos(thetaJ)
    IM_SBfac1= -2.*sin(thetaJ)
    IM_SBfac2= 0.
    IM_SBfac3= -2.*sin(thetaJ)
    IM_SBfac4= cos(thetaJ)

    #####Calculate the PN terms # FIXME replace with functions in lalsimulation #####
    theta = -11831./9240.
    lambdaa = -1987./3080.0
    pfaN = 3.0/(128.0 * eta)
    pfa2 = 5.0*(743.0/84 + 11.0 * eta)/9.0
    pfa3 = -16.0*lal.PI + 4.0*pn_beta
    pfa4 = 5.0*(3058.673/7.056 + 5429.0/7.0 * eta + 617.0 * eta*eta)/72.0 - \
            10.0*pn_sigma
    pfa5 = 5.0/9.0 * (7729.0/84.0 - 13.0 * eta) * lal.PI - pn_gamma
    pfl5 = 5.0/3.0 * (7729.0/84.0 - 13.0 * eta) * lal.PI - pn_gamma * 3
    pfa6 = (11583.231236531/4.694215680 - 640.0/3.0 * lal.PI * lal.PI- \
            6848.0/21.0*lal.GAMMA) + \
            eta * (-15335.597827/3.048192 + 2255./12. * lal.PI * \
            lal.PI - 1760./3.*theta +12320./9.*lambdaa) + \
            eta*eta * 76055.0/1728.0 - \
            eta*eta*eta*  127825.0/1296.0
    pfl6 = -6848.0/21.0
    pfa7 = lal.PI * 5.0/756.0 * ( 15419335.0/336.0 + 75703.0/2.0 * eta - \
            14809.0 * eta*eta)

    FTaN = 32.0 * eta*eta / 5.0
    FTa2 = -(12.47/3.36 + 3.5/1.2 * eta)
    FTa3 = 4.0 * lal.PI
    FTa4 = -(44.711/9.072 - 92.71/5.04 * eta - 6.5/1.8 * eta*eta)
    FTa5 = -(81.91/6.72 + 58.3/2.4 * eta) * lal.PI
    FTa6 = (664.3739519/6.9854400 + 16.0/3.0 * lal.PI*lal.PI -
            17.12/1.05 * lal.GAMMA +
         (4.1/4.8 * lal.PI*lal.PI - 134.543/7.776) * eta -
         94.403/3.024 * eta*eta - 7.75/3.24 * eta*eta*eta)
    FTl6 = -8.56/1.05
    FTa7 = -(162.85/5.04 - 214.745/1.728 * eta - 193.385/3.024 * eta*eta) \
            * lal.PI

    dETaN = 2 * -eta/2.0
    dETa1 = 2 * -(3.0/4.0 + 1.0/12.0 * eta)
    dETa2 = 3 * -(27.0/8.0 - 19.0/8.0 * eta + 1./24.0 * eta*eta)
    dETa3 = 4 * -(67.5/6.4 - (344.45/5.76 - 20.5/9.6 * lal.PI*lal.PI) *
                             eta + 15.5/9.6 * eta*eta + 3.5/518.4 * eta*eta*eta)

    amp0 = -4. * mass1 * mass2 / (1.0e+06 * distance * lal.PC_SI ) * \
                    lal.MRSUN_SI * lal.MTSUN_SI * sqrt(lal.PI/12.0)

    htildeP = FrequencySeries(zeros(n,dtype=complex128), delta_f=delta_f, copy=False)
    htildeC = FrequencySeries(zeros(n,dtype=complex128), delta_f=delta_f, copy=False)
    spintaylorf2_kernel(htildeP.data[kmin:kmax], htildeC.data[kmin:kmax],
                        kmin, phase_order, amplitude_order, delta_f, piM, pfaN,
                        pfa2, pfa3, pfa4, pfa5, pfl5,
                        pfa6, pfl6, pfa7, FTaN, FTa2,
                        FTa3, FTa4, FTa5, FTa6,
                        FTl6, FTa7, dETaN, dETa1, dETa2,  dETa3,
                        amp0, tC, phi0,
                        kappa, prec_fac0, alpha_ref, zeta_ref,
                        dtdv2, dtdv3, dtdv4, dtdv5,
                        RE_SBfac0, RE_SBfac1, RE_SBfac2, RE_SBfac3, RE_SBfac4,
                        IM_SBfac0, IM_SBfac1, IM_SBfac2, IM_SBfac3, IM_SBfac4,
                        psiJ_P, psiJ_C, gamma0)

    return htildeP, htildeC
示例#7
0
def spa_tmplt(**kwds):
    """ Generate a minimal TaylorF2 approximant with optimations for the sin/cos
    """
    # Pull out the input arguments
    f_lower = kwds['f_lower']
    delta_f = kwds['delta_f']
    distance = kwds['distance']
    mass1 = kwds['mass1']
    mass2 = kwds['mass2']
    s1z = kwds['spin1z']
    s2z = kwds['spin2z']
    phase_order = int(kwds['phase_order'])
    amplitude_order = int(kwds['amplitude_order'])
    spin_order = int(kwds['spin_order'])

    if 'out' in kwds:
        out = kwds['out']
    else:
        out = None

    amp_factor = spa_amplitude_factor(mass1=mass1, mass2=mass2) / distance

    lal_pars = lal.CreateDict()
    if phase_order != -1:
        lalsimulation.SimInspiralWaveformParamsInsertPNPhaseOrder(
            lal_pars, phase_order)

    if spin_order != -1:
        lalsimulation.SimInspiralWaveformParamsInsertPNSpinOrder(
            lal_pars, spin_order)

    #Calculate the PN terms
    phasing = lalsimulation.SimInspiralTaylorF2AlignedPhasing(
                                    float(mass1), float(mass2), 
                                    float(s1z), float(s2z),
                                    lal_pars)
                                           
    pfaN = phasing.v[0]
    pfa2 = phasing.v[2] / pfaN
    pfa3 = phasing.v[3] / pfaN
    pfa4 = phasing.v[4] / pfaN
    pfa5 = phasing.v[5] / pfaN
    pfa6 = (phasing.v[6] - phasing.vlogv[6] * log(4)) / pfaN
    pfa7 = phasing.v[7] / pfaN
    
    pfl5 = phasing.vlogv[5] / pfaN
    pfl6 = phasing.vlogv[6] / pfaN

    piM = lal.PI * (mass1 + mass2) * lal.MTSUN_SI

    kmin = int(f_lower / float(delta_f))

    vISCO = 1. / sqrt(6.)
    fISCO = vISCO * vISCO * vISCO / piM
    kmax = int(fISCO / delta_f)
    f_max = ceilpow2(fISCO)
    n = int(f_max / delta_f) + 1

    if not out:
        htilde = FrequencySeries(zeros(n, dtype=numpy.complex64), delta_f=delta_f, copy=False)
    else:
        if type(out) is not Array:
            raise TypeError("Output must be an instance of Array")
        if len(out) < kmax:
            kmax = len(out)
        if out.dtype != complex64:
            raise TypeError("Output array is the wrong dtype")
        htilde = FrequencySeries(out, delta_f=delta_f, copy=False)

    spa_tmplt_engine(htilde[kmin:kmax], kmin, phase_order, delta_f, piM, pfaN,
                     pfa2, pfa3, pfa4, pfa5, pfl5,
                     pfa6, pfl6, pfa7, amp_factor)
    return htilde
示例#8
0
def spintaylorf2(**kwds):
    """ Return a SpinTaylorF2 waveform using CUDA to generate the phase and amplitude
    """
    #####Pull out the input arguments#####
    f_lower = double(kwds['f_lower'])
    delta_f = double(kwds['delta_f'])
    distance = double(kwds['distance'])
    mass1 = double(kwds['mass1'])
    mass2 = double(kwds['mass2'])
    spin1x = double(kwds['spin1x'])
    spin1y = double(kwds['spin1y'])
    spin1z = double(kwds['spin1z'])
    phi0 = double(kwds['coa_phase'])  #Orbital Phase at coalescence
    phase_order = int(kwds['phase_order'])
    amplitude_order = int(kwds['amplitude_order'])
    inclination = double(kwds['inclination'])
    lnhatx = sin(inclination)
    lnhaty = 0.
    lnhatz = cos(inclination)
    psi = 0.

    tC = -1.0 / delta_f
    M = mass1 + mass2
    eta = mass1 * mass2 / (M * M)
    m_sec = M * lal.MTSUN_SI
    piM = lal.PI * m_sec

    vISCO = 1. / sqrt(6.)
    fISCO = vISCO * vISCO * vISCO / piM
    f_max = ceilpow2(fISCO)
    n = int(f_max / delta_f + 1)
    kmax = int(fISCO / delta_f)
    kmin = int(numpy.ceil(f_lower / delta_f))
    kmax = kmax if (kmax < n) else n

    #####Calculate the Orientation#####
    v0 = pow(piM * kmin * delta_f, 1. / 3)
    chi = sqrt(spin1x**2 + spin1y**2 + spin1z**2)
    kappa = (lnhatx * spin1x + lnhaty * spin1y + lnhatz * spin1z) / chi if (
        chi > 0.) else 1.
    Jx0 = mass1 * mass2 * lnhatx / v0 + mass1 * mass1 * spin1x
    Jy0 = mass1 * mass2 * lnhaty / v0 + mass1 * mass1 * spin1y
    Jz0 = mass1 * mass2 * lnhatz / v0 + mass1 * mass1 * spin1z
    thetaJ = acos(Jz0 / sqrt(Jx0**2 + Jy0**2 + Jz0**2))
    psiJ = atan2(Jy0, -Jx0)  # FIXME: check that Jy0 and Jx0 are not both 0
    # Rotate Lnhat back to frame where J is along z, to figure out initial alpha
    rotLx = lnhatx * cos(thetaJ) * cos(psiJ) - lnhaty * cos(thetaJ) * sin(
        psiJ) + lnhatz * sin(thetaJ)
    rotLy = lnhatx * sin(psiJ) + lnhaty * cos(psiJ)
    alpha0 = atan2(rotLy,
                   rotLx)  # FIXME: check that rotLy and rotLx are not both 0
    psiJ_P = psiJ + psi
    psiJ_C = psiJ + psi + lal.PI / 4.

    #####Calculate the Coefficients#####
    #quadparam = 1.
    gamma0 = mass1 * chi / mass2
    #Calculate the spin corrections
    # FIXME should use pycbc's function, but sigma has different expression
    # in Andy's code, double check
    # pn_beta, pn_sigma, pn_gamma = pycbc.pnutils.mass1_mass2_spin1z_spin2z_to_beta_sigma_gamma(
    #                               mass1, mass2, chi*kappa, 0) # FIXME: spin2 is taken to be 0
    pn_beta = (113. * mass1 / (12. * M) - 19. * eta / 6.) * chi * kappa
    pn_sigma = (
        (5. * (3. * kappa * kappa - 1.) / 2.) +
        (7. - kappa * kappa) / 96.) * (mass1 * mass1 * chi * chi / M / M)
    pn_gamma = (5. * (146597. + 7056. * eta) * mass1 /
                (2268. * M) - 10. * eta *
                (1276. + 153. * eta) / 81.) * chi * kappa
    prec_fac0 = 5. * (4. + 3. * mass2 / mass1) / 64.
    dtdv2 = 743. / 336. + 11. * eta / 4.
    dtdv3 = -4. * lal.PI + pn_beta
    dtdv4 = 3058673. / 1016064. + 5429. * eta / 1008. + 617. * eta * eta / 144. - pn_sigma
    dtdv5 = (-7729. / 672. + 13. * eta / 8.) * lal.PI + 9. * pn_gamma / 40.

    #####Calculate the Initial Euler Angles alpha_ref, beta_ref=0 and zeta_ref#####
    gam = gamma0 * v0
    sqrtfac = sqrt(1. + 2. * kappa * gam + gam * gam)
    logv0 = log(v0)
    logfac1 = log(1. + kappa * gam + sqrtfac)
    logfac2 = log(kappa + gam + sqrtfac)
    v02 = v0 * v0
    v03 = v0 * v02
    kappa2 = kappa * kappa
    kappa3 = kappa2 * kappa
    gamma02 = gamma0 * gamma0
    gamma03 = gamma02 * gamma0

    alpha_ref = prec_fac0 * (
        logfac2 * (dtdv2 * gamma0 + dtdv3 * kappa - dtdv5 * kappa /
                   (2. * gamma02) + dtdv4 / (2. * gamma0) - dtdv4 * kappa2 /
                   (2. * gamma0) + (dtdv5 * kappa3) /
                   (2. * gamma02)) + logfac1 *
        (-dtdv2 * gamma0 * kappa - dtdv3 + kappa * gamma03 / 2. -
         gamma03 * kappa3 / 2.) + logv0 *
        (dtdv2 * gamma0 * kappa + dtdv3 - kappa * gamma03 / 2. +
         gamma03 * kappa3 / 2.) + sqrtfac *
        (dtdv3 + dtdv4 * v0 / 2. + dtdv5 / gamma02 / 3. + dtdv4 * kappa /
         (2. * gamma0) + dtdv5 * kappa * v0 / (6. * gamma0) - dtdv5 * kappa2 /
         (2. * gamma02) - 1 / (3. * v03) - gamma0 * kappa /
         (6. * v02) - dtdv2 / v0 - gamma02 / (3. * v0) + gamma02 * kappa2 /
         (2. * v0) + dtdv5 * v02 / 3.)) - alpha0

    zeta_ref = prec_fac0 * (
        dtdv3 * gamma0 * kappa * v0 + dtdv4 * v0 + logfac2 *
        (-dtdv2 * gamma0 - dtdv3 * kappa + dtdv5 * kappa /
         (2. * gamma02) - dtdv4 / (2. * gamma0) + dtdv4 * kappa2 /
         (2. * gamma0) - dtdv5 * kappa3 / (2. * gamma02)) + logv0 *
        (kappa * gamma03 / 2. - gamma03 * kappa3 / 2.) + logfac1 *
        (dtdv2 * gamma0 * kappa + dtdv3 - kappa * gamma03 / 2. +
         gamma03 * kappa3 / 2.) - 1 / (3. * v03) - gamma0 * kappa /
        (2. * v02) - dtdv2 / v0 + dtdv4 * gamma0 * kappa * v02 / 2. +
        dtdv5 * v02 / 2. + sqrtfac *
        (-dtdv3 - dtdv4 * v0 / 2. - dtdv5 / (3. * gamma02) - dtdv4 * kappa /
         (2. * gamma0) - dtdv5 * kappa * v0 / (6. * gamma0) + dtdv5 * kappa2 /
         (2. * gamma02) + 1 / (3. * v03) + gamma0 * kappa /
         (6. * v02) + dtdv2 / v0 + gamma02 / (3. * v0) - gamma02 * kappa2 /
         (2. * v0) - dtdv5 * v02 / 3.) + dtdv5 * gamma0 * kappa * v03 / 3.)

    #####Calculate the Complex sideband factors, mm=2 is first entry#####
    RE_SBfac0 = (1. + cos(thetaJ)**2) / 2.
    RE_SBfac1 = sin(2. * thetaJ)
    RE_SBfac2 = 3. * sin(thetaJ)**2
    RE_SBfac3 = -sin(2. * thetaJ)
    RE_SBfac4 = (1. + cos(thetaJ)**2) / 2.
    IM_SBfac0 = -cos(thetaJ)
    IM_SBfac1 = -2. * sin(thetaJ)
    IM_SBfac2 = 0.
    IM_SBfac3 = -2. * sin(thetaJ)
    IM_SBfac4 = cos(thetaJ)

    #####Calculate the PN terms # FIXME replace with functions in lalsimulation #####
    theta = -11831. / 9240.
    lambdaa = -1987. / 3080.0
    pfaN = 3.0 / (128.0 * eta)
    pfa2 = 5.0 * (743.0 / 84 + 11.0 * eta) / 9.0
    pfa3 = -16.0 * lal.PI + 4.0 * pn_beta
    pfa4 = 5.0*(3058.673/7.056 + 5429.0/7.0 * eta + 617.0 * eta*eta)/72.0 - \
            10.0*pn_sigma
    pfa5 = 5.0 / 9.0 * (7729.0 / 84.0 - 13.0 * eta) * lal.PI - pn_gamma
    pfl5 = 5.0 / 3.0 * (7729.0 / 84.0 - 13.0 * eta) * lal.PI - pn_gamma * 3
    pfa6 = (11583.231236531/4.694215680 - 640.0/3.0 * lal.PI * lal.PI- \
            6848.0/21.0*lal.GAMMA) + \
            eta * (-15335.597827/3.048192 + 2255./12. * lal.PI * \
            lal.PI - 1760./3.*theta +12320./9.*lambdaa) + \
            eta*eta * 76055.0/1728.0 - \
            eta*eta*eta*  127825.0/1296.0
    pfl6 = -6848.0 / 21.0
    pfa7 = lal.PI * 5.0/756.0 * ( 15419335.0/336.0 + 75703.0/2.0 * eta - \
            14809.0 * eta*eta)

    FTaN = 32.0 * eta * eta / 5.0
    FTa2 = -(12.47 / 3.36 + 3.5 / 1.2 * eta)
    FTa3 = 4.0 * lal.PI
    FTa4 = -(44.711 / 9.072 - 92.71 / 5.04 * eta - 6.5 / 1.8 * eta * eta)
    FTa5 = -(81.91 / 6.72 + 58.3 / 2.4 * eta) * lal.PI
    FTa6 = (664.3739519 / 6.9854400 + 16.0 / 3.0 * lal.PI * lal.PI -
            17.12 / 1.05 * lal.GAMMA +
            (4.1 / 4.8 * lal.PI * lal.PI - 134.543 / 7.776) * eta -
            94.403 / 3.024 * eta * eta - 7.75 / 3.24 * eta * eta * eta)
    FTl6 = -8.56 / 1.05
    FTa7 = -(162.85/5.04 - 214.745/1.728 * eta - 193.385/3.024 * eta*eta) \
            * lal.PI

    dETaN = 2 * -eta / 2.0
    dETa1 = 2 * -(3.0 / 4.0 + 1.0 / 12.0 * eta)
    dETa2 = 3 * -(27.0 / 8.0 - 19.0 / 8.0 * eta + 1. / 24.0 * eta * eta)
    dETa3 = 4 * -(67.5 / 6.4 -
                  (344.45 / 5.76 - 20.5 / 9.6 * lal.PI * lal.PI) * eta +
                  15.5 / 9.6 * eta * eta + 3.5 / 518.4 * eta * eta * eta)

    amp0 = -4. * mass1 * mass2 / (1.0e+06 * distance * lal.PC_SI ) * \
                    lal.MRSUN_SI * lal.MTSUN_SI * sqrt(lal.PI/12.0)

    htildeP = FrequencySeries(zeros(n, dtype=complex128),
                              delta_f=delta_f,
                              copy=False)
    htildeC = FrequencySeries(zeros(n, dtype=complex128),
                              delta_f=delta_f,
                              copy=False)
    spintaylorf2_kernel(htildeP.data[kmin:kmax], htildeC.data[kmin:kmax], kmin,
                        phase_order, amplitude_order, delta_f, piM, pfaN, pfa2,
                        pfa3, pfa4, pfa5, pfl5, pfa6, pfl6, pfa7, FTaN, FTa2,
                        FTa3, FTa4, FTa5, FTa6, FTl6, FTa7, dETaN, dETa1,
                        dETa2, dETa3, amp0, tC, phi0, kappa, prec_fac0,
                        alpha_ref, zeta_ref, dtdv2, dtdv3, dtdv4, dtdv5,
                        RE_SBfac0, RE_SBfac1, RE_SBfac2, RE_SBfac3, RE_SBfac4,
                        IM_SBfac0, IM_SBfac1, IM_SBfac2, IM_SBfac3, IM_SBfac4,
                        psiJ_P, psiJ_C, gamma0)

    return htildeP, htildeC
示例#9
0
def spa_tmplt(**kwds):
    """
    """
    # Pull out the input arguments
    f_lower = kwds['f_lower']
    delta_f = kwds['delta_f']
    distance = kwds['distance']
    mass1 = kwds['mass1']
    mass2 = kwds['mass2']
    phase_order = int(kwds['phase_order'])
    amplitude_order = int(kwds['amplitude_order'])

    if 'out' in kwds:
        out = kwds['out']
    else:
        out = None

    tC = -1.0 / delta_f

    amp_factor = spa_amplitude_factor(mass1=mass1, mass2=mass2) / distance

    #Calculate the spin corrections
    beta, sigma, gamma = pycbc.pnutils.mass1_mass2_spin1z_spin2z_to_beta_sigma_gamma(
                                    mass1, mass2, kwds['spin1z'], kwds['spin2z'])

    #Calculate the PN terms #TODO: replace with functions in lalsimulation!###
    M = float(mass1) + float(mass2)
    eta = mass1 * mass2 / (M * M)
    theta = -11831./9240.;
    lambdaa = -1987./3080.0;
    pfaN = 3.0/(128.0 * eta);
    pfa2 = 5*(743.0/84 + 11.0 * eta)/9.0;
    pfa3 = -16.0*lal.PI + 4.0*beta;
    pfa4 = 5.0*(3058.673/7.056 + 5429.0/7.0 * eta + 617.0 * eta*eta)/72.0 - \
            10.0*sigma
    pfa5 = 5.0/9.0 * (7729.0/84.0 - 13.0 * eta) * lal.PI - gamma
    pfl5 = 5.0/3.0 * (7729.0/84.0 - 13.0 * eta) * lal.PI - gamma * 3
    pfa6 = (11583.231236531/4.694215680 - 640.0/3.0 * lal.PI * lal.PI- \
            6848.0/21.0*lal.GAMMA) + \
            eta * (-15335.597827/3.048192 + 2255./12. * lal.PI * \
            lal.PI - 1760./3.*theta +12320./9.*lambdaa) + \
            eta*eta * 76055.0/1728.0 - \
            eta*eta*eta*  127825.0/1296.0 
    pfl6 = -6848.0/21.0;
    pfa7 = lal.PI * 5.0/756.0 * ( 15419335.0/336.0 + 75703.0/2.0 * eta - \
            14809.0 * eta*eta)

    m_sec = M * lal.MTSUN_SI;
    piM = lal.PI * m_sec;

    kmin = int(f_lower / float(delta_f))

    vISCO = 1. / sqrt(6.)
    fISCO = vISCO * vISCO * vISCO / piM;
    kmax = int(fISCO / delta_f)
    f_max = ceilpow2(fISCO);
    n = int(f_max / delta_f) + 1;

    if not out:
        htilde = FrequencySeries(zeros(n, dtype=numpy.complex64), delta_f=delta_f, copy=False)
    else:
        if type(out) is not Array:
            raise TypeError("Output must be an instance of Array")
        if len(out) < kmax:
            kmax = len(out)
        if out.dtype != complex64:
            raise TypeError("Output array is the wrong dtype")
        htilde = FrequencySeries(out, delta_f=delta_f, copy=False)

    spa_tmplt_engine(htilde[kmin:kmax], kmin, phase_order, delta_f, piM, pfaN,
                     pfa2, pfa3, pfa4, pfa5, pfl5,
                     pfa6, pfl6, pfa7, amp_factor)
    return htilde