def processed_files(self): if touch(lambda: self._processed_files, None): return self._processed_files if self.processed_folder.isdir(): temp = self.processed_folder.ls() while len(temp) == 1 and temp[0].isdir(): temp = temp[0].ls() self._processed_files = temp else: self._processed_files = vector() return self._processed_files
def _to_byte__default__(data): try: import torch import pyctlib.torchplus as torchplus except ImportError: pass if touch(lambda: isinstance(data, torchplus.Tensor)): np_array = data.cpu().detach().numpy() np_array_content, np_array_content_len = file._to_byte(np_array) assert len(np_array_content) == np_array_content_len return file.Tensor_plus + np_array_content, np_array_content_len + 1 if touch(lambda: isinstance(data, torch.Tensor)): np_array = data.cpu().detach().numpy() np_array_content, np_array_content_len = file._to_byte(np_array) assert len(np_array_content) == np_array_content_len return file.torch_Tensor + np_array_content, np_array_content_len + 1 if touch(lambda: isinstance(data, torch.nn.Module)): module_state_content, module_state_content_len = file._to_byte( data.state_dict()) return file.torch_Module + module_state_content, module_state_content_len + 1
def extra_repr(self) -> str: if self.activation is None: return 'in_features={}, out_features={}, bias={}'.format(self.in_features, self.out_features, self.bias is not None) elif isinstance(self.activation, vector): ret = 'in_features={}, out_features={}, bias={}, activation={}\n'.format(self.in_features, self.out_features, self.bias is not None, self.activation.map(lambda x: touch(lambda: x.__name__, str(x)))) ret += "{}".format(self.in_features) for d, a in zip(self.dims[1:], self.activation): ret += '->{}->{}'.format(d, touch(lambda: a.__name__, str(a))) return ret else: ret = 'in_features={}, out_features={}, bias={}, activation={}'.format(self.in_features, self.out_features, self.bias is not None, touch(lambda: self.activation.__name__, str(self.activation))) return ret
def name(self): if touch(lambda: self._name): return self._name return self.__class__.__name__
def raw_files(self): if touch(lambda: self._raw_files, None): return self._raw_files if self.raw_folder.isdir(): self._raw_files = self.raw_folder.ls() return self._raw_files