def test_lr():
    W = ad.Variable(name="W")
    b = ad.Variable(name="b")
    X = ad.Variable(name="X")
    y_ = ad.Variable(name="y_")

    ctx = ndarray.gpu(0)
    # ini
    x_val = np.linspace(0, 1, 100).reshape((100, 1))
    y_val = x_val + 0.5
    W_val = np.array([[0.1]])
    b_val = np.array([0.1])
    x_val = ndarray.array(x_val, ctx)
    W_val = ndarray.array(W_val, ctx)
    b_val = ndarray.array(b_val, ctx)
    y_val = ndarray.array(y_val, ctx)
    z = ad.matmul_op(X, W)
    # z.shape = (100,1)
    # b.shape = (1,1)
    y = z + ad.broadcastto_op(b, z)
    # y = (100,1)
    y = ad.fullyactivation_forward_op(y, "NCHW", "relu")
    loss = ad.matmul_op(y + (-1) * y_, y + (-1) * y_, trans_A=True) * (1 / 100)
    # loss = ad.softmaxcrossentropy_op(y, y_)
    grad_W, grad_b = ad.gradients(loss, [W, b])

    executor = ad.Executor([loss, grad_W, grad_b], ctx)

    aph = 1e-6

    for i in range(100):

        loss_val, grad_W_val, grad_b_val = executor.run(feed_dict={
            X: x_val,
            b: b_val,
            W: W_val,
            y_: y_val
        })

        grad_W_val = grad_W_val.asnumpy()
        W_val = W_val.asnumpy()
        W_val = W_val - aph * grad_W_val
        W_val = ndarray.array(W_val, ctx)

        grad_b_val = grad_b_val.asnumpy()
        b_val = b_val.asnumpy()
        b_val = b_val - aph * grad_b_val
        b_val = ndarray.array(b_val, ctx)
        print(W_val.asnumpy(), b_val.asnumpy())
def test_full_forward_op():
    inputs = ad.Variable("inputs")
    filters = ad.Variable("filters")
    y_ = ad.Variable(name="y_")

    #ini
    ctx = ndarray.gpu(0)
    x_val = np.linspace(0, 100, 100).reshape((5, 1, 20))
    filters_val = np.ones((1, 1, 20)) * 0.001
    y_val = np.zeros((5, 1))
    x_val = ndarray.array(x_val, ctx)
    filters_val = ndarray.array(filters_val, ctx)
    y_val = ndarray.array(y_val, ctx)
    outputs = ad.convolution_1d_forward_op(inputs, filters, "NCHW", "VALID", 1)
    outputs_pool = ad.pooling_1d_forward_op(outputs, "NCHW", "max", 0, 1, 1)
    outputs_relu = ad.activation_forward_op(outputs_pool, "NCHW", "relu")
    outputs_f = ad.flatten_op(outputs_relu)
    output = ad.fullyactivation_forward_op(outputs_f, "NCHW", "relu")
    loss = ad.matmul_op(output, output, trans_A=True) * (1 / 5)
    grad_f = ad.gradients(loss, [filters])  #gra返回一个list
    executor = ad.Executor([grad_f[0]], ctx=ctx)
    g_val = executor.run(feed_dict={
        inputs: x_val,
        filters: filters_val
    })  #返回一个list
    print("g_val:", g_val[0].asnumpy())
def test_matmul_two_vars():
    x2 = ad.Variable(name="x2")
    x3 = ad.Variable(name="x3")
    y = ad.matmul_op(x2, x3)

    grad_x2, grad_x3 = ad.gradients(y, [x2, x3])

    executor = ad.Executor([y, grad_x2, grad_x3])
    x2_val = np.array([[1, 2], [3, 4], [5, 6]])  # 3x2
    x3_val = np.array([[7, 8, 9], [10, 11, 12]])  # 2x3

    y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={
        x2: x2_val,
        x3: x3_val
    })

    expected_yval = np.matmul(x2_val, x3_val)
    expected_grad_x2_val = np.matmul(np.ones_like(expected_yval),
                                     np.transpose(x3_val))
    expected_grad_x3_val = np.matmul(np.transpose(x2_val),
                                     np.ones_like(expected_yval))

    assert isinstance(y, ad.Node)
    assert np.array_equal(y_val, expected_yval)
    assert np.array_equal(grad_x2_val, expected_grad_x2_val)
    assert np.array_equal(grad_x3_val, expected_grad_x3_val)
def test_convolution_3d_forward_op():
    inputs = ad.Variable("inputs")
    filters = ad.Variable("filters")
    y_ = ad.Variable(name="y_")

    #ini
    ctx = ndarray.gpu(0)
    x_val = np.linspace(0, 100, 135).reshape((5, 1, 3, 3, 3))
    filters_val = np.ones((1, 1, 2, 2, 2)) * 0.001
    y_val = np.zeros((5, 1))
    x_val = ndarray.array(x_val, ctx)
    filters_val = ndarray.array(filters_val, ctx)
    y_val = ndarray.array(y_val, ctx)

    outputs = ad.convolution_3d_forward_op(inputs, filters, "NCHW", "VALID", 1,
                                           1, 1)
    outputs_pool = ad.pooling_3d_forward_op(outputs, "NCHW", "max", 0, 0, 0, 1,
                                            1, 1, 2, 2, 2)
    outputs_relu = ad.activation_forward_op(outputs_pool, "NCHW", "relu")
    outputs_dro = ad.dropout_forward_op(outputs_relu, "NCHW", 0.5, 0)
    outputs_f = ad.flatten_op(outputs_dro)
    loss = ad.matmul_op(outputs_f, outputs_f, trans_A=True) * (1 / 5)
    grad_inputs, grad_f = ad.gradients(loss, [inputs, filters])
    executor = ad.Executor([loss, grad_f], ctx=ctx)

    aph = 1.0e-6
    for i in range(20):
        loss_val, filters_grad_val = executor.run(feed_dict={
            inputs: x_val,
            filters: filters_val
        })

        filters_val = filters_val.asnumpy()
        filters_grad_val = filters_grad_val.asnumpy()
        filters_val = filters_val - aph * filters_grad_val
        filters_val = ndarray.array(filters_val, ctx)

    print("loss_val:", loss_val.asnumpy())
    print("filters_val:", filters_val.asnumpy())
示例#5
0
def ResNet50(inputs, n_class):
    X = ad.Placeholder("X")
    y_ = ad.Placeholder("y_")
    W1 = ad.Variable("W1")
    W6 = ad.Variable("W6")
    b6 = ad.Variable("b6")
    W7 = ad.Variable("W7")
    b7 = ad.Variable("b7")
    keep_prob = ad.Placeholder("keep_prob")

    #conv1
    conv1 = ad.convolution_2d_forward_op(X, W1, "NCHW", "VALID", 2, 2)
    bn1 = ad.bn_forward_op(conv1, "NCHW", "pre_activation")
    act1 = ad.activation_forward_op(bn1, "NCHW", "relu")
    pool1 = ad.pooling_2d_forward_op(act1, "NCHW", "max", 0, 0, 2, 2, 3, 3)

    #conv2_x
    conv2, dict2 = convolutional_block(inputs=pool1,
                                       kernel_size=3,
                                       in_filter=64,
                                       out_filters=[64, 64, 256],
                                       block_name="2a",
                                       stride=1)
    iden2_1, dict2_1 = identity_block(inputs=conv2,
                                      kernel_size=3,
                                      in_filter=256,
                                      out_filters=[64, 64, 256],
                                      block_name="2b",
                                      stride=1)
    iden2_2, dict2_2 = identity_block(iden2_1, 3, 256, [64, 64, 256], "2c", 1)

    #conv3_x
    conv3, dict3 = convolutional_block(iden2_2, 3, 256, [128, 128, 512], "3a",
                                       1)
    iden3_1, dict3_1 = identity_block(conv3, 3, 512, [128, 128, 512], "3b", 1)
    iden3_2, dict3_2 = identity_block(iden3_1, 3, 512, [128, 128, 512], "3c",
                                      1)
    iden3_3, dict3_3 = identity_block(iden3_2, 3, 512, [128, 128, 512], "3d",
                                      1)

    #conv4_x
    conv4, dict4 = convolutional_block(iden3_3, 3, 512, [256, 256, 1024], "4a",
                                       1)
    iden4_1, dict4_1 = identity_block(conv4, 3, 1024, [256, 256, 1024], "4b",
                                      1)
    iden4_2, dict4_2 = identity_block(iden4_1, 3, 1024, [256, 256, 1024], "4c",
                                      1)
    iden4_3, dict4_3 = identity_block(iden4_2, 3, 1024, [256, 256, 1024], "4d",
                                      1)
    iden4_4, dict4_4 = identity_block(iden4_3, 3, 1024, [256, 256, 1024], "4e",
                                      1)
    iden4_5, dict4_5 = identity_block(iden4_4, 3, 1024, [256, 256, 1024], "4f",
                                      1)

    #conv5_x
    conv5, dict5 = convolutional_block(iden4_5, 3, 1024, [512, 512, 2048],
                                       "5a", 1)
    iden5_1, dict5_1 = identity_block(conv5, 3, 2048, [512, 512, 2048], "5b",
                                      1)
    iden5_2, dict5_2 = identity_block(iden5_1, 3, 2048, [512, 512, 2048], "5c",
                                      1)
    pool5 = ad.pooling_2d_forward_op(iden5_2, "NCHW", "mean", 0, 0, 1, 1, 2, 2)

    pool5_flat = ad.flatten_op(pool5)
    mul6 = ad.matmul_op(pool5_flat, W6)
    add6 = ad.add_op(mul6, b6)
    act6 = ad.fullyactivation_forward_op(add6, "NCHW", "relu")
    drop_out = ad.fullydropout_forward_op(act6, "NCHW", keep_prob)
    mul7 = ad.matmul_op(drop_out, W7)
    add7 = ad.add_op(mul7, b7)
    act7 = ad.fullyactivation_forward_op(add7, "NCHW", "softmax")

    loss = ad.softmaxcrossentropy_op(act7, y_)

    X_val = np.random.normal(0, 0.5, (10, 3, 230, 230))
    W1_val = np.random.normal(0, 0.5, (64, 3, 7, 7))
    W6_val = np.random.normal(0, 0.5, (7 * 7 * 2048, 50))
    b6_val = np.random.normal(0, 0.5, (10, 50))
    W7_val = np.random.normal(0, 0.5, (50, 6))
    b7_val = np.random.normal(0, 0.5, (10, 6))
    y_val = np.random.normal(0, 0.5, (10, 6))

    feed_dict = {W1: W1_val, W6: W6_val, W7: W7_val, b6: b6_val, b7: b7_val}
    feed_dict.update(dict2)
    feed_dict.update(dict2_1)
    feed_dict.update(dict2_2)
    feed_dict.update(dict3)
    feed_dict.update(dict3_1)
    feed_dict.update(dict3_2)
    feed_dict.update(dict3_3)
    feed_dict.update(dict4)
    feed_dict.update(dict4_1)
    feed_dict.update(dict4_2)
    feed_dict.update(dict4_3)
    feed_dict.update(dict4_4)
    feed_dict.update(dict4_5)
    feed_dict.update(dict5)
    feed_dict.update(dict5_1)
    feed_dict.update(dict5_2)

    time.sleep(5)
    list = []
    for key in feed_dict.keys():
        list.append(key)
    executor = ad.Executor(list, ctx=ndarray.gpu(0))
    executor.run(feed_dict)

    time.sleep(5)
示例#6
0
def test_inception_v4():
    X = ad.Placeholder("X")
    Y_ = ad.Placeholder("y_")
    f1 = ad.Variable("f1")
    f2 = ad.Variable("f2")
    f3 = ad.Variable("f3")
    f4 = ad.Variable("f4")
    f5_1 = ad.Variable("f5_1")
    f5_2 = ad.Variable("f5_2")
    f6_1 = ad.Variable("f6_1")
    f6_2 = ad.Variable("f6_2")
    f6_3 = ad.Variable("f6_3")
    f6_4 = ad.Variable("f6_4")
    f7 = ad.Variable("f7")
    W = ad.Variable("W")
    b = ad.Variable("b")
    keep_prob = ad.Placeholder("keep_prob")
    X_val = np.random.normal(0, 0.5, (10, 3, 299, 299))
    Y_val = np.random.normal(0, 0.5, (10, 1))
    f1val = np.random.normal(0, 0.5, (32, 3, 3, 3))
    f2val = np.random.normal(0, 0.5, (32, 32, 3, 3))
    f3val = np.random.normal(0, 0.5, (64, 32, 3, 3))
    f4val = np.random.normal(0, 0.5, (96, 64, 3, 3))
    f5_1val = np.random.normal(0, 0.5, (64, 160, 1, 1))
    f5_2val = np.random.normal(0, 0.5, (96, 64, 3, 3))
    f6_1val = np.random.normal(0, 0.5, (64, 160, 1, 1))
    f6_2val = np.random.normal(0, 0.5, (64, 64, 7, 1))
    f6_3val = np.random.normal(0, 0.5, (64, 64, 1, 7))
    f6_4val = np.random.normal(0, 0.5, (96, 64, 3, 3))
    f7val = np.random.normal(0, 0.5, (192, 192, 3, 3))

    # stem
    cov1 = ad.convolution_2d_forward_op(X, f1, "NCHW", "VALID", 2, 2)
    cov2 = ad.convolution_2d_forward_op(cov1, f2, "NCHW", "VALID", 1, 1)
    cov3 = ad.convolution_2d_forward_op(cov2, f3, "NCHW", "SAME", 1, 1)
    pool4 = ad.pooling_2d_forward_op(cov3, "NCHW", "max", 0, 0, 2, 2, 3, 3)
    cov4 = ad.convolution_2d_forward_op(cov3, f4, "NCHW", "VALID", 2, 2)
    concat1 = ad.concat_forward_op(pool4, cov4)
    cov5_1 = ad.convolution_2d_forward_op(concat1, f5_1, "NCHW", "SAME", 1, 1)
    cov5_2 = ad.convolution_2d_forward_op(cov5_1, f5_2, "NCHW", "VALID", 1, 1)
    cov6_1 = ad.convolution_2d_forward_op(concat1, f6_1, "NCHW", "SAME", 1, 1)
    cov6_2 = ad.convolution_2d_forward_op(cov6_1, f6_2, "NCHW", "SAME", 1, 1)
    cov6_3 = ad.convolution_2d_forward_op(cov6_2, f6_3, "NCHW", "SAME", 1, 1)
    cov6_4 = ad.convolution_2d_forward_op(cov6_3, f6_4, "NCHW", "VALID", 1, 1)
    concat2 = ad.concat_forward_op(cov5_2, cov6_4)
    cov7 = ad.convolution_2d_forward_op(concat2, f7, "NCHW", "VALID", 2, 2)
    pool7 = ad.pooling_2d_forward_op(concat2, "NCHW", "max", 0, 0, 2, 2, 3, 3)
    concat3 = ad.concat_forward_op(pool7, cov7)

    a1, dicta1 = block_inception_a(concat3, "a1")
    a2, dicta2 = block_inception_a(a1, "a2")
    a3, dicta3 = block_inception_a(a2, "a3")
    a4, dicta4 = block_inception_a(a3, "a4")

    ra, dictra = block_reduction_a(a4, 384, "ra")
    b1, dictb1 = block_inception_b(ra, 1024, "b1")
    # b2, dictb2 = block_inception_b(b1, 1024, "b2")
    # b3, dictb3 = block_inception_b(b2, 1024, "b3")
    # b4, dictb4 = block_inception_b(b3, 1024, "b4")
    # b5, dictb5 = block_inception_b(b4, 1024, "b5")
    # b6, dictb6 = block_inception_b(b5, 1024, "b6")
    # b7, dictb7 = block_inception_b(b6, 1024, "b7")
    #
    rb, dictrb = block_reduction_b(b1, 1024, "rb")
    c1, dictc1 = block_inception_c(rb, 1536, "c1")
    # c2, dictc2 = block_inception_c(c1, 1536, "c2")
    # c3, dictc3 = block_inception_c(c2, 1536, "c3")
    poollast = ad.pooling_2d_forward_op(c1, "NCHW", "mean", 0, 0, 1, 1, 8, 8)
    squeeze = ad.squeeze_op(poollast)
    drop_out = ad.fullydropout_forward_op(squeeze, "NCHW", 0.8)
    mul = ad.matmul_op(drop_out, W)
    add = ad.add_op(mul, b)
    loss = ad.softmaxcrossentropy_op(add, Y_)
    #
    # aph = 0.001
    # t = train.Adam_minimize(loss, aph)
    ctx = ndarray.gpu(0)
    # aph = 0.001
    # t = train.Adam_minimize(loss, aph)
    feed_dict = {
        X: X_val,
        f1: f1val,
        f2: f2val,
        f3: f3val,
        f4: f4val,
        f5_1: f5_1val,
        f5_2: f5_2val,
        f6_1: f6_1val,
        f6_2: f6_2val,
        f6_3: f6_3val,
        f6_4: f6_4val,
        f7: f7val
    }
    feed_dict.update(dicta1)
    feed_dict.update(dicta2)
    feed_dict.update(dicta3)
    feed_dict.update(dicta4)
    feed_dict.update(dictra)
    feed_dict.update(dictb1)
    # feed_dict.update(dictb2)
    # feed_dict.update(dictb3)
    # feed_dict.update(dictb4)
    # feed_dict.update(dictb5)
    # feed_dict.update(dictb6)
    # feed_dict.update(dictb7)
    feed_dict.update(dictrb)
    feed_dict.update(dictc1)

    # feed_dict.update(dictc2)
    # feed_dict.update(dictc3)

    executor = ad.Executor([drop_out], ctx=ctx)
    y_val = executor.run(feed_dict)
def mnist_logreg(executor_ctx=None, num_epochs=10, print_loss_val_each_epoch=False):
    # 训练逻辑回归模型
    print("Build logistic regression model...")

    W1 = ad.Variable(name="W1")
    b1 = ad.Variable(name="b1")
    X = ad.Variable(name="X")
    y_ = ad.Variable(name="y_")

    z1 = ad.matmul_op(X, W1)
    y = z1 + ad.broadcastto_op(b1, z1)

    loss = ad.softmaxcrossentropy_op(y, y_)

    grad_W1, grad_b1 = ad.gradients(loss, [W1, b1])
    executor = ad.Executor([loss, grad_W1, grad_b1, y], ctx=executor_ctx)

    # Read input data
    datasets = load_mnist_data("mnist.pkl.gz")
    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # Set up minibatch
    batch_size = 1000
    n_train_batches = train_set_x.shape[0] // batch_size
    n_valid_batches = valid_set_x.shape[0] // batch_size

    print("Start training loop...")

    # Initialize parameters
    W1_val = np.zeros((784, 10))
    b1_val = np.zeros((10))
    X_val = np.empty(shape=(batch_size, 784), dtype=np.float32)
    y_val = np.empty(shape=(batch_size, 10), dtype=np.float32)
    valid_X_val = np.empty(shape=(batch_size, 784), dtype=np.float32)
    valid_y_val = np.empty(shape=(batch_size, 10), dtype=np.float32)
    if ndarray.is_gpu_ctx(executor_ctx):
        W1_val = ndarray.array(W1_val, ctx=executor_ctx)
        b1_val = ndarray.array(b1_val, ctx=executor_ctx)
        X_val = ndarray.array(X_val, ctx=executor_ctx)
        y_val = ndarray.array(y_val, ctx=executor_ctx)

    lr = 1e-3
    for i in range(num_epochs):
        print("epoch %d" % i)
        for minibatch_index in range(n_train_batches):
            minibatch_start = minibatch_index * batch_size
            minibatch_end = (minibatch_index + 1) * batch_size
            X_val[:] = train_set_x[minibatch_start:minibatch_end]
            y_val[:] = convert_to_one_hot(
                train_set_y[minibatch_start:minibatch_end])
            loss_val, grad_W1_val, grad_b1_val, _ = executor.run(
                feed_dict = {X: X_val, y_: y_val, W1: W1_val, b1: b1_val})
            # SGD update
            if (executor_ctx is None):
                W1_val = W1_val - lr * grad_W1_val
                b1_val = b1_val - lr * grad_b1_val
            else:
                sgd_update_gpu(W1_val, grad_W1_val, lr)
                sgd_update_gpu(b1_val, grad_b1_val, lr)
        if print_loss_val_each_epoch:
            if isinstance(loss_val, ndarray.NDArray):
                print(loss_val.asnumpy())
            else:
                print(loss_val)

    correct_predictions = []
    for minibatch_index in range(n_valid_batches):
        minibatch_start = minibatch_index * batch_size
        minibatch_end = (minibatch_index + 1) * batch_size
        valid_X_val[:] = valid_set_x[minibatch_start:minibatch_end]
        valid_y_val[:] = convert_to_one_hot(
            valid_set_y[minibatch_start:minibatch_end])
        _, _, _, valid_y_predicted = executor.run(
            feed_dict={
                        X: valid_X_val,
                        y_: valid_y_val,
                        W1: W1_val,
                        b1: b1_val},
            convert_to_numpy_ret_vals=True)
        correct_prediction = np.equal(
            np.argmax(valid_y_val, 1),
            np.argmax(valid_y_predicted, 1)).astype(np.float)
        correct_predictions.extend(correct_prediction)
    accuracy = np.mean(correct_predictions)
    # validation set accuracy=0.928200
    print("validation set accuracy=%f" % accuracy)
def mnist_mlp(executor_ctx=None, num_epochs=10, print_loss_val_each_epoch=False):
    # 训练一个三层感知机模型
    print("Build 3-layer MLP model...")

    W1 = ad.Variable(name="W1")
    W2 = ad.Variable(name="W2")
    W3 = ad.Variable(name="W3")
    b1 = ad.Variable(name="b1")
    b2 = ad.Variable(name="b2")
    b3 = ad.Variable(name="b3")
    X = ad.Variable(name="X")
    y_ = ad.Variable(name="y_")

    # 下面是三层网络的激活函数,两个relu和一个softmax

    # relu(X W1+b1)
    z1 = ad.matmul_op(X, W1)
    z2 = z1 + ad.broadcastto_op(b1, z1)
    z3 = ad.relu_op(z2)

    # relu(z3 W2+b2)
    z4 = ad.matmul_op(z3, W2)
    z5 = z4 + ad.broadcastto_op(b2, z4)
    z6 = ad.relu_op(z5)

    # softmax(z5 W2+b2)
    z7 = ad.matmul_op(z6, W3)
    y = z7 + ad.broadcastto_op(b3, z7)

    loss = ad.softmaxcrossentropy_op(y, y_)

    grad_W1, grad_W2, grad_W3, grad_b1, grad_b2, grad_b3 = ad.gradients(
        loss, [W1, W2, W3, b1, b2, b3])


    # 此处向前为符号定义


    # 只声明,不操作
    executor = ad.Executor(
        [loss, grad_W1, grad_W2, grad_W3, grad_b1, grad_b2, grad_b3, y],
        ctx=executor_ctx)

    # Read input data
    datasets = load_mnist_data("mnist.pkl.gz")
    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]


    # Set up minibatch
    batch_size = 1000
    n_train_batches = train_set_x.shape[0] // batch_size
    n_valid_batches = valid_set_x.shape[0] // batch_size

    print("Start training loop...")

    # Initialize parameters
    # 随机初始化网络中的w和b
    rand = np.random.RandomState(seed=123)
    W1_val = rand.normal(scale=0.1, size=(784, 256))
    W2_val = rand.normal(scale=0.1, size=(256, 100))
    W3_val = rand.normal(scale=0.1, size=(100, 10))
    b1_val = rand.normal(scale=0.1, size=(256))
    b2_val = rand.normal(scale=0.1, size=(100))
    b3_val = rand.normal(scale=0.1, size=(10))
    X_val = np.empty(shape=(batch_size, 784), dtype=np.float32)
    y_val = np.empty(shape=(batch_size, 10), dtype=np.float32)
    valid_X_val = np.empty(shape=(batch_size, 784), dtype=np.float32)
    valid_y_val = np.empty(shape=(batch_size, 10), dtype=np.float32)

    # todo 此处修改为cpu
    W1_val = ndarray.array(W1_val, ctx=executor_ctx_cpu)
    W2_val = ndarray.array(W2_val, ctx=executor_ctx_cpu)
    W3_val = ndarray.array(W3_val, ctx=executor_ctx_cpu)
    b1_val = ndarray.array(b1_val, ctx=executor_ctx_cpu)
    b2_val = ndarray.array(b2_val, ctx=executor_ctx_cpu)
    b3_val = ndarray.array(b3_val, ctx=executor_ctx_cpu)
    X_val = ndarray.array(X_val, ctx=executor_ctx_cpu)
    y_val = ndarray.array(y_val, ctx=executor_ctx_cpu)

    # 此处以上将数据分别转化为cpu和gpu两种格式



    lr = 1.0e-3
    for i in range(num_epochs):
        print("epoch %d" % i)
        for minibatch_index in range(n_train_batches):
            minibatch_start = minibatch_index * batch_size
            minibatch_end = (minibatch_index + 1) * batch_size
            X_val[:] = train_set_x[minibatch_start:minibatch_end]
            y_val[:] = convert_to_one_hot(
                train_set_y[minibatch_start:minibatch_end])


            # 计算单步的梯度
            loss_val, grad_W1_val, grad_W2_val, grad_W3_val, \
                grad_b1_val, grad_b2_val, grad_b3_val, _ = executor.run(
                    feed_dict={
                        X: X_val,
                        y_: y_val,
                        W1: W1_val,
                        W2: W2_val,
                        W3: W3_val,
                        b1: b1_val,
                        b2: b2_val,
                        b3: b3_val})

            # todo 更新sgd_update_gpu_on_cpu
            def sgd_update_cpu(w1, w2, w3):
                w1_gpu = ndarray.empty(w1.shape, executor_ctx)
                w1.copyto(w1_gpu)
                w2_gpu = ndarray.empty(w2.shape, executor_ctx)
                w2.copyto(w2_gpu)
                sgd_update_gpu(w1_gpu, w2_gpu, w3)
                w1_gpu.copyto(w1)
                w2_gpu.copyto(w2)

            sgd_update_cpu(W1_val, grad_W1_val, lr)
            sgd_update_cpu(W2_val, grad_W2_val, lr)
            sgd_update_cpu(W3_val, grad_W3_val, lr)
            sgd_update_cpu(b1_val, grad_b1_val, lr)
            sgd_update_cpu(b2_val, grad_b2_val, lr)
            sgd_update_cpu(b3_val, grad_b3_val, lr)

            # sgd_update_gpu(W1_val, grad_W1_val, lr)
            # sgd_update_gpu(W2_val, grad_W2_val, lr)
            # sgd_update_gpu(W3_val, grad_W3_val, lr)
            # sgd_update_gpu(b1_val, grad_b1_val, lr)
            # sgd_update_gpu(b2_val, grad_b2_val, lr)
            # sgd_update_gpu(b3_val, grad_b3_val, lr)
        if print_loss_val_each_epoch:
            if isinstance(loss_val, ndarray.NDArray):
                print(loss_val.asnumpy())
            else:
                print(loss_val)

    correct_predictions = []
    for minibatch_index in range(n_valid_batches):
        minibatch_start = minibatch_index * batch_size
        minibatch_end = (minibatch_index + 1) * batch_size
        valid_X_val[:] = valid_set_x[minibatch_start:minibatch_end]
        valid_y_val[:] = convert_to_one_hot(
            valid_set_y[minibatch_start:minibatch_end])
        _, _, _, _, _, _, _, valid_y_predicted = executor.run(
            feed_dict={
                X: valid_X_val,
                y_: valid_y_val,
                W1: W1_val,
                W2: W2_val,
                W3: W3_val,
                b1: b1_val,
                b2: b2_val,
                b3: b3_val},
            convert_to_numpy_ret_vals=True)
        correct_prediction = np.equal(
            np.argmax(valid_y_val, 1),
            np.argmax(valid_y_predicted, 1)).astype(np.float)
        correct_predictions.extend(correct_prediction)
    accuracy = np.mean(correct_predictions)
    # validation set accuracy=0.970800
    print("validation set accuracy=%f" % accuracy)
示例#9
0
def vgg16():

    n = 10
    n_class = 10

    inputs = ad.Variable("inputs")
    filters1_1 = ad.Variable("filters1_1")
    filters1_2 = ad.Variable("filters1_2")
    filters2_1 = ad.Variable("filters2_1")
    filters2_2 = ad.Variable("filters2_2")
    filters3_1 = ad.Variable("filters3_1")
    filters3_2 = ad.Variable("filters3_2")
    filters3_3 = ad.Variable("filters3_3")
    filters4_1 = ad.Variable("filters4_1")
    filters4_2 = ad.Variable("filters4_2")
    filters4_3 = ad.Variable("filters4_3")
    filters5_1 = ad.Variable("filters5_1")
    filters5_2 = ad.Variable("filters5_2")
    filters5_3 = ad.Variable("filters5_3")
    filters6 = ad.Variable("filters6")
    filters7 = ad.Variable("filters7")
    filters8 = ad.Variable("filters8")
    biases6 = ad.Variable("biases6")
    biases7 = ad.Variable("biases7")
    biases8 = ad.Variable("biases8")
    y_ = ad.Variable(name="y_")

    x_val = np.linspace(0, 0.001, 10*3*224*224).reshape((10, 3, 224, 224))
    filters_val = [np.ones((64, 3, 3, 3))*0.001]
    filters_val.append(np.ones((64, 64, 3, 3))*0.001)
    filters_val.append(np.ones((128, 64, 3, 3))*0.001)
    filters_val.append(np.ones((128, 128, 3, 3))*0.001)
    filters_val.append(np.ones((256, 128, 3, 3))*0.001)
    filters_val.append(np.ones((256, 256, 3, 3))*0.001)
    filters_val.append(np.ones((256, 256, 3, 3))*0.001)
    filters_val.append(np.ones((512, 256, 3, 3))*0.001)
    filters_val.append(np.ones((512, 512, 3, 3))*0.001)
    filters_val.append(np.ones((512, 512, 3, 3))*0.001)
    filters_val.append(np.ones((512, 512, 3, 3))*0.001)
    filters_val.append(np.ones((512, 512, 3, 3))*0.001)
    filters_val.append(np.ones((512, 512, 3, 3))*0.001)
    filters_val.append(np.ones((512*7*7, 4096)) * 0.001)
    filters_val.append(np.ones((4096, 4096)) * 0.001)
    filters_val.append(np.ones((4096, n_class)) * 0.001)
    biases_val = [np.ones((1, 4096))* 0.001]
    biases_val.append(np.ones((1, 4096)) * 0.001)
    biases_val.append(np.ones((1, n_class)) * 0.001)
    y_val = np.zeros((10, n_class))

    ctx = ndarray.gpu(0)
    for i in range(16):
        filters_val[i] = ndarray.array(filters_val[i], ctx)

    # conv 1
    conv1_1 = ad.convolution_2d_forward_op(inputs, filters1_1, "NCHW", "SAME", 1, 1)
    bn1_1 = ad.bn_forward_op(conv1_1, "NCHW", "pre_activation")
    act1_1 = ad.activation_forward_op(bn1_1, "NCHW", "relu")

    conv1_2 = ad.convolution_2d_forward_op(act1_1, filters1_2, "NCHW", "SAME", 1, 1)
    bn1_2 = ad.bn_forward_op(conv1_2, "NCHW", "pre_activation")
    act1_2 = ad.activation_forward_op(bn1_2, "NCHW", "relu")
    pool1 = ad.pooling_2d_forward_op(act1_2, "NCHW", "max", 0, 0, 2, 2, 2, 2)

    # conv 2
    conv2_1 = ad.convolution_2d_forward_op(pool1, filters2_1, "NCHW", "SAME", 1, 1)
    bn2_1 = ad.bn_forward_op(conv2_1, "NCHW", "pre_activation")
    act2_1 = ad.activation_forward_op(bn2_1, "NCHW", "relu")
    conv2_2 = ad.convolution_2d_forward_op(act2_1, filters2_2, "NCHW", "SAME", 1, 1)
    bn2_2 = ad.bn_forward_op(conv2_2, "NCHW", "pre_activation")
    act2_2 = ad.activation_forward_op(bn2_2, "NCHW", "relu")
    pool2 = ad.pooling_2d_forward_op(act2_2, "NCHW", "max", 0, 0, 2, 2, 2, 2)

    # conv 3
    conv3_1 = ad.convolution_2d_forward_op(pool2, filters3_1, "NCHW", "SAME", 1, 1)
    bn3_1 = ad.bn_forward_op(conv3_1, "NCHW", "pre_activation")
    act3_1 = ad.activation_forward_op(bn3_1, "NCHW", "relu")
    conv3_2 = ad.convolution_2d_forward_op(act3_1, filters3_2, "NCHW", "SAME", 1, 1)
    bn3_2 = ad.bn_forward_op(conv3_2, "NCHW", "pre_activation")
    act3_2 = ad.activation_forward_op(bn3_2, "NCHW", "relu")
    conv3_3 = ad.convolution_2d_forward_op(act3_2, filters3_3, "NCHW", "SAME", 1, 1)
    bn3_3 = ad.bn_forward_op(conv3_3, "NCHW", "pre_activation")
    act3_3 = ad.activation_forward_op(bn3_3, "NCHW", "relu")
    pool3 = ad.pooling_2d_forward_op(act3_3, "NCHW", "max", 0, 0, 2, 2, 2, 2)

    # conv 4
    conv4_1 = ad.convolution_2d_forward_op(pool3, filters4_1, "NCHW", "SAME", 1, 1)
    bn4_1 = ad.bn_forward_op(conv4_1, "NCHW", "pre_activation")
    act4_1 = ad.activation_forward_op(bn4_1, "NCHW", "relu")
    conv4_2 = ad.convolution_2d_forward_op(act4_1, filters4_2, "NCHW", "SAME", 1, 1)
    bn4_2 = ad.bn_forward_op(conv4_2, "NCHW", "pre_activation")
    act4_2 = ad.activation_forward_op(bn4_2, "NCHW", "relu")
    conv4_3 = ad.convolution_2d_forward_op(act4_2, filters4_3, "NCHW", "SAME", 1, 1)
    bn4_3 = ad.bn_forward_op(conv4_3, "NCHW", "pre_activation")
    act4_3 = ad.activation_forward_op(bn4_3, "NCHW", "relu")
    pool4 = ad.pooling_2d_forward_op(act4_3, "NCHW", "max", 0, 0, 2, 2, 2, 2)

    # conv 5
    conv5_1 = ad.convolution_2d_forward_op(pool4, filters5_1, "NCHW", "SAME", 1, 1)
    bn5_1 = ad.bn_forward_op(conv5_1, "NCHW", "pre_activation")
    act5_1 = ad.activation_forward_op(bn5_1, "NCHW", "relu")
    conv5_2 = ad.convolution_2d_forward_op(act5_1, filters5_2, "NCHW", "SAME", 1, 1)
    bn5_2 = ad.bn_forward_op(conv5_2, "NCHW", "pre_activation")
    act5_2 = ad.activation_forward_op(bn5_2, "NCHW", "relu")
    conv5_3 = ad.convolution_2d_forward_op(act5_2, filters5_3, "NCHW", "SAME", 1, 1)
    bn5_3 = ad.bn_forward_op(conv5_3, "NCHW", "pre_activation")
    act5_3 = ad.activation_forward_op(bn5_3, "NCHW", "relu")
    pool5 = ad.pooling_2d_forward_op(act5_3, "NCHW", "max", 0, 0, 2, 2, 2, 2)

    # fc6
    pool5_flat = ad.flatten_op(pool5)
    mul6 = ad.matmul_op(pool5_flat, filters6)
    add6 = ad.add_op(mul6, biases6)
    bn6 = ad.fullybn_forward_op(add6, "NCHW")
    fc6 = ad.fullyactivation_forward_op(bn6, "NCHW", "relu")
    drop6 = ad.fullydropout_forward_op(fc6, "NCHW", 0.5)

    # fc7
    mul7 = ad.matmul_op(drop6, filters7)
    add7 = ad.add_op(mul7, biases7)
    bn7 = ad.fullybn_forward_op(add7, "NCHW")
    fc7 = ad.fullyactivation_forward_op(bn7, "NCHW", "relu")
    drop7 = ad.fullydropout_forward_op(fc7, "NCHW", 0.5)

    #fc8
    mul8 = ad.matmul_op(drop7, filters8)
    add8 = ad.add_op(mul8, biases8)
    fc8 = ad.fullyactivation_forward_op(add8, "NCHW", "softmax")

    loss = ad.l2loss_op(fc8, y_)

    grad = ad.gradients(loss, [filters1_1, filters1_2, filters2_1, filters2_2, filters3_1, filters3_2, filters3_3
                                , filters4_1, filters4_2, filters4_3, filters5_1, filters5_2, filters5_3
                                , filters6, filters7])
    executor = ad.Executor([grad[0], grad[1], grad[2], grad[3], grad[4], grad[5], grad[6], grad[7], grad[8], grad[9]
                               , grad[10], grad[11], grad[12], grad[13], grad[14], loss, y_], ctx=ctx)

    aph = 1.0e-6
    for i in range(20):

        select = random.randint(0, n-1)
        tmp_x_val = x_val[select]
        tmp_x_val = np.expand_dims(tmp_x_val, 0)
        tmp_y_val = y_val[select]
        tmp_y_val = np.expand_dims(tmp_y_val, 0)
        grad_val = executor.run(
            feed_dict={inputs: tmp_x_val, y_: tmp_y_val
                        , filters1_1: filters_val[0], filters1_2: filters_val[1], filters2_1: filters_val[2], filters2_2: filters_val[3]
                        , filters3_1: filters_val[4], filters3_2: filters_val[5], filters3_3: filters_val[6]
                        , filters4_1: filters_val[7], filters4_2: filters_val[8], filters4_3: filters_val[9]
                        , filters5_1: filters_val[10], filters5_2: filters_val[11], filters5_3: filters_val[12]
                        , filters6: filters_val[13], filters7: filters_val[14], filters8: filters_val[15]
                        , biases6: biases_val[0], biases7: biases_val[1], biases8: biases_val[2]})


        for i in range(14):
            sgd_update_gpu(filters_val[i], grad_val[i], aph)

    print(filters_val[0].asnumpy())
    return filters_val
示例#10
0
def inception_v3():
    X = ad.Placeholder("inputs")
    y_ = ad.Placeholder("y_")
    inputs = ad.Variable("inputs")
    filterb_1 = ad.Variable("filterb_1")
    filterb_2 = ad.Variable("filterb_2")
    filterb_3 = ad.Variable("filterb_3")
    filterb_4 = ad.Variable("filterb_4")
    filterb_5 = ad.Variable("filterb_5")

    ctx = ndarray.gpu(0)
    filtersb_val1 = np.ones((32, 3, 3, 3)) * 0.01
    filtersb_val2 = np.ones((32, 32, 3, 3)) * 0.01
    filtersb_val3 = np.ones((64, 32, 3, 3)) * 0.01
    filtersb_val4 = np.ones((80, 64, 1, 1)) * 0.01
    filtersb_val5 = np.ones((192, 80, 3, 3)) * 0.01
    y_val = np.zeros((147, 147, 64))

    #inception前
    covb_1 = ad.convolution_2d_forward_op(inputs, filterb_1, "NCHW", "VALID",
                                          2, 2)
    covb_2 = ad.convolution_2d_forward_op(covb_1, filterb_2, "NCHW", "VALID",
                                          1, 1)
    covb_3 = ad.convolution_2d_forward_op(covb_2, filterb_3, "NCHW", "SAME", 1,
                                          1)
    poolb = ad.pooling_2d_forward_op(covb_3, "NCHW", "max", 0, 0, 2, 2, 3, 3)
    covb_4 = ad.convolution_2d_forward_op(poolb, filterb_4, "NCHW", "VALID", 1,
                                          1)
    covb_5 = ad.convolution_2d_forward_op(covb_4, filterb_5, "NCHW", "VALID",
                                          1, 1)
    covb = ad.pooling_2d_forward_op(covb_5, "NCHW", "max", 0, 0, 2, 2, 3, 3)

    # inception_moudle1
    #inception_moudle1_1
    filter1_1_0 = ad.Variable("filter1_1_0")
    filter1_1_1a = ad.Variable("filter1_1_1a")
    filter1_1_1b = ad.Variable("filter1_1_1b")
    filter1_1_2a = ad.Variable("filter1_1_2a")
    filter1_1_2b = ad.Variable("filter1_1_2b")
    filter1_1_2c = ad.Variable("filter1_1_2c")
    filter1_1_3 = ad.Variable("filter1_1_3a")

    filter1_1_0_val = np.ones((64, 192, 1, 1)) * 0.01
    filter1_1_1_vala = np.ones((48, 192, 1, 1)) * 0.01
    filter1_1_1_valb = np.ones((64, 48, 5, 5)) * 0.01
    filter1_1_2_vala = np.ones((64, 192, 1, 1)) * 0.01
    filter1_1_2_valb = np.ones((96, 64, 3, 3)) * 0.01
    filter1_1_2_valc = np.ones((96, 96, 3, 3)) * 0.01
    filter1_1_3_val = np.ones((32, 192, 1, 1)) * 0.01

    # branch_0
    incep1_1_0 = ad.convolution_2d_forward_op(covb, filter1_1_0, "NCHW",
                                              "SAME", 1, 1)
    # branch 1
    incep1_1_1a = ad.convolution_2d_forward_op(covb, filter1_1_1a, "NCHW",
                                               "SAME", 1, 1)
    incep1_1_1 = ad.convolution_2d_forward_op(incep1_1_1a, filter1_1_1b,
                                              "NCHW", "SAME", 1, 1)
    # branch 2
    incep1_1_2a = ad.convolution_2d_forward_op(covb, filter1_1_2a, "NCHW",
                                               "SAME", 1, 1)
    incep1_1_2b = ad.convolution_2d_forward_op(incep1_1_2a, filter1_1_2b,
                                               "NCHW", "SAME", 1, 1)
    incep1_1_2 = ad.convolution_2d_forward_op(incep1_1_2b, filter1_1_2c,
                                              "NCHW", "SAME", 1, 1)
    # branch 3
    incep1_1_3a = ad.pooling_2d_forward_op(covb, "NCHW", "mean", 1, 1, 1, 1, 3,
                                           3)
    incep1_1_3 = ad.convolution_2d_forward_op(incep1_1_3a, filter1_1_3, "NCHW",
                                              "SAME", 1, 1)

    concat1_1a = ad.concat_forward_op(incep1_1_0, incep1_1_1)
    concat1_1b = ad.concat_forward_op(concat1_1a, incep1_1_2)
    concat1_1 = ad.concat_forward_op(concat1_1b, incep1_1_3)

    #inception_moudle1_2
    filter1_2_0 = ad.Variable("filter1_2_0")
    filter1_2_1a = ad.Variable("filter1_2_1a")
    filter1_2_1b = ad.Variable("filter1_2_1b")
    filter1_2_2a = ad.Variable("filter1_2_2a")
    filter1_2_2b = ad.Variable("filter1_2_2b")
    filter1_2_2c = ad.Variable("filter1_2_2c")
    filter1_2_3 = ad.Variable("filter1_2_3a")

    filter1_2_0_val = np.ones((64, 256, 1, 1)) * 0.01
    filter1_2_1_vala = np.ones((48, 256, 1, 1)) * 0.01
    filter1_2_1_valb = np.ones((64, 48, 5, 5)) * 0.01
    filter1_2_2_vala = np.ones((64, 256, 1, 1)) * 0.01
    filter1_2_2_valb = np.ones((96, 64, 3, 3)) * 0.01
    filter1_2_2_valc = np.ones((96, 96, 3, 3)) * 0.01
    filter1_2_3_val = np.ones((64, 256, 1, 1)) * 0.01

    # branch_0
    incep1_2_0 = ad.convolution_2d_forward_op(concat1_1, filter1_2_0, "NCHW",
                                              "SAME", 1, 1)
    # branch 1
    incep1_2_1a = ad.convolution_2d_forward_op(concat1_1, filter1_2_1a, "NCHW",
                                               "SAME", 1, 1)
    incep1_2_1 = ad.convolution_2d_forward_op(incep1_2_1a, filter1_2_1b,
                                              "NCHW", "SAME", 1, 1)
    # branch 2
    incep1_2_2a = ad.convolution_2d_forward_op(concat1_1, filter1_2_2a, "NCHW",
                                               "SAME", 1, 1)
    incep1_2_2b = ad.convolution_2d_forward_op(incep1_2_2a, filter1_2_2b,
                                               "NCHW", "SAME", 1, 1)
    incep1_2_2 = ad.convolution_2d_forward_op(incep1_2_2b, filter1_2_2c,
                                              "NCHW", "SAME", 1, 1)
    # branch 3
    incep1_2_3a = ad.pooling_2d_forward_op(concat1_1, "NCHW", "mean", 1, 1, 1,
                                           1, 3, 3)
    incep1_2_3 = ad.convolution_2d_forward_op(incep1_2_3a, filter1_2_3, "NCHW",
                                              "SAME", 1, 1)

    concat1_2a = ad.concat_forward_op(incep1_2_0, incep1_2_1)
    concat1_2b = ad.concat_forward_op(concat1_2a, incep1_2_2)
    concat1_2 = ad.concat_forward_op(concat1_2b, incep1_2_3)

    # inception_moudle1_3
    filter1_3_0 = ad.Variable("filter1_3_0")
    filter1_3_1a = ad.Variable("filter1_3_1a")
    filter1_3_1b = ad.Variable("filter1_3_1b")
    filter1_3_2a = ad.Variable("filter1_3_2a")
    filter1_3_2b = ad.Variable("filter1_3_2b")
    filter1_3_2c = ad.Variable("filter1_3_2c")
    filter1_3_3 = ad.Variable("filter1_3_3a")

    filter1_3_0_val = np.ones((64, 288, 1, 1)) * 0.01
    filter1_3_1_vala = np.ones((48, 288, 1, 1)) * 0.01
    filter1_3_1_valb = np.ones((64, 48, 5, 5)) * 0.01
    filter1_3_2_vala = np.ones((64, 288, 1, 1)) * 0.01
    filter1_3_2_valb = np.ones((96, 64, 3, 3)) * 0.01
    filter1_3_2_valc = np.ones((96, 96, 3, 3)) * 0.01
    filter1_3_3_val = np.ones((64, 288, 1, 1)) * 0.01

    # branch_0
    incep1_3_0 = ad.convolution_2d_forward_op(concat1_2, filter1_3_0, "NCHW",
                                              "SAME", 1, 1)
    # branch 1
    incep1_3_1a = ad.convolution_2d_forward_op(concat1_2, filter1_3_1a, "NCHW",
                                               "SAME", 1, 1)
    incep1_3_1 = ad.convolution_2d_forward_op(incep1_3_1a, filter1_3_1b,
                                              "NCHW", "SAME", 1, 1)
    # branch 2
    incep1_3_2a = ad.convolution_2d_forward_op(concat1_2, filter1_3_2a, "NCHW",
                                               "SAME", 1, 1)
    incep1_3_2b = ad.convolution_2d_forward_op(incep1_3_2a, filter1_3_2b,
                                               "NCHW", "SAME", 1, 1)
    incep1_3_2 = ad.convolution_2d_forward_op(incep1_3_2b, filter1_3_2c,
                                              "NCHW", "SAME", 1, 1)
    # branch 3
    incep1_3_3a = ad.pooling_2d_forward_op(concat1_2, "NCHW", "mean", 1, 1, 1,
                                           1, 3, 3)
    incep1_3_3 = ad.convolution_2d_forward_op(incep1_3_3a, filter1_3_3, "NCHW",
                                              "SAME", 1, 1)

    concat1_3a = ad.concat_forward_op(incep1_3_0, incep1_3_1)
    concat1_3b = ad.concat_forward_op(concat1_3a, incep1_3_2)
    concat1_3 = ad.concat_forward_op(concat1_3b, incep1_3_3)

    #
    #
    #
    #
    # # inception_moudle2
    # inception_moudle2_1
    filter2_1_0 = ad.Variable("filter2_1_0")
    filter2_1_1a = ad.Variable("filter2_1_1a")
    filter2_1_1b = ad.Variable("filter2_1_1b")
    filter2_1_1c = ad.Variable("filter2_1_1c")

    filter2_1_0_val = np.ones((384, 288, 3, 3)) * 0.01
    filter2_1_1_vala = np.ones((64, 288, 1, 1)) * 0.01
    filter2_1_1_valb = np.ones((96, 64, 3, 3)) * 0.01
    filter2_1_1_valc = np.ones((96, 96, 3, 3)) * 0.01

    # branch_0
    incep2_1_0 = ad.convolution_2d_forward_op(concat1_3, filter2_1_0, "NCHW",
                                              "VALID", 2, 2)
    # branch 1
    incep2_1_1a = ad.convolution_2d_forward_op(concat1_3, filter2_1_1a, "NCHW",
                                               "SAME", 1, 1)
    incep2_1_1b = ad.convolution_2d_forward_op(incep2_1_1a, filter2_1_1b,
                                               "NCHW", "SAME", 1, 1)
    incep2_1_1 = ad.convolution_2d_forward_op(incep2_1_1b, filter2_1_1c,
                                              "NCHW", "VALID", 2, 2)
    # branch 2
    incep2_1_2 = ad.pooling_2d_forward_op(concat1_3, "NCHW", "mean", 0, 0, 2,
                                          2, 3, 3)

    concat2_1a = ad.concat_forward_op(incep2_1_0, incep2_1_1)
    concat2_1 = ad.concat_forward_op(concat2_1a, incep2_1_2)

    # inception_moudle2_2
    filter2_2_0 = ad.Variable("filter2_2_0")
    filter2_2_1a = ad.Variable("filter2_2_1a")
    filter2_2_1b = ad.Variable("filter2_2_1b")
    filter2_2_1c = ad.Variable("filter2_2_1c")
    filter2_2_2a = ad.Variable("filter2_2_2a")
    filter2_2_2b = ad.Variable("filter2_2_2b")
    filter2_2_2c = ad.Variable("filter2_2_2c")
    filter2_2_2d = ad.Variable("filter2_2_2d")
    filter2_2_2e = ad.Variable("filter2_2_2e")
    filter2_2_3 = ad.Variable("filter2_2_3a")

    filter2_2_0_val = np.ones((192, 768, 1, 1)) * 0.01
    filter2_2_1_vala = np.ones((128, 768, 1, 1)) * 0.01
    filter2_2_1_valb = np.ones((128, 128, 1, 7)) * 0.01
    filter2_2_1_valc = np.ones((192, 128, 7, 1)) * 0.01
    filter2_2_2_vala = np.ones((128, 768, 1, 1)) * 0.01
    filter2_2_2_valb = np.ones((128, 128, 7, 1)) * 0.01
    filter2_2_2_valc = np.ones((128, 128, 1, 7)) * 0.01
    filter2_2_2_vald = np.ones((128, 128, 7, 1)) * 0.01
    filter2_2_2_vale = np.ones((192, 128, 1, 7)) * 0.01
    filter2_2_3_val = np.ones((192, 768, 1, 1)) * 0.01

    # branch_0
    incep2_2_0 = ad.convolution_2d_forward_op(concat2_1, filter2_2_0, "NCHW",
                                              "SAME", 1, 1)
    # branch 1
    incep2_2_1a = ad.convolution_2d_forward_op(concat2_1, filter2_2_1a, "NCHW",
                                               "SAME", 1, 1)
    incep2_2_1b = ad.convolution_2d_forward_op(incep2_2_1a, filter2_2_1b,
                                               "NCHW", "SAME", 1, 1)
    incep2_2_1 = ad.convolution_2d_forward_op(incep2_2_1b, filter2_2_1c,
                                              "NCHW", "SAME", 1, 1)
    # branch 2
    incep2_2_2a = ad.convolution_2d_forward_op(concat2_1, filter2_2_2a, "NCHW",
                                               "SAME", 1, 1)
    incep2_2_2b = ad.convolution_2d_forward_op(incep2_2_2a, filter2_2_2b,
                                               "NCHW", "SAME", 1, 1)
    incep2_2_2c = ad.convolution_2d_forward_op(incep2_2_2b, filter2_2_2c,
                                               "NCHW", "SAME", 1, 1)
    incep2_2_2d = ad.convolution_2d_forward_op(incep2_2_2c, filter2_2_2d,
                                               "NCHW", "SAME", 1, 1)
    incep2_2_2 = ad.convolution_2d_forward_op(incep2_2_2d, filter2_2_2e,
                                              "NCHW", "SAME", 1, 1)
    # branch 3
    incep2_2_3a = ad.pooling_2d_forward_op(concat2_1, "NCHW", "mean", 1, 1, 1,
                                           1, 3, 3)
    incep2_2_3 = ad.convolution_2d_forward_op(incep2_2_3a, filter2_2_3, "NCHW",
                                              "SAME", 1, 1)

    concat2_2a = ad.concat_forward_op(incep2_2_0, incep2_2_1)
    concat2_2b = ad.concat_forward_op(concat2_2a, incep2_2_2)
    concat2_2 = ad.concat_forward_op(concat2_2b, incep2_2_3)

    # inception_moudle2_3
    #     filter2_3_0 = ad.Variable("filter2_3_0")
    #     filter2_3_1a = ad.Variable("filter2_3_1a")
    #     filter2_3_1b = ad.Variable("filter2_3_1b")
    #     filter2_3_1c = ad.Variable("filter2_3_1c")
    #     filter2_3_2a = ad.Variable("filter2_3_2a")
    #     filter2_3_2b = ad.Variable("filter2_3_2b")
    #     filter2_3_2c = ad.Variable("filter2_3_2c")
    #     filter2_3_2d = ad.Variable("filter2_3_2d")
    #     filter2_3_2e = ad.Variable("filter2_3_2e")
    #     filter2_3_3 = ad.Variable("filter2_3_3a")
    #
    #     filter2_3_0_val = np.ones((192, 768, 1, 1)) * 0.01
    #     filter2_3_1_vala = np.ones((160, 768, 1, 1)) * 0.01
    #     filter2_3_1_valb = np.ones((160, 160, 1, 7)) * 0.01
    #     filter2_3_1_valc = np.ones((192, 160, 7, 1)) * 0.01
    #     filter2_3_2_vala = np.ones((160, 768, 1, 1)) * 0.01
    #     filter2_3_2_valb = np.ones((160, 160, 7,1)) * 0.01
    #     filter2_3_2_valc = np.ones((160, 160, 1, 7)) * 0.01
    #     filter2_3_2_vald = np.ones((160, 160, 7, 1)) * 0.01
    #     filter2_3_2_vale = np.ones((192, 160, 1, 7)) * 0.01
    #     filter2_3_3_val = np.ones((192, 768, 1, 1)) * 0.01
    #
    #     # branch_0
    #     incep2_3_0 = ad.convolution_2d_forward_op(concat2_2, filter2_3_0, "NCHW", "SAME", 1, 1)
    #     # branch 1
    #     incep2_3_1a = ad.convolution_2d_forward_op(concat2_2, filter2_3_1a, "NCHW", "SAME", 1, 1)
    #     incep2_3_1b = ad.convolution_2d_forward_op(incep2_3_1a, filter2_3_1b, "NCHW", "SAME", 1, 1)
    #     incep2_3_1 = ad.convolution_2d_forward_op(incep2_3_1b, filter2_3_1c, "NCHW", "SAME", 1, 1)
    #     # branch 2
    #     incep2_3_2a = ad.convolution_2d_forward_op(concat2_2, filter2_3_2a, "NCHW", "SAME", 1, 1)
    #     incep2_3_2b = ad.convolution_2d_forward_op(incep2_3_2a, filter2_3_2b, "NCHW", "SAME", 1, 1)
    #     incep2_3_2c = ad.convolution_2d_forward_op(incep2_3_2b, filter2_3_2c, "NCHW", "SAME", 1, 1)
    #     incep2_3_2d = ad.convolution_2d_forward_op(incep2_3_2c, filter2_3_2d, "NCHW", "SAME", 1, 1)
    #     incep2_3_2 = ad.convolution_2d_forward_op(incep2_3_2d, filter2_3_2e, "NCHW", "SAME", 1, 1)
    #     # branch 3
    #     incep2_3_3a = ad.pooling_2d_forward_op(concat2_2, "NCHW", "mean", 1, 1, 1, 1, 3, 3)
    #     incep2_3_3 = ad.convolution_2d_forward_op(incep2_3_3a, filter2_3_3, "NCHW", "SAME", 1, 1)
    #
    #     concat2_3a = ad.concat_forward_op(incep2_3_0, incep2_3_1)
    #     concat2_3b = ad.concat_forward_op(concat2_3a, incep2_3_2)
    #     concat2_3 = ad.concat_forward_op(concat2_3b, incep2_3_3)

    # inception_moudle2_4
    #    filter2_4_0 = ad.Variable("filter2_4_0")
    #    filter2_4_1a = ad.Variable("filter2_4_1a")
    #    filter2_4_1b = ad.Variable("filter2_4_1b")
    #    filter2_4_1c = ad.Variable("filter2_4_1c")
    #    filter2_4_2a = ad.Variable("filter2_4_2a")
    #    filter2_4_2b = ad.Variable("filter2_4_2b")
    #    filter2_4_2c = ad.Variable("filter2_4_2c")
    #    filter2_4_2d = ad.Variable("filter2_4_2d")
    #    filter2_4_2e = ad.Variable("filter2_4_2e")
    #    filter2_4_3 = ad.Variable("filter2_4_3a")
    #
    #    filter2_4_0_val = np.ones((192, 768, 1, 1)) * 0.01
    #    filter2_4_1_vala = np.ones((160, 768, 1, 1)) * 0.01
    #    filter2_4_1_valb = np.ones((160, 160, 1, 7)) * 0.01
    #    filter2_4_1_valc = np.ones((192, 160, 7, 1)) * 0.01
    #    filter2_4_2_vala = np.ones((160, 768, 1, 1)) * 0.01
    #    filter2_4_2_valb = np.ones((160, 160, 7, 1)) * 0.01
    #    filter2_4_2_valc = np.ones((160, 160, 1, 7)) * 0.01
    #    filter2_4_2_vald = np.ones((160, 160, 7, 1)) * 0.01
    #    filter2_4_2_vale = np.ones((192, 160, 1, 7)) * 0.01
    #    filter2_4_3_val = np.ones((192, 768, 1, 1)) * 0.01
    #
    #    # branch_0
    #    incep2_4_0 = ad.convolution_2d_forward_op(concat2_3, filter2_4_0, "NCHW", "SAME", 1, 1)
    #    # branch 1
    #    incep2_4_1a = ad.convolution_2d_forward_op(concat2_3, filter2_4_1a, "NCHW", "SAME", 1, 1)
    #    incep2_4_1b = ad.convolution_2d_forward_op(incep2_4_1a, filter2_4_1b, "NCHW", "SAME", 1, 1)
    #    incep2_4_1 = ad.convolution_2d_forward_op(incep2_4_1b, filter2_4_1c, "NCHW", "SAME", 1, 1)
    #    # branch 2
    #    incep2_4_2a = ad.convolution_2d_forward_op(concat2_3, filter2_4_2a, "NCHW", "SAME", 1, 1)
    #    incep2_4_2b = ad.convolution_2d_forward_op(incep2_4_2a, filter2_4_2b, "NCHW", "SAME", 1, 1)
    #    incep2_4_2c = ad.convolution_2d_forward_op(incep2_4_2b, filter2_4_2c, "NCHW", "SAME", 1, 1)
    #    incep2_4_2d = ad.convolution_2d_forward_op(incep2_4_2c, filter2_4_2d, "NCHW", "SAME", 1, 1)
    #    incep2_4_2 = ad.convolution_2d_forward_op(incep2_4_2d, filter2_4_2e, "NCHW", "SAME", 1, 1)
    #    # branch 3
    #    incep2_4_3a = ad.pooling_2d_forward_op(concat2_3, "NCHW", "mean", 1, 1, 1, 1, 3, 3)
    #    incep2_4_3 = ad.convolution_2d_forward_op(incep2_4_3a, filter2_4_3, "NCHW", "SAME", 1, 1)
    #
    #    concat2_4a = ad.concat_forward_op(incep2_4_0, incep2_4_1)
    #    concat2_4b = ad.concat_forward_op(concat2_4a, incep2_4_2)
    #    concat2_4 = ad.concat_forward_op(concat2_4b, incep2_4_3)

    # inception_moudle2_5
    #     filter2_5_0 = ad.Variable("filter2_5_0")
    #     filter2_5_1a = ad.Variable("filter2_5_1a")
    #     filter2_5_1b = ad.Variable("filter2_5_1b")
    #     filter2_5_1c = ad.Variable("filter2_5_1c")
    #     filter2_5_2a = ad.Variable("filter2_5_2a")
    #     filter2_5_2b = ad.Variable("filter2_5_2b")
    #     filter2_5_2c = ad.Variable("filter2_5_2c")
    #     filter2_5_2d = ad.Variable("filter2_5_2d")
    #     filter2_5_2e = ad.Variable("filter2_5_2e")
    #     filter2_5_3 = ad.Variable("filter2_5_3a")
    #
    #     filter2_5_0_val = np.ones((192, 768, 1, 1)) * 0.01
    #     filter2_5_1_vala = np.ones((160, 768, 1, 1)) * 0.01
    #     filter2_5_1_valb = np.ones((160, 160, 1, 7)) * 0.01
    #     filter2_5_1_valc = np.ones((192, 160, 7, 1)) * 0.01
    #     filter2_5_2_vala = np.ones((160, 768, 1, 1)) * 0.01
    #     filter2_5_2_valb = np.ones((160, 160, 7, 1)) * 0.01
    #     filter2_5_2_valc = np.ones((160, 160, 1, 7)) * 0.01
    #     filter2_5_2_vald = np.ones((160, 160, 7, 1)) * 0.01
    #     filter2_5_2_vale = np.ones((192, 160, 1, 7)) * 0.01
    #     filter2_5_3_val = np.ones((192, 768, 1, 1)) * 0.01
    #
    #     # branch_0
    #     incep2_5_0 = ad.convolution_2d_forward_op(concat2_4, filter2_5_0, "NCHW", "SAME", 1, 1)
    #     # branch 1
    #     incep2_5_1a = ad.convolution_2d_forward_op(concat2_4, filter2_5_1a, "NCHW", "SAME", 1, 1)
    #     incep2_5_1b = ad.convolution_2d_forward_op(incep2_5_1a, filter2_5_1b, "NCHW", "SAME", 1, 1)
    #     incep2_5_1 = ad.convolution_2d_forward_op(incep2_5_1b, filter2_5_1c, "NCHW", "SAME", 1, 1)
    #     # branch 2
    #     incep2_5_2a = ad.convolution_2d_forward_op(concat2_4, filter2_5_2a, "NCHW", "SAME", 1, 1)
    #     incep2_5_2b = ad.convolution_2d_forward_op(incep2_5_2a, filter2_5_2b, "NCHW", "SAME", 1, 1)
    #     incep2_5_2c = ad.convolution_2d_forward_op(incep2_5_2b, filter2_5_2c, "NCHW", "SAME", 1, 1)
    #     incep2_5_2d = ad.convolution_2d_forward_op(incep2_5_2c, filter2_5_2d, "NCHW", "SAME", 1, 1)
    #     incep2_5_2 = ad.convolution_2d_forward_op(incep2_5_2d, filter2_5_2e, "NCHW", "SAME", 1, 1)
    #     # branch 3
    #     incep2_5_3a = ad.pooling_2d_forward_op(concat2_4, "NCHW", "mean", 1, 1, 1, 1, 3, 3)
    #     incep2_5_3 = ad.convolution_2d_forward_op(incep2_5_3a, filter2_5_3, "NCHW", "SAME", 1, 1)
    #
    #     concat2_5a = ad.concat_forward_op(incep2_5_0, incep2_5_1)
    #     concat2_5b = ad.concat_forward_op(concat2_5a, incep2_5_2)
    #     concat2_5 = ad.concat_forward_op(concat2_5b, incep2_5_3)

    # # inception_moudle3
    # inception_moudle3_1
    filter3_1_0a = ad.Variable("filter3_1_0a")
    filter3_1_0b = ad.Variable("filter3_1_0b")
    filter3_1_1a = ad.Variable("filter3_1_1a")
    filter3_1_1b = ad.Variable("filter3_1_1b")
    filter3_1_1c = ad.Variable("filter3_1_1c")
    filter3_1_1d = ad.Variable("filter3_1_1d")

    filter3_1_0_vala = np.ones((192, 768, 1, 1)) * 0.01
    filter3_1_0_valb = np.ones((320, 192, 3, 3)) * 0.01
    filter3_1_1_vala = np.ones((192, 768, 1, 1)) * 0.01
    filter3_1_1_valb = np.ones((192, 192, 1, 7)) * 0.01
    filter3_1_1_valc = np.ones((192, 192, 7, 1)) * 0.01
    filter3_1_1_vald = np.ones((192, 192, 3, 3)) * 0.01

    # branch_0
    incep3_1_0a = ad.convolution_2d_forward_op(concat2_2, filter3_1_0a, "NCHW",
                                               "SAME", 1, 1)
    incep3_1_0 = ad.convolution_2d_forward_op(incep3_1_0a, filter3_1_0b,
                                              "NCHW", "VALID", 2, 2)
    # branch 1
    incep3_1_1a = ad.convolution_2d_forward_op(concat2_2, filter3_1_1a, "NCHW",
                                               "SAME", 1, 1)
    incep3_1_1b = ad.convolution_2d_forward_op(incep3_1_1a, filter3_1_1b,
                                               "NCHW", "SAME", 1, 1)
    incep3_1_1c = ad.convolution_2d_forward_op(incep3_1_1b, filter3_1_1c,
                                               "NCHW", "SAME", 1, 1)
    incep3_1_1 = ad.convolution_2d_forward_op(incep3_1_1c, filter3_1_1d,
                                              "NCHW", "VALID", 2, 2)
    # branch 2
    incep3_1_2 = ad.pooling_2d_forward_op(concat2_2, "NCHW", "mean", 0, 0, 2,
                                          2, 3, 3)

    concat3_1a = ad.concat_forward_op(incep3_1_0, incep3_1_1)
    concat3_1 = ad.concat_forward_op(concat3_1a, incep3_1_2)

    # inception_moudle3_2
    filter3_2_0 = ad.Variable("filter3_2_0")
    filter3_2_1a = ad.Variable("filter3_2_1a")
    filter3_2_1b = ad.Variable("filter3_2_1b")
    filter3_2_1c = ad.Variable("filter3_2_1c")
    filter3_2_2a = ad.Variable("filter3_2_2a")
    filter3_2_2b = ad.Variable("filter3_2_2b")
    filter3_2_2c = ad.Variable("filter3_2_2c")
    filter3_2_2d = ad.Variable("filter3_2_2d")
    filter3_2_3 = ad.Variable("filter3_2_3a")

    filter3_2_0_val = np.ones((320, 1280, 1, 1)) * 0.01
    filter3_2_1_vala = np.ones((384, 1280, 1, 1)) * 0.01
    filter3_2_1_valb = np.ones((384, 384, 1, 3)) * 0.01
    filter3_2_1_valc = np.ones((384, 384, 3, 1)) * 0.01
    filter3_2_2_vala = np.ones((448, 1280, 1, 1)) * 0.01
    filter3_2_2_valb = np.ones((384, 448, 3, 3)) * 0.01
    filter3_2_2_valc = np.ones((384, 384, 1, 3)) * 0.01
    filter3_2_2_vald = np.ones((384, 384, 3, 1)) * 0.01
    filter3_2_3_val = np.ones((192, 1280, 1, 1)) * 0.01

    # branch_0
    incep3_2_0 = ad.convolution_2d_forward_op(concat3_1, filter3_2_0, "NCHW",
                                              "SAME", 1, 1)
    # branch 1
    incep3_2_1a = ad.convolution_2d_forward_op(concat3_1, filter3_2_1a, "NCHW",
                                               "SAME", 1, 1)
    incep3_2_1b = ad.convolution_2d_forward_op(incep3_2_1a, filter3_2_1b,
                                               "NCHW", "SAME", 1, 1)
    incep3_2_1c = ad.convolution_2d_forward_op(incep3_2_1a, filter3_2_1c,
                                               "NCHW", "SAME", 1, 1)
    incep3_2_1 = ad.concat_forward_op(incep3_2_1b, incep3_2_1c)
    # branch 2
    incep3_2_2a = ad.convolution_2d_forward_op(concat3_1, filter3_2_2a, "NCHW",
                                               "SAME", 1, 1)
    incep3_2_2b = ad.convolution_2d_forward_op(incep3_2_2a, filter3_2_2b,
                                               "NCHW", "SAME", 1, 1)
    incep3_2_2c = ad.convolution_2d_forward_op(incep3_2_2b, filter3_2_2c,
                                               "NCHW", "SAME", 1, 1)
    incep3_2_2d = ad.convolution_2d_forward_op(incep3_2_2b, filter3_2_2d,
                                               "NCHW", "SAME", 1, 1)
    incep3_2_2 = ad.concat_forward_op(incep3_2_2c, incep3_2_2d)
    # branch 3
    incep3_2_3a = ad.pooling_2d_forward_op(concat3_1, "NCHW", "mean", 1, 1, 1,
                                           1, 3, 3)
    incep3_2_3 = ad.convolution_2d_forward_op(incep3_2_3a, filter3_2_3, "NCHW",
                                              "SAME", 1, 1)

    concat3_2a = ad.concat_forward_op(incep3_2_0, incep3_2_1)
    concat3_2b = ad.concat_forward_op(concat3_2a, incep3_2_2)
    concat3_2 = ad.concat_forward_op(concat3_2b, incep3_2_3)

    # # inception_moudle3_3
    #     filter3_3_0 = ad.Variable("filter3_3_0")
    #     filter3_3_1a = ad.Variable("filter3_3_1a")
    #     filter3_3_1b = ad.Variable("filter3_3_1b")
    #     filter3_3_1c = ad.Variable("filter3_3_1c")
    #     filter3_3_2a = ad.Variable("filter3_3_2a")
    #     filter3_3_2b = ad.Variable("filter3_3_2b")
    #     filter3_3_2c = ad.Variable("filter3_3_2c")
    #     filter3_3_2d = ad.Variable("filter3_3_2d")
    #     filter3_3_3 = ad.Variable("filter3_3_3a")
    #
    #     filter3_3_0_val = np.ones((320, 2048, 1, 1)) * 0.01
    #     filter3_3_1_vala = np.ones((384, 2048, 1, 1)) * 0.01
    #     filter3_3_1_valb = np.ones((384, 384, 1, 3)) * 0.01
    #     filter3_3_1_valc = np.ones((384, 384, 3, 1)) * 0.01
    #     filter3_3_2_vala = np.ones((448, 2048, 1, 1)) * 0.01
    #     filter3_3_2_valb = np.ones((384, 448, 3, 3)) * 0.01
    #     filter3_3_2_valc = np.ones((384, 384, 1, 3)) * 0.01
    #     filter3_3_2_vald = np.ones((384, 384, 3, 1)) * 0.01
    #     filter3_3_3_val = np.ones((192, 2048, 1, 1)) * 0.01
    #
    #     # branch_0
    #     incep3_3_0 = ad.convolution_2d_forward_op(concat3_2, filter3_3_0, "NCHW", "SAME", 1, 1)
    #     # branch 1
    #     incep3_3_1a = ad.convolution_2d_forward_op(concat3_2, filter3_3_1a, "NCHW", "SAME", 1, 1)
    #     incep3_3_1b = ad.convolution_2d_forward_op(incep3_3_1a, filter3_3_1b, "NCHW", "SAME", 1, 1)
    #     incep3_3_1c = ad.convolution_2d_forward_op(incep3_3_1a, filter3_3_1c, "NCHW", "SAME", 1, 1)
    #     incep3_3_1 = ad.concat_forward_op(incep3_3_1b, incep3_3_1c)
    #
    #     # branch 2
    #     incep3_3_2a = ad.convolution_2d_forward_op(concat3_2, filter3_3_2a, "NCHW", "SAME", 1, 1)
    #     incep3_3_2b = ad.convolution_2d_forward_op(incep3_3_2a, filter3_3_2b, "NCHW", "SAME", 1, 1)
    #     incep3_3_2c = ad.convolution_2d_forward_op(incep3_3_2b, filter3_3_2c, "NCHW", "SAME", 1, 1)
    #     incep3_3_2d = ad.convolution_2d_forward_op(incep3_3_2b, filter3_3_2d, "NCHW", "SAME", 1, 1)
    #     incep3_3_2 = ad.concat_forward_op(incep3_3_2c, incep3_3_2d)
    #     # branch 3
    #     incep3_3_3a = ad.pooling_2d_forward_op(concat3_2, "NCHW", "mean", 1, 1, 1, 1, 3, 3)
    #     incep3_3_3 = ad.convolution_2d_forward_op(incep3_3_3a, filter3_3_3, "NCHW", "SAME", 1, 1)
    #
    #     concat3_3a = ad.concat_forward_op(incep3_3_0, incep3_3_1)
    #     concat3_3b = ad.concat_forward_op(concat3_3a, incep3_3_2)
    #     concat3_3 = ad.concat_forward_op(concat3_3b, incep3_3_3)

    filtera1 = ad.Variable("filtera1")
    filtera1val = np.ones((1000, 2048, 1, 1)) * 0.01

    filtersmul = ad.Variable("filtersmul")
    filtersmulval = np.ones((1000, n_class)) * 0.01

    biases = ad.Variable("biases")
    biasesval = np.ones((batch_size, n_class)) * 0.01

    poollast = ad.pooling_2d_forward_op(concat3_2, "NCHW", "mean", 0, 0, 1, 1,
                                        8, 8)
    dropout = ad.dropout_forward_op(poollast, "NCHW", 0.8)
    convlast = ad.convolution_2d_forward_op(dropout, filtera1, "NCHW", "SAME",
                                            1, 1)
    squeeze = ad.squeeze_op(convlast)

    # fc8
    mul8 = ad.matmul_op(squeeze, filtersmul)
    add8 = ad.add_op(mul8, biases)
    fc8 = ad.fullyactivation_forward_op(add8, "NCHW", "softmax")

    loss = ad.softmaxcrossentropy_op(fc8, y_)
    X_val = np.empty(shape=(batch_size, 3, 32, 32), dtype=np.float32)
    y_val = np.empty(shape=(batch_size, n_class), dtype=np.float32)
    aph = 0.001
    t = train.Adam_minimize(loss, aph)
    t.init_Variable({
        filterb_1: filtersb_val1,
        filterb_2: filtersb_val2,
        filterb_3: filtersb_val3,
        filterb_4: filtersb_val4,
        filterb_5: filtersb_val5,
        filter1_1_0: filter1_1_0_val,
        filter1_1_1a: filter1_1_1_vala,
        filter1_1_1b: filter1_1_1_valb,
        filter1_1_2a: filter1_1_2_vala,
        filter1_1_2b: filter1_1_2_valb,
        filter1_1_2c: filter1_1_2_valc,
        filter1_1_3: filter1_1_3_val,
        filter1_2_0: filter1_2_0_val,
        filter1_2_1a: filter1_2_1_vala,
        filter1_2_1b: filter1_2_1_valb,
        filter1_2_2a: filter1_2_2_vala,
        filter1_2_2b: filter1_2_2_valb,
        filter1_2_2c: filter1_2_2_valc,
        filter1_2_3: filter1_2_3_val,
        filter1_3_0: filter1_3_0_val,
        filter1_3_1a: filter1_3_1_vala,
        filter1_3_1b: filter1_3_1_valb,
        filter1_3_2a: filter1_3_2_vala,
        filter1_3_2b: filter1_3_2_valb,
        filter1_3_2c: filter1_3_2_valc,
        filter1_3_3: filter1_3_3_val,
        filter2_1_0: filter2_1_0_val,
        filter2_1_1a: filter2_1_1_vala,
        filter2_1_1b: filter2_1_1_valb,
        filter2_1_1c: filter2_1_1_valc,
        filter2_2_0: filter2_2_0_val,
        filter2_2_1a: filter2_2_1_vala,
        filter2_2_1b: filter2_2_1_valb,
        filter2_2_1c: filter2_2_1_valc,
        filter2_2_2a: filter2_2_2_vala,
        filter2_2_2b: filter2_2_2_valb,
        filter2_2_2c: filter2_2_2_valc,
        filter2_2_2d: filter2_2_2_vald,
        filter2_2_2e: filter2_2_2_vale,
        filter2_2_3: filter2_2_3_val

        # , filter2_3_0: filter2_3_0_val, filter2_3_1a: filter2_3_1_vala, filter2_3_1b: filter2_3_1_valb,
        #                                filter2_3_1c: filter2_3_1_valc,
        #                                filter2_3_2a: filter2_3_2_vala, filter2_3_2b: filter2_3_2_valb,
        #                                filter2_3_2c: filter2_3_2_valc, filter2_3_2d: filter2_3_2_vald,
        #                                filter2_3_2e: filter2_3_2_vale, filter2_3_3: filter2_3_3_val
        # , filter2_4_0: filter2_4_0_val, filter2_4_1a: filter2_4_1_vala, filter2_4_1b: filter2_4_1_valb,
        #                                filter2_4_1c: filter2_4_1_valc,
        #                                filter2_4_2a: filter2_4_2_vala, filter2_4_2b: filter2_4_2_valb,
        #                                filter2_4_2c: filter2_4_2_valc, filter2_4_2d: filter2_4_2_vald,
        #                                filter2_4_2e: filter2_4_2_vale, filter2_4_3: filter2_4_3_val
        # , filter2_5_0: filter2_5_0_val, filter2_5_1a: filter2_5_1_vala, filter2_5_1b: filter2_5_1_valb,
        #                                filter2_5_1c: filter2_5_1_valc,
        #                                filter2_5_2a: filter2_5_2_vala, filter2_5_2b: filter2_5_2_valb,
        #                                filter2_5_2c: filter2_5_2_valc, filter2_5_2d: filter2_5_2_vald,
        #                                filter2_5_2e: filter2_5_2_vale, filter2_5_3: filter2_5_3_val
        ,
        filter3_1_0a: filter3_1_0_vala,
        filter3_1_0b: filter3_1_0_valb,
        filter3_1_1a: filter3_1_1_vala,
        filter3_1_1b: filter3_1_1_valb,
        filter3_1_1c: filter3_1_1_valc,
        filter3_1_1d: filter3_1_1_vald,
        filter3_2_0: filter3_2_0_val,
        filter3_2_1a: filter3_2_1_vala,
        filter3_2_1b: filter3_2_1_valb,
        filter3_2_1c: filter3_2_1_valc,
        filter3_2_2a: filter3_2_2_vala,
        filter3_2_2b: filter3_2_2_valb,
        filter3_2_2c: filter3_2_2_valc,
        filter3_2_2d: filter3_2_2_vald,
        filter3_2_3: filter3_2_3_val
        # , filter3_3_0: filter3_3_0_val, filter3_3_1a: filter3_3_1_vala,
        #                                filter3_3_1b: filter3_3_1_valb,
        #                                filter3_3_1c: filter3_3_1_valc, filter3_3_2a: filter3_3_2_vala,
        #                                filter3_3_2b: filter3_3_2_valb,
        #                                filter3_3_2c: filter3_3_2_valc, filter3_3_2d: filter3_3_2_vald,
        #                                filter3_3_3: filter3_3_3_val,
        ,
        filtera1: filtera1val,
        filtersmul: filtersmulval,
        biases: biasesval
    })

    train_x, train_y, test_x, test_y = prepare_data()
    num_epochs = 10
    n_train_batches = train_x.shape[0] // batch_size
    n_test_batches = test_x.shape[0] // batch_size
    for i in range(num_epochs):
        print("epoch %d" % i)
        for minibatch_index in range(n_train_batches):
            minibatch_start = minibatch_index * batch_size
            minibatch_end = (minibatch_index + 1) * batch_size
            X_val[:] = train_x[minibatch_start:minibatch_end]
            y_val[:] = train_y[minibatch_start:minibatch_end]
            # print(y_val.shape)
            # y_val[:] = convert_to_one_hot(train_y[minibatch_start:minibatch_end])
            t.run({X: X_val, y_: y_val})
            # print(t.run_get_nodelist_once({X: X_val, y_: y_val}, [fc8])[fc8].asnumpy())
            # print(map_to_numpy(t.get_Variable_node_to_val_map()))
            print("loss_val:", t.get_loss().asnumpy())
示例#11
0
def ResNet152(inputs, n_class):
    X = ad.Placeholder("X")
    y_ = ad.Placeholder("y_")
    W1 = ad.Variable("W1")
    W6 = ad.Variable("W6")
    b6 = ad.Variable("b6")
    W7 = ad.Variable("W7")
    b7 = ad.Variable("b7")
    keep_prob = ad.Placeholder("keep_prob")

    #conv1
    conv1 = ad.convolution_2d_forward_op(X, W1, "NCHW", "VALID", 2, 2)
    bn1 = ad.bn_forward_op(conv1, "NCHW", "pre_activation")
    act1 = ad.activation_forward_op(bn1, "NCHW", "relu")
    pool1 = ad.pooling_2d_forward_op(act1, "NCHW", "max", 0, 0, 2, 2, 3, 3)

    #conv2_x
    conv2, dict2 = convolutional_block(inputs=pool1,
                                       kernel_size=3,
                                       in_filter=64,
                                       out_filters=[64, 64, 256],
                                       block_name="2a",
                                       stride=1)
    iden2_1, dict2_1 = identity_block(inputs=conv2,
                                      kernel_size=3,
                                      in_filter=256,
                                      out_filters=[64, 64, 256],
                                      block_name="2b",
                                      stride=1)
    iden2_2, dict2_2 = identity_block(iden2_1, 3, 256, [64, 64, 256], "2c", 1)

    #conv3_x
    conv3, dict3 = convolutional_block(iden2_2, 3, 256, [128, 128, 512], "3a",
                                       1)
    iden3_1, dict3_1 = identity_block(conv3, 3, 512, [128, 128, 512], "3b", 1)
    iden3_2, dict3_2 = identity_block(iden3_1, 3, 512, [128, 128, 512], "3c",
                                      1)
    iden3_3, dict3_3 = identity_block(iden3_2, 3, 512, [128, 128, 512], "3d",
                                      1)
    iden3_4, dict3_4 = identity_block(iden3_3, 3, 512, [128, 128, 512], "3e",
                                      1)
    iden3_5, dict3_5 = identity_block(iden3_4, 3, 512, [128, 128, 512], "3f",
                                      1)
    iden3_6, dict3_6 = identity_block(iden3_5, 3, 512, [128, 128, 512], "3g",
                                      1)
    iden3_7, dict3_7 = identity_block(iden3_6, 3, 512, [128, 128, 512], "3h",
                                      1)

    #conv4_x
    conv4, dict4 = convolutional_block(iden3_7, 3, 512, [256, 256, 1024], "4a",
                                       1)
    iden4_1, dict4_1 = identity_block(conv4, 3, 1024, [256, 256, 1024], "4b",
                                      1)
    iden4_2, dict4_2 = identity_block(iden4_1, 3, 1024, [256, 256, 1024], "4c",
                                      1)
    iden4_3, dict4_3 = identity_block(iden4_2, 3, 1024, [256, 256, 1024], "4d",
                                      1)
    iden4_4, dict4_4 = identity_block(iden4_3, 3, 1024, [256, 256, 1024], "4e",
                                      1)
    iden4_5, dict4_5 = identity_block(iden4_4, 3, 1024, [256, 256, 1024], "4f",
                                      1)
    iden4_6, dict4_6 = identity_block(iden4_5, 3, 1024, [256, 256, 1024], "4f",
                                      1)
    iden4_7, dict4_7 = identity_block(iden4_6, 3, 1024, [256, 256, 1024], "4f",
                                      1)
    iden4_8, dict4_8 = identity_block(iden4_7, 3, 1024, [256, 256, 1024], "4f",
                                      1)
    iden4_9, dict4_9 = identity_block(iden4_8, 3, 1024, [256, 256, 1024], "4f",
                                      1)
    iden4_10, dict4_10 = identity_block(iden4_9, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_11, dict4_11 = identity_block(iden4_10, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_12, dict4_12 = identity_block(iden4_11, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_13, dict4_13 = identity_block(iden4_12, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_14, dict4_14 = identity_block(iden4_13, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_15, dict4_15 = identity_block(iden4_14, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_16, dict4_16 = identity_block(iden4_15, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_17, dict4_17 = identity_block(iden4_16, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_18, dict4_18 = identity_block(iden4_17, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_19, dict4_19 = identity_block(iden4_18, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_20, dict4_20 = identity_block(iden4_19, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_21, dict4_21 = identity_block(iden4_20, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_22, dict4_22 = identity_block(iden4_21, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_23, dict4_23 = identity_block(iden4_22, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_24, dict4_24 = identity_block(iden4_23, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_25, dict4_25 = identity_block(iden4_24, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_26, dict4_26 = identity_block(iden4_25, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_27, dict4_27 = identity_block(iden4_26, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_28, dict4_28 = identity_block(iden4_27, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_29, dict4_29 = identity_block(iden4_28, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_30, dict4_30 = identity_block(iden4_29, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_31, dict4_31 = identity_block(iden4_30, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_32, dict4_32 = identity_block(iden4_31, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_33, dict4_33 = identity_block(iden4_32, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_34, dict4_34 = identity_block(iden4_33, 3, 1024, [256, 256, 1024],
                                        "4f", 1)
    iden4_35, dict4_35 = identity_block(iden4_34, 3, 1024, [256, 256, 1024],
                                        "4f", 1)

    #conv5_x
    conv5, dict5 = convolutional_block(iden4_35, 3, 1024, [512, 512, 2048],
                                       "5a", 1)
    iden5_1, dict5_1 = identity_block(conv5, 3, 2048, [512, 512, 2048], "5b",
                                      1)
    iden5_2, dict5_2 = identity_block(iden5_1, 3, 2048, [512, 512, 2048], "5c",
                                      1)
    pool5 = ad.pooling_2d_forward_op(iden5_2, "NCHW", "mean", 0, 0, 1, 1, 2, 2)

    pool5_flat = ad.flatten_op(pool5)
    mul6 = ad.matmul_op(pool5_flat, W6)
    add6 = ad.add_op(mul6, b6)
    act6 = ad.fullyactivation_forward_op(add6, "NCHW", "relu")
    drop_out = ad.fullydropout_forward_op(act6, "NCHW", keep_prob)
    mul7 = ad.matmul_op(drop_out, W7)
    add7 = ad.add_op(mul7, b7)
    act7 = ad.fullyactivation_forward_op(add7, "NCHW", "softmax")

    loss = ad.softmaxcrossentropy_op(act7, y_)

    X_val = np.random.normal(0, 0.5, (10, 3, 230, 230))
    W1_val = np.random.normal(0, 0.5, (64, 3, 7, 7))
    W6_val = np.random.normal(0, 0.5, (7 * 7 * 2048, 50))
    b6_val = np.random.normal(0, 0.5, (10, 50))
    W7_val = np.random.normal(0, 0.5, (50, 6))
    b7_val = np.random.normal(0, 0.5, (10, 6))
    y_val = np.random.normal(0, 0.5, (10, 6))

    aph = 0.001
    t = train.Adam_minimize(loss, aph)
    feed_dict = {W1: W1_val, W6: W6_val, W7: W7_val, b6: b6_val, b7: b7_val}
    feed_dict.update(dict2)
    feed_dict.update(dict2_1)
    feed_dict.update(dict2_2)
    feed_dict.update(dict3)
    feed_dict.update(dict3_1)
    feed_dict.update(dict3_2)
    feed_dict.update(dict3_3)
    feed_dict.update(dict3_4)
    feed_dict.update(dict3_5)
    feed_dict.update(dict3_6)
    feed_dict.update(dict3_7)
    feed_dict.update(dict4)
    feed_dict.update(dict4_1)
    feed_dict.update(dict4_2)
    feed_dict.update(dict4_3)
    feed_dict.update(dict4_4)
    feed_dict.update(dict4_5)
    feed_dict.update(dict4_6)
    feed_dict.update(dict4_7)
    feed_dict.update(dict4_8)
    feed_dict.update(dict4_9)
    feed_dict.update(dict4_10)
    feed_dict.update(dict4_11)
    feed_dict.update(dict4_12)
    feed_dict.update(dict4_13)
    feed_dict.update(dict4_14)
    feed_dict.update(dict4_15)
    feed_dict.update(dict4_16)
    feed_dict.update(dict4_17)
    feed_dict.update(dict4_18)
    feed_dict.update(dict4_19)
    feed_dict.update(dict4_20)
    feed_dict.update(dict4_21)
    feed_dict.update(dict4_22)
    feed_dict.update(dict4_23)
    feed_dict.update(dict4_24)
    feed_dict.update(dict4_25)
    feed_dict.update(dict4_26)
    feed_dict.update(dict4_27)
    feed_dict.update(dict4_28)
    feed_dict.update(dict4_29)
    feed_dict.update(dict4_30)
    feed_dict.update(dict4_31)
    feed_dict.update(dict4_32)
    feed_dict.update(dict4_33)
    feed_dict.update(dict4_34)
    feed_dict.update(dict4_35)
    feed_dict.update(dict5)
    feed_dict.update(dict5_1)
    feed_dict.update(dict5_2)

    # t.init_Variable(feed_dict)
    # t.run({X: X_val, y_: y_val})
    # print(t.get_Variable_node_to_val_map()[W1_val].asnumpy())
    list = []
    for key in feed_dict.keys():
        list.append(key)
    executor = ad.Executor(list, ctx=ndarray.gpu(0))
    executor.run(feed_dict)