def template_clustering(number_clusters, path, links):
    sample = read_sample(path);
    
    clusters_centroid_link = None;
    clusters_single_link = None;
    clusters_complete_link = None;
    clusters_average_link = None;
    
    visualizer = cluster_visualizer(len(links));
    index_canvas = 0;
    
    if (type_link.CENTROID_LINK in links):
        agglomerative_centroid_link = agglomerative(sample, number_clusters, type_link.CENTROID_LINK);
        
        (ticks, result) = timedcall(agglomerative_centroid_link.process);
        clusters_centroid_link = agglomerative_centroid_link.get_clusters();
        
        visualizer.append_clusters(clusters_centroid_link, sample, index_canvas);
        visualizer.set_canvas_title('Link: Centroid', index_canvas);
        index_canvas += 1;
        
        print("Sample: ", path, "Link: Centroid", "\tExecution time: ", ticks, "\n");
    
    if (type_link.SINGLE_LINK in links):
        agglomerative_simple_link = agglomerative(sample, number_clusters, type_link.SINGLE_LINK);
        
        (ticks, result) = timedcall(agglomerative_simple_link.process);
        clusters_single_link = agglomerative_simple_link.get_clusters();
        
        visualizer.append_clusters(clusters_single_link, sample, index_canvas);
        visualizer.set_canvas_title('Link: Single', index_canvas);
        index_canvas += 1;
        
        print("Sample: ", path, "Link: Single", "\tExecution time: ", ticks, "\n");
    
    if (type_link.COMPLETE_LINK in links):
        agglomerative_complete_link = agglomerative(sample, number_clusters, type_link.COMPLETE_LINK);
        
        (ticks, result) = timedcall(agglomerative_complete_link.process);
        clusters_complete_link = agglomerative_complete_link.get_clusters();
        
        visualizer.append_clusters(clusters_complete_link, sample, index_canvas);
        visualizer.set_canvas_title('Link: Complete', index_canvas);
        index_canvas += 1;
        
        print("Sample: ", path, "Link: Complete", "\tExecution time: ", ticks, "\n");        
    
    if (type_link.AVERAGE_LINK in links):
        agglomerative_average_link = agglomerative(sample, number_clusters, type_link.AVERAGE_LINK);
        
        (ticks, result) = timedcall(agglomerative_average_link.process);
        clusters_average_link = agglomerative_average_link.get_clusters();
        
        visualizer.append_clusters(clusters_average_link, sample, index_canvas);
        visualizer.set_canvas_title('Link: Average', index_canvas);
        index_canvas += 1;
        
        print("Sample: ", path, "Link: Average", "\tExecution time: ", ticks, "\n");  
    
    visualizer.show();
示例#2
0
def template_clustering(file,
                        radius,
                        order,
                        show_dyn=False,
                        show_conn=False,
                        show_clusters=True,
                        ena_conn_weight=False,
                        ccore_flag=False):
    sample = read_sample(file)
    network = syncnet(sample,
                      radius,
                      enable_conn_weight=ena_conn_weight,
                      ccore=ccore_flag)

    (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, order,
                                               solve_type.FAST, show_dyn)
    print("Sample: ", file, "\t\tExecution time: ", ticks, "\n")

    if (show_dyn == True):
        draw_dynamics(dyn_time,
                      dyn_phase,
                      x_title="Time",
                      y_title="Phase",
                      y_lim=[0, 2 * 3.14])

    if (show_conn == True):
        network.show_network()

    if (show_clusters == True):
        clusters = network.get_clusters(0.1)
        draw_clusters(sample, clusters)
示例#3
0
def template_clustering(number_clusters, path, branching_factor = 5, max_node_entries = 5, initial_diameter = 0.0, type_measurement = measurement_type.CENTROID_EUCLIDIAN_DISTANCE, entry_size_limit = 200, ccore = True):
    sample = read_sample(path);
    
    birch_instance = birch(sample, number_clusters, branching_factor, max_node_entries, initial_diameter, type_measurement, entry_size_limit, ccore)
    (ticks, result) = timedcall(birch_instance.process);
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
    
    clusters = birch_instance.get_clusters();
    draw_clusters(sample, clusters);
示例#4
0
def template_clustering(number_clusters, path, ccore=True):
    sample = read_sample(path)

    hierarchical_instance = hierarchical(sample, number_clusters, ccore)
    (ticks, result) = timedcall(hierarchical_instance.process)

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    clusters = hierarchical_instance.get_clusters()
    draw_clusters(sample, clusters)
def template_clustering(start_centers, path, tolerance=0.25, ccore=True):
    sample = read_sample(path)

    kmeans_instance = kmeans(sample, start_centers, tolerance, ccore)
    (ticks, result) = timedcall(kmeans_instance.process)

    clusters = kmeans_instance.get_clusters()
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    draw_clusters(sample, clusters)
def template_clustering(start_medoids, path, tolerance = 0.25):
    sample = read_sample(path);
    
    kmedoids_instance = kmedoids(sample, start_medoids, tolerance);
    (ticks, result) = timedcall(kmedoids_instance.process);
    
    clusters = kmedoids_instance.get_clusters();
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");

    draw_clusters(sample, clusters);
def template_segmentation_image(source, map_som_size = [5, 5], average_neighbors = 5, sync_order = 0.998, show_dyn = False, show_som_map = False):
    data = read_image(source);
    
    network = syncsom(data, map_som_size[0], map_som_size[1]);
    (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, average_neighbors, show_dyn, sync_order);
    print("Sample: ", source, "\t\tExecution time: ", ticks, "\t\tWinners: ", network.som_layer.get_winner_number(), "\n");
    
    if (show_dyn is True):
        draw_dynamics(dyn_time, dyn_phase);
    
    clusters = network.get_clusters();
    draw_image_mask_segments(source, clusters);
示例#8
0
def template_clustering(path, radius, cluster_numbers, threshold, draw = True, ccore = True):
    sample = read_sample(path);
    
    rock_instance = rock(sample, radius, cluster_numbers, threshold, ccore);
    (ticks, result) = timedcall(rock_instance.process);
    
    clusters = rock_instance.get_clusters();
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
    
    if (draw == True):
        draw_clusters(sample, clusters);
def template_clustering(radius, neighb, path, invisible_axes = False, ccore = True):
    sample = read_sample(path);
    
    dbscan_instance = dbscan(sample, radius, neighb, ccore);
    (ticks, result) = timedcall(dbscan_instance.process);
    
    clusters = dbscan_instance.get_clusters();
    noise = dbscan_instance.get_noise();
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
    
    draw_clusters(sample, clusters, [], '.', hide_axes = invisible_axes);
示例#10
0
def template_clustering(number_clusters, path, number_represent_points = 5, compression = 0.5, draw = True, ccore_flag = False):
    sample = read_sample(path);
    
    cure_instance = cure(sample, number_clusters, number_represent_points, compression, ccore_flag);
    (ticks, result) = timedcall(cure_instance.process);
    clusters = cure_instance.get_clusters();
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");

    if (draw is True):
        if (ccore_flag is True):
            draw_clusters(sample, clusters);
        else:
            draw_clusters(None, clusters);
示例#11
0
def template_clustering(start_centers, path, tolerance = 0.025, criterion = splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore = False):
    sample = read_sample(path);
    
    xmeans_instance = xmeans(sample, start_centers, 20, tolerance, criterion, ccore);
    (ticks, result) = timedcall(xmeans_instance.process);
    
    clusters = xmeans_instance.get_clusters();

    criterion_string = "UNKNOWN";
    if (criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): criterion_string = "BAYESIAN_INFORMATION_CRITERION";
    elif (criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): criterion_string = "MINIMUM_NOISELESS_DESCRIPTION_LENGTH";
    
    print("Sample: ", path, "\tExecution time: ", ticks, "Number of clusters: ", len(clusters), criterion_string, "\n");

    draw_clusters(sample, clusters);
示例#12
0
def template_clustering(radius, neighb, path, invisible_axes = False, ccore = True):
    sample = read_sample(path);
    
    dbscan_instance = dbscan(sample, radius, neighb, ccore);
    (ticks, result) = timedcall(dbscan_instance.process);
    
    clusters = dbscan_instance.get_clusters();
    noise = dbscan_instance.get_noise();
    
    visualizer = cluster_visualizer();
    visualizer.append_clusters(clusters, sample);
    visualizer.append_cluster(noise, sample, marker = 'x');
    visualizer.show();
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
示例#13
0
def template_clustering(radius,
                        neighb,
                        path,
                        invisible_axes=False,
                        ccore=True):
    sample = read_sample(path)

    dbscan_instance = dbscan(sample, radius, neighb, ccore)
    (ticks, result) = timedcall(dbscan_instance.process)

    clusters = dbscan_instance.get_clusters()
    noise = dbscan_instance.get_noise()

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    draw_clusters(sample, clusters, [], '.', hide_axes=invisible_axes)
def template_clustering(file, radius, order, show_dyn = False, show_conn = False, show_clusters = True, ena_conn_weight = False, ccore_flag = False):
    sample = read_sample(file);
    network = syncnet(sample, radius, enable_conn_weight = ena_conn_weight, ccore = ccore_flag);
    
    (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, order, solve_type.FAST, show_dyn);
    print("Sample: ", file, "\t\tExecution time: ", ticks, "\n");
    
    if (show_dyn == True):
        draw_dynamics(dyn_time, dyn_phase, x_title = "Time", y_title = "Phase", y_lim = [0, 2 * 3.14]);
    
    if (show_conn == True):
        network.show_network();
    
    if (show_clusters == True):
        clusters = network.get_clusters(0.1);
        draw_clusters(sample, clusters);
示例#15
0
def template_clustering(start_centers, path, tolerance = 0.25, ccore = True):
    sample = read_sample(path);
    
    kmeans_instance = kmeans(sample, start_centers, tolerance, ccore);
    (ticks, result) = timedcall(kmeans_instance.process);
    
    clusters = kmeans_instance.get_clusters();
    centers = kmeans_instance.get_centers();
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");

    visualizer = cluster_visualizer();
    visualizer.append_clusters(clusters, sample);
    visualizer.append_cluster(start_centers, marker = '*', markersize = 20);
    visualizer.append_cluster(centers, marker = '*', markersize = 20);
    visualizer.show();
示例#16
0
def template_clustering(path,
                        radius,
                        cluster_numbers,
                        threshold,
                        draw=True,
                        ccore=True):
    sample = read_sample(path)

    rock_instance = rock(sample, radius, cluster_numbers, threshold, ccore)
    (ticks, result) = timedcall(rock_instance.process)

    clusters = rock_instance.get_clusters()

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    if (draw == True):
        draw_clusters(sample, clusters)
示例#17
0
def template_clustering(file, radius, order, show_dyn = False, show_conn = False, show_clusters = True, ena_conn_weight = False, ccore_flag = True):
    sample = read_sample(file);
    network = syncnet(sample, radius, enable_conn_weight = ena_conn_weight, ccore = ccore_flag);
    
    (ticks, analyser) = timedcall(network.process, order, solve_type.FAST, show_dyn);
    print("Sample: ", file, "\t\tExecution time: ", ticks, "\n");
    
    if (show_dyn == True):
        sync_visualizer.show_output_dynamic(analyser);
        sync_visualizer.animate_output_dynamic(analyser);
    
    if ( (show_conn == True) and (ccore_flag == False) ):
        network.show_network();
    
    if (show_clusters == True):
        clusters = analyser.allocate_clusters();
        draw_clusters(sample, clusters);
示例#18
0
def template_segmentation_image(source,
                                map_som_size=[5, 5],
                                average_neighbors=5,
                                sync_order=0.998,
                                show_dyn=False,
                                show_som_map=False):
    data = read_image(source)

    network = syncsom(data, map_som_size[0], map_som_size[1])
    (ticks, (dyn_time, dyn_phase)) = timedcall(network.process,
                                               average_neighbors, show_dyn,
                                               sync_order)
    print("Sample: ", source, "\t\tExecution time: ", ticks, "\t\tWinners: ",
          network.som_layer.get_winner_number(), "\n")

    if (show_dyn is True):
        draw_dynamics(dyn_time, dyn_phase)

    clusters = network.get_clusters()
    draw_image_mask_segments(source, clusters)
示例#19
0
def template_clustering(number_clusters,
                        path,
                        number_represent_points=5,
                        compression=0.5,
                        draw=True,
                        ccore_flag=False):
    sample = read_sample(path)

    cure_instance = cure(sample, number_clusters, number_represent_points,
                         compression, ccore_flag)
    (ticks, result) = timedcall(cure_instance.process)
    clusters = cure_instance.get_clusters()

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    if (draw is True):
        if (ccore_flag is True):
            draw_clusters(sample, clusters)
        else:
            draw_clusters(None, clusters)
示例#20
0
def template_clustering(
        number_clusters,
        path,
        branching_factor=5,
        max_node_entries=5,
        initial_diameter=0.0,
        type_measurement=measurement_type.CENTROID_EUCLIDIAN_DISTANCE,
        entry_size_limit=200,
        ccore=True):
    sample = read_sample(path)

    birch_instance = birch(sample, number_clusters, branching_factor,
                           max_node_entries, initial_diameter,
                           type_measurement, entry_size_limit, ccore)
    (ticks, result) = timedcall(birch_instance.process)

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    clusters = birch_instance.get_clusters()
    draw_clusters(sample, clusters)
def template_clustering(file,
                        map_size,
                        trust_order,
                        sync_order=0.999,
                        show_dyn=False,
                        show_layer1=False,
                        show_layer2=False,
                        show_clusters=True):
    # Read sample
    sample = read_sample(file)

    # Create network
    network = syncsom(sample, map_size[0], map_size[1])

    # Run processing
    (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, trust_order,
                                               show_dyn, sync_order)
    print("Sample: ", file, "\t\tExecution time: ", ticks, "\n")

    # Show dynamic of the last layer.
    if (show_dyn == True):
        draw_dynamics(dyn_time,
                      dyn_phase,
                      x_title="Time",
                      y_title="Phase",
                      y_lim=[0, 2 * 3.14])

    if (show_clusters == True):
        clusters = network.get_som_clusters()
        draw_clusters(network.som_layer.weights, clusters)

    # Show network stuff.
    if (show_layer1 == True):
        network.show_som_layer()

    if (show_layer2 == True):
        network.show_sync_layer()

    if (show_clusters == True):
        clusters = network.get_clusters()
        draw_clusters(sample, clusters)
def template_clustering(
        start_centers,
        path,
        tolerance=0.025,
        criterion=splitting_type.BAYESIAN_INFORMATION_CRITERION,
        ccore=False):
    sample = read_sample(path)

    xmeans_instance = xmeans(sample, start_centers, 20, tolerance, criterion,
                             ccore)
    (ticks, result) = timedcall(xmeans_instance.process)

    clusters = xmeans_instance.get_clusters()

    criterion_string = "UNKNOWN"
    if (criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION):
        criterion_string = "BAYESIAN_INFORMATION_CRITERION"
    elif (criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH):
        criterion_string = "MINIMUM_NOISELESS_DESCRIPTION_LENGTH"

    print("Sample: ", path, "\tExecution time: ", ticks,
          "Number of clusters: ", len(clusters), criterion_string, "\n")

    draw_clusters(sample, clusters)
def template_segmentation_image(source, color_radius, object_radius, noise_size, show_dyn):    
    data = read_image(source);
    print("Pixel dimension: ", len(data[0]));

    network = syncnet(data, color_radius, ccore = True);
    print("Network has been created");
    
    (ticks, (t, dyn)) = timedcall(network.process, 0.9995, solve_type.FAST, show_dyn);
    # (t, dyn) = network.process(0.998, solve_type.FAST, show_dyn);
    
    print("Sample: ", source, "\t\tExecution time: ", ticks, "\n");
    
    if (show_dyn is True):
        draw_dynamics(t, dyn);
    
    clusters = network.get_clusters();
    real_clusters = [cluster for cluster in clusters if len(cluster) > noise_size];
    
    draw_image_mask_segments(source, real_clusters);
    
    if (object_radius is None):
        return;
    
    # continue analysis
    pointer_image = Image.open(source);
    image_size = pointer_image.size;
    
    object_colored_clusters = [];
    object_colored_dynamics = [];
    total_dyn = [];
    
    for cluster in clusters:
        coordinates = [];
        for index in cluster:
            y = floor(index / image_size[0]);
            x = index - y * image_size[0];
            
            coordinates.append([x, y]);
        
        print(coordinates);
        
        # perform clustering analysis of the colored objects
        if (network is not None):
            del network;
            network = None;
        
        if (len(coordinates) < noise_size):
            continue;
        
        network = syncnet(coordinates, object_radius, ccore = True);
        (t, dyn) = network.process(0.999, solve_type.FAST, show_dyn);
        
        if (show_dyn is True):
            object_colored_dynamics.append( (t, dyn) );
        
        object_clusters = network.get_clusters();
        
        # decode it
        real_description_clusters = [];
        for object_cluster in object_clusters:
            real_description = [];
            for index_object in object_cluster:
                real_description.append(cluster[index_object]);
            
            real_description_clusters.append(real_description);
            
            if (len(real_description) > noise_size):
                object_colored_clusters.append(real_description);
            
        # draw_image_mask_segments(source, [ cluster ]);
        # draw_image_mask_segments(source, real_description_clusters);
    
    draw_image_mask_segments(source, object_colored_clusters);
    
    if (show_dyn is True):
        draw_dynamics_set(object_colored_dynamics, None, None, None, [0, 2 * 3.14], False, False);
def template_segmentation_image(source, color_radius, object_radius,
                                noise_size, show_dyn):
    data = read_image(source)
    print("Pixel dimension: ", len(data[0]))

    network = syncnet(data, color_radius, ccore=True)
    print("Network has been created")

    (ticks, (t, dyn)) = timedcall(network.process, 0.9995, solve_type.FAST,
                                  show_dyn)
    # (t, dyn) = network.process(0.998, solve_type.FAST, show_dyn);

    print("Sample: ", source, "\t\tExecution time: ", ticks, "\n")

    if (show_dyn is True):
        draw_dynamics(t, dyn)

    clusters = network.get_clusters()
    real_clusters = [
        cluster for cluster in clusters if len(cluster) > noise_size
    ]

    draw_image_mask_segments(source, real_clusters)

    if (object_radius is None):
        return

    # continue analysis
    pointer_image = Image.open(source)
    image_size = pointer_image.size

    object_colored_clusters = []
    object_colored_dynamics = []
    total_dyn = []

    for cluster in clusters:
        coordinates = []
        for index in cluster:
            y = floor(index / image_size[0])
            x = index - y * image_size[0]

            coordinates.append([x, y])

        print(coordinates)

        # perform clustering analysis of the colored objects
        if (network is not None):
            del network
            network = None

        if (len(coordinates) < noise_size):
            continue

        network = syncnet(coordinates, object_radius, ccore=True)
        (t, dyn) = network.process(0.999, solve_type.FAST, show_dyn)

        if (show_dyn is True):
            object_colored_dynamics.append((t, dyn))

        object_clusters = network.get_clusters()

        # decode it
        real_description_clusters = []
        for object_cluster in object_clusters:
            real_description = []
            for index_object in object_cluster:
                real_description.append(cluster[index_object])

            real_description_clusters.append(real_description)

            if (len(real_description) > noise_size):
                object_colored_clusters.append(real_description)

        # draw_image_mask_segments(source, [ cluster ]);
        # draw_image_mask_segments(source, real_description_clusters);

    draw_image_mask_segments(source, object_colored_clusters)

    if (show_dyn is True):
        draw_dynamics_set(object_colored_dynamics, None, None, None,
                          [0, 2 * 3.14], False, False)