示例#1
0
 def test_reconstruction_error(self):
     sys.stdout.write(
         'RBM Estimator -> Performing reconstruction_error test ...')
     sys.stdout.flush()
     numx.random.seed(42)
     rec = Estimator.reconstruction_error(self.bbrbm,
                                          self.bbrbmData,
                                          k=1,
                                          beta=1.0,
                                          use_states=True,
                                          absolut_error=False)
     assert numx.all(numx.abs(rec) < self.epsilon)
     rec = Estimator.reconstruction_error(self.bbrbm,
                                          self.bbrbmData,
                                          k=1,
                                          beta=1.0,
                                          use_states=False,
                                          absolut_error=False)
     assert numx.all(numx.abs(rec) < self.epsilon)
     rec = Estimator.reconstruction_error(self.bbrbm,
                                          self.bbrbmData,
                                          k=1,
                                          beta=1.0,
                                          use_states=True,
                                          absolut_error=True)
     assert numx.all(numx.abs(rec) < self.epsilon)
     rec = Estimator.reconstruction_error(self.bbrbm,
                                          self.bbrbmData,
                                          k=1,
                                          beta=1.0,
                                          use_states=False,
                                          absolut_error=True)
     assert numx.all(numx.abs(rec) < self.epsilon)
     rec = Estimator.reconstruction_error(self.bbrbm,
                                          self.bbrbmData,
                                          k=10,
                                          beta=1.0,
                                          use_states=False,
                                          absolut_error=False)
     assert numx.all(numx.abs(rec) < self.epsilon)
     # Test List
     testList = []
     for i in range(self.bbrbmData.shape[0]):
         testList.append(self.bbrbmData[i].reshape(1, 4))
     rec = Estimator.reconstruction_error(self.bbrbm,
                                          testList,
                                          k=10,
                                          beta=1.0,
                                          use_states=False,
                                          absolut_error=False)
     assert numx.all(numx.abs(rec) < self.epsilon)
     print(' successfully passed!')
     sys.stdout.flush()
示例#2
0
for epoch in range(epochs):

    # Loop over all batches
    for b in range(0, train_data.shape[0], batch_size):
        batch = train_data[b:b + batch_size, :]
        trainer_pcd.train(data=batch,
                          epsilon=0.01,
                          update_visible_offsets=update_offsets,
                          update_hidden_offsets=update_offsets)

    # Calculate Log-Likelihood, reconstruction error and expected end time every 5th epoch
    if (epoch == 0 or (epoch + 1) % 5 == 0):
        logZ = estimator.partition_function_factorize_h(rbm)
        ll_train = numx.mean(estimator.log_likelihood_v(rbm, logZ, train_data))
        ll_test = numx.mean(estimator.log_likelihood_v(rbm, logZ, test_data))
        re = numx.mean(estimator.reconstruction_error(rbm, train_data))
        print('{}\t\t{:.4f}\t\t\t{:.4f}\t\t\t\t{:.4f}\t\t\t{}'.format(
            epoch + 1, re, ll_train, ll_test,
            measurer.get_expected_end_time(epoch + 1, epochs)))
    else:
        print(epoch + 1)

measurer.end()

# Print end/training time
print("End-time: \t{}".format(measurer.get_end_time()))
print("Training time:\t{}".format(measurer.get_interval()))

# Calculate true partition function
logZ = estimator.partition_function_factorize_h(rbm,
                                                batchsize_exponent=h1,
示例#3
0
# Training with CD-1
k = 1
trainer_cd = trainer.CD(rbm)

# Train model, status every 10th epoch
step = 10
print 'Training'
print 'Epoch\tRE train\tRE test \tLL train\tLL test '
for epoch in range(0, max_epochs + 1, 1):

    # Shuffle training samples (optional)
    train_data = numx.random.permutation(train_data)

    # Print epoch and reconstruction errors every 'step' epochs.
    if epoch % step == 0:
        RE_train = numx.mean(estimator.reconstruction_error(rbm, train_data))
        RE_test = numx.mean(estimator.reconstruction_error(rbm, test_data))
        print '%5d \t%0.5f \t%0.5f' % (epoch, RE_train, RE_test)

    # Train one epoch with gradient restriction/clamping
    # No weight decay, momentum or sparseness is used
    for b in range(0, train_data.shape[0], batch_size):
        trainer_cd.train(data=train_data[b:(b + batch_size), :],
                         num_epochs=1,
                         epsilon=[eps, 0.0, eps, eps * 0.1],
                         k=k,
                         momentum=0.0,
                         reg_l1norm=0.0,
                         reg_l2norm=0.0,
                         reg_sparseness=0,
                         desired_sparseness=None,
示例#4
0
# Measuring time
measurer = MEASURE.Stopwatch()

# Train model
print 'Training'
print 'Epoch\tRecon. Error\tExpected End-Time'
for epoch in range(1, epochs+1):
    train_data = numx.random.permutation(train_data)
    for b in range(0, train_data.shape[0], batch_size):
        batch = train_data[b:b + batch_size, :]
        trainer.train(data=batch, epsilon=0.1, regL2Norm= 0.001)

    # Calculate Log-Likelihood, reconstruction error and expected end time every 10th epoch
    if (epoch % 10 == 0):
        RE = numx.mean(ESTIMATOR.reconstruction_error(rbm, train_data))
        print '%d\t\t%8.6f\t\t' % (epoch, RE),
        print measurer.get_expected_end_time(epoch , epochs),
        print

measurer.end()

# Print end time
print
print 'End-time: \t', measurer.get_end_time()
print 'Training time:\t', measurer.get_interval()

# Reorder RBM features by average activity decreasingly
reordered_rbm = STATISTICS.reorder_filter_by_hidden_activation(rbm, train_data)
# Display RBM parameters
VISUALIZATION.imshow_standard_rbm_parameters(reordered_rbm, v1, v2, h1, h2)