示例#1
0
def localizer_train(ibs, species_list=None, **kwargs):
    from pydarknet import Darknet_YOLO_Detector
    data_path = ibs.export_to_xml(species_list=species_list, **kwargs)
    output_path = join(ibs.get_cachedir(), 'training', 'localizer')
    ut.ensuredir(output_path)
    dark = Darknet_YOLO_Detector()
    model_path = dark.train(data_path, output_path)
    del dark
    return model_path
示例#2
0
def train_part_detector():
    """
    Problem:
        healthy sharks usually have a mostly whole body shot
        injured sharks usually have a close up shot.
        This distribution of images is likely what the injur-shark net is picking up on.

    The goal is to train a detector that looks for things that look
    like the distribution of injured sharks.

    We will run this on healthy sharks to find the parts of
    """
    import wbia

    ibs = wbia.opendb('WS_ALL')
    imgset = ibs.imagesets(text='Injured Sharks')
    injured_annots = imgset.annots[0]  # NOQA

    # config = {
    #    'dim_size': (224, 224),
    #    'resize_dim': 'wh'
    # }

    from pydarknet import Darknet_YOLO_Detector

    data_path = ibs.export_to_xml()
    output_path = join(ibs.get_cachedir(), 'training', 'localizer')
    ut.ensuredir(output_path)
    dark = Darknet_YOLO_Detector()
    results = dark.train(data_path, output_path)
    del dark

    localizer_weight_path, localizer_config_path, localizer_class_path = results
    classifier_model_path = ibs.classifier_train()
    labeler_model_path = ibs.labeler_train()
    output_path = join(ibs.get_cachedir(), 'training', 'detector')
    ut.ensuredir(output_path)
    ut.copy(localizer_weight_path, join(output_path, 'localizer.weights'))
    ut.copy(localizer_config_path, join(output_path, 'localizer.config'))
    ut.copy(localizer_class_path, join(output_path, 'localizer.classes'))
    ut.copy(classifier_model_path, join(output_path, 'classifier.npy'))
    ut.copy(labeler_model_path, join(output_path, 'labeler.npy'))