else: with_awareness = 0 with_learning = 0 with_voting = 0 model = M.Model() # instantiate process taxa: environment = M.Environment() metabolism = M.Metabolism(renewable_energy_knowledge_spillover_fraction=0) culture = M.Culture( awareness_lower_carbon_density=1e-5, awareness_upper_carbon_density=4e-5, awareness_update_rate=1 if with_awareness else 0, environmental_friendliness_learning_rate=1 if with_learning else 0, ) # generate entities and plug them together: (world, ) = worlds = [ M.World(environment=environment, metabolism=metabolism, culture=culture, atmospheric_carbon=830 * D.gigatonnes_carbon, upper_ocean_carbon=(5500 - 830 - 2480 - 1125) * D.GtC) for w in range(nworlds) ] (north, south) = social_systems = [
def run(seed, updates, with_social, p_env_friendly): """Run the model.""" np.random.seed(seed) if with_social: filename = "esd_example_with_social_update_rate_{0}_seed_{1}.p".format( updates, seed) else: filename = "esd_example_without_social_seed_{0}.p".format(seed) model = M.Model() # instantiate process taxa: environment = M.Environment() metabolism = M.Metabolism(renewable_energy_knowledge_spillover_fraction=0) culture = M.Culture(awareness_lower_carbon_density=1e-5, awareness_upper_carbon_density=4e-5, awareness_update_rate=updates * with_social, environmental_friendliness_learning_rate=updates * with_social) # generate entities and plug them together: world = M.World(environment=environment, metabolism=metabolism, culture=culture, atmospheric_carbon=830 * D.gigatonnes_carbon, upper_ocean_carbon=(5500 - 830 - 2480 - 1125) * D.GtC) social_systems = [] for _ in range(NUMBER_SOCIAL_SYSTEMS): _soc = M.SocialSystem(world=world, has_renewable_subsidy=False, has_emissions_tax=False, has_fossil_ban=False, emissions_tax_intro_threshold=1, renewable_subsidy_intro_threshold=0.5, fossil_ban_intro_threshold=0.5, renewable_subsidy_keeping_threshold=0.5, fossil_ban_keeping_threshold=0.5, emissions_tax_level=20 * 200e9, time_between_votes=4 if with_social else 1e100) social_systems.append(_soc) cells = [] for cell_id in range(NUMBER_CELLS): _cell = M.Cell( social_system=social_systems[cell_id // 2], renewable_sector_productivity=[.7, .9, 1.1, 1.3][cell_id] * RENEWABLE_SCALING * M.Cell.renewable_sector_productivity.default, fossil_sector_productivity=M.Cell.fossil_sector_productivity. default * 280, biomass_sector_productivity=3e5 * 10**(0.4) * 900) cells.append(_cell) individuals = [] for individual_id in range(NUMBER_INDIVIDUALS): _individual = M.Individual( cell=cells[individual_id % 4], is_environmentally_friendly=np.random.choice( [False, True], p=[1 - p_env_friendly, p_env_friendly])) individuals.append(_individual) # initialize block model acquaintance network: target_degree = 10 # = 2.5% of all agents. Dunbar's number would be too large target_degree_samecell = 0.5 * target_degree target_degree_samesoc = 0.35 * target_degree target_degree_other = 0.15 * target_degree p_samecell = target_degree_samecell / (NUMBER_INDIVIDUALS / NUMBER_CELLS - 1) p_samesoc = target_degree_samesoc / ( NUMBER_INDIVIDUALS / NUMBER_SOCIAL_SYSTEMS - NUMBER_INDIVIDUALS / NUMBER_CELLS - 1) p_other = target_degree_other / ( NUMBER_INDIVIDUALS - NUMBER_INDIVIDUALS / NUMBER_SOCIAL_SYSTEMS - 1) for index, i in enumerate(individuals): for j in individuals[:index]: if i.cell == j.cell: prop = p_samecell elif i.social_system == j.social_system: prop = p_samesoc else: prop = p_other if np.random.uniform() < prop: culture.acquaintance_network.add_edge(i, j) # distribute area and vegetation uniformly since it seems there are no real # differences between the actual zones: sigma_0 = 1.5e8 * D.square_kilometers * np.array([0.25, 0.25, 0.25, 0.25]) M.Cell.land_area.set_values(cells, sigma_0) # 2480 is yr 2000 l_0 = 2480 * D.gigatonnes_carbon * np.array([0.25, 0.25, 0.25, 0.25]) M.Cell.terrestrial_carbon.set_values(cells, l_0) # distribute fossils linearly from north to south, 1125 is yr 2000: g_0 = 1125 * D.gigatonnes_carbon * np.array([.4, .3, .2, .1]) M.Cell.fossil_carbon.set_values(cells, g_0) # distribute population 1:3 between north and south, 6e9 is yr 2000: #r = np.random.uniform(size=nsocs) p_0 = 6e9 * D.people * np.array([0.25, 0.75]) M.SocialSystem.population.set_values(social_systems, p_0) # distribute capital 2:1: k_0 = sum(p_0) * 1e4 * D.dollars / D.people * np.array([2 / 3, 1 / 3]) M.SocialSystem.physical_capital.set_values(social_systems, k_0) s_0 = 2e11 * D.gigajoules * np.array([1, 1]) M.SocialSystem.renewable_energy_knowledge.set_values(social_systems, s_0) # do simulation: runner = Runner(model=model) starttime = time() traj = runner.run(t_0=2000, t_1=FINAL_TIME, dt=1, add_to_output=[M.Individual.represented_population]) save(traj=traj, filename=filename) print("Runtime:", time() - starttime, " seconds")