示例#1
0
def main():

    # import python's standard time module
    import time

    # import Controller and other blocks from modules
    from pyctrl import Controller
    from pyctrl.block import Printer
    from pyctrl.block.clock import TimerClock

    # initialize controller
    hello = Controller()

    # add the signal myclock
    hello.add_signal('myclock')

    # add a TimerClock as a source
    hello.add_source('myclock', TimerClock(period=1), ['myclock'], enable=True)

    # add a Printer as a sink
    hello.add_sink('message',
                   Printer(message='Hello World!'), ['myclock'],
                   enable=True)

    try:
        # run the controller
        with hello:
            # do nothing for 5 seconds
            time.sleep(5)

    except KeyboardInterrupt:
        pass

    finally:
        print('Done')
示例#2
0
def test_clock():

    from pyctrl import Controller
    from pyctrl.block.clock import Clock, TimerClock

    controller = Controller()

    period = 0.01
    controller.add_signal('clock')
    clock = Clock()
    controller.add_source('clock', clock, ['clock'])
    K = 10
    k = 0
    while k < K:
        (t, ) = controller.read_source('clock')
        k += 1

    assert clock.get('count') == 10

    controller.set_source('clock', reset=True)

    (t, ) = controller.read_source('clock')
    assert t < 0.01

    controller.remove_source('clock')

    clock = TimerClock(period=period)
    controller.add_source('clock', clock, ['clock'])

    K = 10
    k = 0
    while k < K:
        (t, ) = controller.read_source('clock')
        k += 1

    assert t > 0.9 * K * period

    controller.set_source('clock', reset=True)

    (t, ) = controller.read_source('clock')
    assert t < 0.9 * 2 * period

    clock.set_enabled(False)
示例#3
0
def _test_mip_balance():

    import numpy as np
    from pyctrl import Controller
    from pyctrl.block.container import Container, Input, Output
    from pyctrl.block.system import System, Subtract, Differentiator, Sum, Gain
    from pyctrl.block.nl import ControlledCombination, Product
    from pyctrl.block import Fade, Printer
    from pyctrl.system.ss import DTSS
    from pyctrl.block.logic import CompareAbsWithHysterisis, SetFilter, State

    GRN_LED = 61
    PAUSE_BTN = 62

    # create mip
    mip = Controller()

    # add signals
    mip.add_signals('theta', 'theta_dot', 'encoder1', 'encoder2', 'pwm1',
                    'pwm2')

    # phi is the average of the encoders
    mip.add_signal('phi')
    mip.add_filter('phi', Sum(gain=0.5), ['encoder1', 'encoder2'], ['phi'])

    # phi dot
    mip.add_signal('phi_dot')
    mip.add_filter('phi_dot', Differentiator(), ['clock', 'phi'], ['phi_dot'])

    # phi dot and steer reference
    mip.add_signals('phi_dot_reference', 'phi_dot_reference_fade')
    mip.add_signals('steer_reference', 'steer_reference_fade')

    # add fade in filter
    mip.add_filter('fade', Fade(target=[0, 0.5], period=5),
                   ['clock', 'phi_dot_reference', 'steer_reference'],
                   ['phi_dot_reference_fade', 'steer_reference_fade'])

    # state-space matrices
    A = np.array([[0.913134, 0.0363383], [-0.0692862, 0.994003]])
    B = np.array([[0.00284353, -0.000539063], [0.00162443, -0.00128745]])
    C = np.array([[-383.009, 303.07]])
    D = np.array([[-1.22015, 0]])

    B = 2 * np.pi * (100 / 7.4) * np.hstack((-B, B[:, 1:]))
    D = 2 * np.pi * (100 / 7.4) * np.hstack((-D, D[:, 1:]))

    ssctrl = DTSS(A, B, C, D)

    # state-space controller
    mip.add_signals('pwm')
    mip.add_filter('controller', System(model=ssctrl),
                   ['theta_dot', 'phi_dot', 'phi_dot_reference_fade'], ['pwm'])

    # enable pwm only if about small_angle
    mip.add_signals('small_angle', 'small_angle_pwm')
    mip.add_filter('small_angle_pwm', Product(), ['small_angle', 'pwm'],
                   ['small_angle_pwm'])

    # steering biasing
    mip.add_filter(
        'steer', ControlledCombination(),
        ['steer_reference_fade', 'small_angle_pwm', 'small_angle_pwm'],
        ['pwm1', 'pwm2'])

    # set references
    mip.set_signal('phi_dot_reference', 0)
    mip.set_signal('steer_reference', 0.5)

    # add supervisor actions on a timer
    # actions are inside a container so that they are executed all at once
    mip.add_timer('supervisor',
                  Container(), ['theta'], ['small_angle', 'is_running'],
                  period=0.5,
                  repeat=True)

    mip.add_signals('timer/supervisor/theta', 'timer/supervisor/small_angle',
                    'timer/supervisor/is_running')

    mip.add_source('timer/supervisor/theta', Input(), ['theta'])

    mip.add_sink('timer/supervisor/small_angle', Output(), ['small_angle'])

    mip.add_sink('timer/supervisor/is_running', Output(), ['is_running'])

    # add small angle sensor
    mip.add_filter(
        'timer/supervisor/is_angle_small',
        CompareAbsWithHysterisis(threshold=0.11,
                                 hysterisis=0.09,
                                 offset=-0.07,
                                 state=(State.LOW, )), ['theta'],
        ['small_angle'])

    # reset controller and fade
    mip.add_sink(
        'timer/supervisor/reset_controller',
        SetFilter(label=['/controller', '/fade'], on_rise={'reset': True}),
        ['small_angle'])

    # add pause button on a timer
    mip.add_source('timer/supervisor/pause_button',
                   ('pyctrl.block', 'Constant'), ['is_running'],
                   kwargs={'value': 0},
                   enable=True)

    from pyctrl.flask import JSONEncoder, JSONDecoder

    json1 = JSONEncoder(sort_keys=True, indent=4).encode(mip)

    obj = JSONDecoder().decode(json1)

    json2 = JSONEncoder(sort_keys=True, indent=4).encode(obj)

    assert json1 == json2

    print('json = \n{}'.format(json1))
示例#4
0
""" import Python's standard time module """
import time

# import Controller and other blocks from modules
from pyctrl import Controller
from pyctrl.block import Printer
from fg_source import FgSource
from fg_sink import FgSink

pilot = Controller()

pilot.add_signal('speed')
pilot.add_signal('heading')
pilot.add_signal('altitude')
pilot.add_signal('climb')
pilot.add_signal('pitch')
pilot.add_signal('bank')
pilot.add_signal('engine')
pilot.add_signal('latitude')
pilot.add_signal('longitude')
pilot.add_signal('northspeed')
pilot.add_signal('eastspeed')

pilot.add_signal('aileron')
pilot.add_signal('elevator')
pilot.add_signal('rudder')
pilot.add_signal('throttle')

pilot.add_source('fg_source',
                 FgSource(),
                 ['speed', 'heading', 'altitude', 'climb', 'pitch', 'bank',