示例#1
0
文件: test.py 项目: dj27/PyCDA
 def setUp(self):
     self.cda = pycda.CDA(
         detector=_DummyDetector(), 
         extractor=_DummyExtractor(), 
         classifier=_DummyClassifier()
     )
     img_height = np.random.randint(500, 1500)
     img_width = np.random.randint(500, 1500)
     self.test_image = np.random.rand(img_height, img_width)
     self.prediction = pr.Prediction(self.test_image, 'test1', self.cda)
     self.cda.predictions.append(self.prediction)
示例#2
0
    def getImage(self):
        layout = [  [sg.Text('Filename')],
            [sg.Input(), sg.FileBrowse(key="-IN-")], 
            [sg.OK(), sg.Cancel()]] 

        window = sg.Window('Get filename', layout)

        event, values = window.read()
        window.close()

        image = load_image(values["-IN-"])
        cda = pycda.CDA()
        prediction = cda.get_prediction(image, verbose = True)
        prediction.show()
示例#3
0
def get_classifier_results():
    cda = pycda.CDA(classifier='none')
    prediction = cda.get_prediction(get_sample_image())

    prediction.known_craters = get_sample_csv()
    an = ErrorAnalyzer()
    an.analyze(prediction, verbose=False)
    proposals, craters = an.return_results()

    ground_truth = proposals

    cda.classifier = ConvolutionalClassifier()
    prediction_2 = cda.get_prediction(get_sample_image())
    classification = prediction_2.proposals

    Y_true = ground_truth.positive
    Y_pred = np.where(classification.likelihood > .5, 1, 0)
    return Y_true, Y_pred
示例#4
0
    def getImage(self):
        try:

            layout = [  [sg.Text('Filename')],
                [sg.Input(), sg.FileBrowse(key="-IN-")], 
                [sg.OK(), sg.Exit()]] 

            window = sg.Window('Get filename', layout)

            event, values = window.read()
            window.close()

            if event == 'Exit':
                window.close()
            else:

                image = load_image(values["-IN-"])
                cda = pycda.CDA()
                prediction = cda.get_prediction(image, verbose = True)
                prediction.show()
                prediction.to_csv('/home/aurelio/Desktop/CapstoneFinal/CSVs/results1.csv')
        except:
            print()
示例#5
0
 def showImage(self):
     image = get_sample_image()
     #image.show()
     cda = pycda.CDA()
     prediction = cda.get_prediction(image, verbose = True)
     prediction.show()
示例#6
0
import cv2
import pycda
input_name='NAC_DTM_APOLLO12_M120012135_2M.TIF'
img = cv2.imread(input_name)
cda=pycda.CDA()
detections=cda.predict(img)
print(detections.head(10))
predictions=cda.get_prediction(img)
predictions.show()