def group_options(options, timepoint):
        options = copy.deepcopy(options)

        if options.mbm.lsq6.target_type == TargetType.pride_of_models:
            options = copy.deepcopy(options)
            targets = get_closest_model_from_pride_of_models(pride_of_models_dict=get_pride_of_models_mapping(
                                                                 pride_csv=options.mbm.lsq6.target_file,
                                                                 output_dir=options.application.output_directory,
                                                                 pipeline_name=options.application.pipeline_name),
                                                             time_point=timepoint)

            options.mbm.lsq6 = options.mbm.lsq6.replace(target_type=TargetType.initial_model,
                                                        target_file=targets.registration_standard.path)

        #    resolution = (options.registration.resolution
        #                  or get_resolution_from_file(targets.registration_standard.path))
        #    options.registration = options.registration.replace(resolution=resolution)

                                                        # FIXME use of registration_standard here is quite wrong ...
                                                        # part of the trouble is that mbm calls registration_targets itself,
                                                        # so we can't send this RegistrationTargets to `mbm` directly ...
                                                        # one option: add yet another optional arg to `mbm` ...
        else:
            targets = s.defer(registration_targets(lsq6_conf=options.mbm.lsq6,
                                           app_conf=options.application, reg_conf=options.registration,
                                           first_input_file=imgs.filename.iloc[0]))

        resolution = (options.registration.resolution or
                        get_resolution_from_file(targets.registration_standard.path))

        # This must happen after calling registration_targets otherwise it will resample to options.registration.resolution
        options.registration = options.registration.replace(resolution=resolution)

        return options
    def group_options(options, group):
        options = copy.deepcopy(options)

        if options.mbm.lsq6.target_type == TargetType.pride_of_models:

            targets = get_closest_model_from_pride_of_models(
                pride_of_models_dict=pride_of_models_mapping, time_point=group)

            options.mbm.lsq6 = options.mbm.lsq6.replace(
                target_type=TargetType.initial_model,
                target_file=targets.registration_standard.path)
        else:
            # this will ensure that all groups have the same resolution -- is it necessary?
            targets = s.defer(
                registration_targets(
                    lsq6_conf=options.mbm.lsq6,
                    app_conf=options.application,
                    reg_conf=options.registration,
                    first_input_file=grouped_files_df.file.iloc[0]))

        resolution = (options.registration.resolution
                      or get_resolution_from_file(
                          targets.registration_standard.path))
        # This must happen after calling registration_targets otherwise it will resample to options.registration.resolution
        options.registration = options.registration.replace(
            resolution=resolution)
        # no need to check common space settings here since they're turned off at the parser level
        # (a bit strange)
        return options
示例#3
0
def lsq6_pipeline(options):
    # TODO could also allow pluggable pipeline parts e.g. LSQ6 could be substituted out for the modified LSQ6
    # for the kidney tips, etc...
    output_dir = options.application.output_directory
    pipeline_name = options.application.pipeline_name

    # TODO this is tedious and annoyingly similar to the registration chain and MBM ...
    lsq6_dir = os.path.join(output_dir, pipeline_name + "_lsq6")
    imgs = get_imgs(options.application)

    s = Stages()

    # FIXME: why do we have to call registration_targets *outside* of lsq6_nuc_inorm? is it just because of the extra
    # options required?
    targets = s.defer(
        registration_targets(lsq6_conf=options.lsq6,
                             app_conf=options.application,
                             reg_conf=options.registration,
                             first_input_file=imgs[0].path))

    # TODO this is quite tedious and duplicates stuff in the registration chain ...
    resolution = (options.registration.resolution or get_resolution_from_file(
        targets.registration_standard.path))

    # This must happen after calling registration_targets otherwise it will resample to options.registration.resolution
    options.registration = options.registration.replace(resolution=resolution)
    lsq6_result = s.defer(
        lsq6_nuc_inorm(imgs=imgs,
                       resolution=resolution,
                       registration_targets=targets,
                       lsq6_dir=lsq6_dir,
                       lsq6_options=options.lsq6))

    return Result(stages=s, output=lsq6_result)
示例#4
0
def LSQ12_pipeline(options):

    output_dir = options.application.output_directory
    pipeline_name = options.application.pipeline_name

    # TODO this is tedious and annoyingly similar to the registration chain and MBM and LSQ6 ...
    processed_dir = os.path.join(output_dir, pipeline_name + "_processed")
    lsq12_dir = os.path.join(output_dir, pipeline_name + "_lsq12")

    resolution = (
        options.registration.
        resolution  # TODO does using the finest resolution here make sense?
        or min(
            [get_resolution_from_file(f) for f in options.application.files]))

    imgs = [
        MincAtom(f, pipeline_sub_dir=processed_dir)
        for f in options.application.files
    ]

    # determine LSQ12 settings by overriding defaults with
    # any settings present in protocol file, if it exists
    # could add a hook to print a message announcing completion, output files,
    # add more stages here to make a CSV

    return lsq12_pairwise(imgs,
                          lsq12_conf=options.lsq12,
                          lsq12_dir=lsq12_dir,
                          resolution=resolution)
    def group_options(options, timepoint):
        options = copy.deepcopy(options)

        if options.mbm.lsq6.target_type == TargetType.pride_of_models:
            options = copy.deepcopy(options)
            targets = get_closest_model_from_pride_of_models(pride_of_models_dict=get_pride_of_models_mapping(
                                                                 pride_csv=options.mbm.lsq6.target_file,
                                                                 output_dir=options.application.output_directory,
                                                                 pipeline_name=options.application.pipeline_name),
                                                             time_point=timepoint)

            options.mbm.lsq6 = options.mbm.lsq6.replace(target_type=TargetType.initial_model,
                                                        target_file=targets.registration_standard.path)

        #    resolution = (options.registration.resolution
        #                  or get_resolution_from_file(targets.registration_standard.path))
        #    options.registration = options.registration.replace(resolution=resolution)

                                                        # FIXME use of registration_standard here is quite wrong ...
                                                        # part of the trouble is that mbm calls registration_targets itself,
                                                        # so we can't send this RegistrationTargets to `mbm` directly ...
                                                        # one option: add yet another optional arg to `mbm` ...
        else:
            targets = s.defer(registration_targets(lsq6_conf=options.mbm.lsq6,
                                           app_conf=options.application, reg_conf=options.registration,
                                           first_input_file=imgs.filename.iloc[0]))

        resolution = (options.registration.resolution or
                        get_resolution_from_file(targets.registration_standard.path))

        # This must happen after calling registration_targets otherwise it will resample to options.registration.resolution
        options.registration = options.registration.replace(resolution=resolution)

        return options
示例#6
0
def lsq6_pipeline(options):
    # TODO could also allow pluggable pipeline parts e.g. LSQ6 could be substituted out for the modified LSQ6
    # for the kidney tips, etc...
    output_dir    = options.application.output_directory
    pipeline_name = options.application.pipeline_name

    # TODO this is tedious and annoyingly similar to the registration chain and MBM ...
    lsq6_dir      = os.path.join(output_dir, pipeline_name + "_lsq6")
    processed_dir = os.path.join(output_dir, pipeline_name + "_processed")
    imgs = get_imgs(options.application)

    s = Stages()

    # TODO this is quite tedious and duplicates stuff in the registration chain ...
    resolution = (options.registration.resolution or
                  get_resolution_from_file(
                      s.defer(registration_targets(lsq6_conf=options.lsq6,
                                                   app_conf=options.application,
                                                   reg_conf=options.registration)).registration_standard.path))

    # FIXME: why do we have to call registration_targets *outside* of lsq6_nuc_inorm? is it just because of the extra
    # options required?
    targets = s.defer(registration_targets(lsq6_conf=options.lsq6,
                                   app_conf=options.application,
                                   reg_conf=options.registration,
                                   first_input_file=imgs[0]))
    # This must happen after calling registration_targets otherwise it will resample to options.registration.resolution
    options.registration = options.registration.replace(resolution=resolution)
    lsq6_result = s.defer(lsq6_nuc_inorm(imgs=imgs,
                                         resolution=resolution,
                                         registration_targets=targets,
                                         lsq6_dir=lsq6_dir,
                                         lsq6_options=options.lsq6))

    return Result(stages=s, output=lsq6_result)
示例#7
0
def NLIN_pipeline(options):

    # if options.application.files is None:
    #     raise ValueError("Please, some files! (or try '--help')")  # TODO make a util procedure for this

    output_dir    = options.application.output_directory
    pipeline_name = options.application.pipeline_name

    # TODO this is tedious and annoyingly similar to the registration chain and MBM and LSQ6 ...
    processed_dir = os.path.join(output_dir, pipeline_name + "_processed")
    nlin_dir      = os.path.join(output_dir, pipeline_name + "_nlin")

    resolution = (options.registration.resolution  # TODO does using the finest resolution here make sense?
                  or min([get_resolution_from_file(f) for f in options.application.files]))

    imgs = get_imgs(options.application)

    # imgs = [MincAtom(f, pipeline_sub_dir=processed_dir) for f in options.application.files]

    # determine NLIN settings by overriding defaults with
    # any settings present in protocol file, if it exists
    # could add a hook to print a message announcing completion, output files,
    # add more stages here to make a CSV

    initial_target_mask = MincAtom(options.nlin.target_mask) if options.nlin.target_mask else None
    initial_target = MincAtom(options.nlin.target, mask=initial_target_mask)

    full_hierarchy = get_nonlinear_configuration_from_options(nlin_protocol=options.nlin.nlin_protocol,
                                                              reg_method=options.nlin.reg_method,
                                                              file_resolution=resolution)

    s = Stages()

    nlin_result = s.defer(nlin_build_model(imgs, initial_target=initial_target, conf=full_hierarchy, nlin_dir=nlin_dir))

    # TODO return these?
    inverted_xfms = [s.defer(invert_xfmhandler(xfm)) for xfm in nlin_result.output]

    if options.stats.calc_stats:
        # TODO: put the stats part behind a flag ...

        determinants = [s.defer(determinants_at_fwhms(
                                  xfm=inv_xfm,
                                  inv_xfm=xfm,
                                  blur_fwhms=options.stats.stats_kernels))
                        for xfm, inv_xfm in zip(nlin_result.output, inverted_xfms)]

        return Result(stages=s,
                      output=Namespace(nlin_xfms=nlin_result,
                                       avg_img=nlin_result.avg_img,
                                       determinants=determinants))
    else:
        # there's no consistency in what gets returned, yikes ...
        return Result(stages=s, output=Namespace(nlin_xfms=nlin_result, avg_img=nlin_result.avg_img))
示例#8
0
def NLIN_pipeline(options):

    if options.application.files is None:
        raise ValueError("Please, some files! (or try '--help')")  # TODO make a util procedure for this

    output_dir    = options.application.output_directory
    pipeline_name = options.application.pipeline_name

    # TODO this is tedious and annoyingly similar to the registration chain and MBM and LSQ6 ...
    processed_dir = os.path.join(output_dir, pipeline_name + "_processed")
    nlin_dir      = os.path.join(output_dir, pipeline_name + "_nlin")

    resolution = (options.registration.resolution  # TODO does using the finest resolution here make sense?
                  or min([get_resolution_from_file(f) for f in options.application.files]))

    imgs = [MincAtom(f, pipeline_sub_dir=processed_dir) for f in options.application.files]

    # determine NLIN settings by overriding defaults with
    # any settings present in protocol file, if it exists
    # could add a hook to print a message announcing completion, output files,
    # add more stages here to make a CSV

    initial_target_mask = MincAtom(options.nlin.target_mask) if options.nlin.target_mask else None
    initial_target = MincAtom(options.nlin.target, mask=initial_target_mask)

    full_hierarchy = get_nonlinear_configuration_from_options(nlin_protocol=options.nlin.nlin_protocol,
                                                              flag_nlin_protocol=next(iter(options.nlin.flags_.nlin_protocol)),
                                                              reg_method=options.nlin.reg_method,
                                                              file_resolution=resolution)

    s = Stages()

    nlin_result = s.defer(nlin_build_model(imgs, initial_target=initial_target, conf=full_hierarchy, nlin_dir=nlin_dir))

    # TODO return these?
    inverted_xfms = [s.defer(invert_xfmhandler(xfm)) for xfm in nlin_result.output]

    if options.stats.calc_stats:
        # TODO: put the stats part behind a flag ...

        determinants = [s.defer(determinants_at_fwhms(
                                  xfm=inv_xfm,
                                  inv_xfm=xfm,
                                  blur_fwhms=options.stats.stats_kernels))
                        for xfm, inv_xfm in zip(nlin_result.output, inverted_xfms)]

        return Result(stages=s,
                      output=Namespace(nlin_xfms=nlin_result,
                                       avg_img=nlin_result.avg_img,
                                       determinants=determinants))
    else:
        # there's no consistency in what gets returned, yikes ...
        return Result(stages=s, output=Namespace(nlin_xfms=nlin_result, avg_img=nlin_result.avg_img))
示例#9
0
def LSQ12_pipeline(options):

    output_dir    = options.application.output_directory
    pipeline_name = options.application.pipeline_name

    # TODO this is tedious and annoyingly similar to the registration chain and MBM and LSQ6 ...
    processed_dir = os.path.join(output_dir, pipeline_name + "_processed")
    lsq12_dir     = os.path.join(output_dir, pipeline_name + "_lsq12")

    resolution = (options.registration.resolution  # TODO does using the finest resolution here make sense?
                  or min([get_resolution_from_file(f) for f in options.application.files]))

    imgs = [MincAtom(f, pipeline_sub_dir=processed_dir) for f in options.application.files]

    # determine LSQ12 settings by overriding defaults with
    # any settings present in protocol file, if it exists
    # could add a hook to print a message announcing completion, output files,
    # add more stages here to make a CSV

    return lsq12_pairwise(imgs, lsq12_conf=options.lsq12, lsq12_dir=lsq12_dir, resolution=resolution)
示例#10
0
    def group_options(options, group):
        options = copy.deepcopy(options)

        if options.mbm.lsq6.target_type == TargetType.pride_of_models:

            targets = get_closest_model_from_pride_of_models(pride_of_models_dict=pride_of_models_mapping,
                                                             time_point=group)

            options.mbm.lsq6 = options.mbm.lsq6.replace(target_type=TargetType.initial_model,
                                                        target_file=targets.registration_standard.path)
        else:
            # this will ensure that all groups have the same resolution -- is it necessary?
            targets = registration_targets(lsq6_conf=options.mbm.lsq6,
                                           app_conf=options.application,
                                           first_input_file=grouped_files_df.file.iloc[0])

        resolution = (options.registration.resolution
                        or get_resolution_from_file(targets.registration_standard.path))
        options.registration = options.registration.replace(resolution=resolution)
        return options
def stage_embryos_pipeline(options):
    s = Stages()

    imgs = get_imgs(options.application)
    rough_volume_imgs = get_volume_estimate(imgs)
    imgs_and_rough_volume = pd.DataFrame({"mincatom" : imgs,
                                          "rough_volume" : pd.Series(rough_volume_imgs, dtype=float)})

    check_MINC_input_files([img.path for img in imgs])

    output_directory = options.application.output_directory
    output_sub_dir = os.path.join(output_directory,
                                  options.application.pipeline_name + "_4D_atlas")

    time_points_in_4D_atlas = instances_in_4D_atlas_from_csv(options.staging.staging.csv_4D,
                                                             output_sub_dir)

    # we can use the resolution of one of the time points in the 4D atlas
    # for all the registrations that will be run.
    resolution = get_resolution_from_file(time_points_in_4D_atlas.loc[0]["mincatom"].orig_path)

    print(options.staging.lsq12)

    lsq12_conf = get_linear_configuration_from_options(options.staging.lsq12,
                                                       transform_type=LinearTransType.lsq12,
                                                       file_resolution=resolution)

    nlin_component = get_nonlinear_component(options.staging.nlin.reg_method)

    # match each of the embryos individually
    for i in range(imgs_and_rough_volume.shape[0]):
        s.defer(match_embryo_to_4D_atlas(imgs_and_rough_volume.loc[i],
                                         time_points_in_4D_atlas,
                                         lsq6_conf=options.staging.lsq6,
                                         lsq12_conf=lsq12_conf,
                                         nlin_module=nlin_component,
                                         resolution=resolution,
                                         nlin_options=options.staging.nlin))


    return Result(stages=s, output=None)
示例#12
0
def mbm(imgs : List[MincAtom], options : MBMConf, prefix : str, output_dir : str = ""):

    # TODO could also allow pluggable pipeline parts e.g. LSQ6 could be substituted out for the modified LSQ6
    # for the kidney tips, etc...

    # TODO this is tedious and annoyingly similar to the registration chain ...
    lsq6_dir  = os.path.join(output_dir, prefix + "_lsq6")
    lsq12_dir = os.path.join(output_dir, prefix + "_lsq12")
    nlin_dir  = os.path.join(output_dir, prefix + "_nlin")

    s = Stages()

    if len(imgs) == 0:
        raise ValueError("Please, some files!")

    # FIXME: why do we have to call registration_targets *outside* of lsq6_nuc_inorm? is it just because of the extra
    # options required?  Also, shouldn't options.registration be a required input (as it contains `input_space`) ...?
    targets = registration_targets(lsq6_conf=options.mbm.lsq6,
                                   app_conf=options.application,
                                   first_input_file=imgs[0].path)

    # TODO this is quite tedious and duplicates stuff in the registration chain ...
    resolution = (options.registration.resolution or
                  get_resolution_from_file(targets.registration_standard.path))
    options.registration = options.registration.replace(resolution=resolution)

    # FIXME it probably makes most sense if the lsq6 module itself (even within lsq6_nuc_inorm) handles the run_lsq6
    # setting (via use of the identity transform) since then this doesn't have to be implemented for every pipeline
    if options.mbm.lsq6.run_lsq6:
        lsq6_result = s.defer(lsq6_nuc_inorm(imgs=imgs,
                                             resolution=resolution,
                                             registration_targets=targets,
                                             lsq6_dir=lsq6_dir,
                                             lsq6_options=options.mbm.lsq6))
    else:
        # TODO don't actually do this resampling if not required (i.e., if the imgs already have the same grids)
        identity_xfm = s.defer(param2xfm(out_xfm=FileAtom(name="identity.xfm")))
        lsq6_result  = [XfmHandler(source=img, target=img, xfm=identity_xfm,
                                   resampled=s.defer(mincresample_new(img=img,
                                                                      like=targets.registration_standard,
                                                                      xfm=identity_xfm)))
                        for img in imgs]
    # what about running nuc/inorm without a linear registration step??

    full_hierarchy = get_nonlinear_configuration_from_options(nlin_protocol=options.mbm.nlin.nlin_protocol,
                                                              reg_method=options.mbm.nlin.reg_method,
                                                              file_resolution=resolution)

    lsq12_nlin_result = s.defer(lsq12_nlin_build_model(imgs=[xfm.resampled for xfm in lsq6_result],
                                                       resolution=resolution,
                                                       lsq12_dir=lsq12_dir,
                                                       nlin_dir=nlin_dir,
                                                       nlin_prefix=prefix,
                                                       lsq12_conf=options.mbm.lsq12,
                                                       nlin_conf=full_hierarchy))

    inverted_xfms = [s.defer(invert_xfmhandler(xfm)) for xfm in lsq12_nlin_result.output]

    determinants = s.defer(determinants_at_fwhms(
                             xfms=inverted_xfms,
                             inv_xfms=lsq12_nlin_result.output,
                             blur_fwhms=options.mbm.stats.stats_kernels))

    overall_xfms = [s.defer(concat_xfmhandlers([rigid_xfm, lsq12_nlin_xfm]))
                    for rigid_xfm, lsq12_nlin_xfm in zip(lsq6_result, lsq12_nlin_result.output)]

    output_xfms = (pd.DataFrame({ "rigid_xfm"      : lsq6_result,  # maybe don't return this if LSQ6 not run??
                                  "lsq12_nlin_xfm" : lsq12_nlin_result.output,
                                  "overall_xfm"    : overall_xfms }))
    # we could `merge` the determinants with this table, but preserving information would cause lots of duplication
    # of the transforms (or storing determinants in more columns, but iterating over dynamically known columns
    # seems a bit odd ...)

                            # TODO transpose these fields?})
                            #avg_img=lsq12_nlin_result.avg_img,  # inconsistent w/ WithAvgImgs[...]-style outputs
                           # "determinants"    : determinants })

    #output.avg_img = lsq12_nlin_result.avg_img
    #output.determinants = determinants   # TODO temporary - remove once incorporated properly into `output` proper
    # TODO add more of lsq12_nlin_result?

    # FIXME: this needs to go outside of the `mbm` function to avoid being run from within other pipelines (or
    # those other pipelines need to turn off this option)
    # TODO return some MAGeT stuff from MBM function ??
    # if options.mbm.mbm.run_maget:
    #     import copy
    #     maget_options = copy.deepcopy(options)  #Namespace(maget=options)
    #     #maget_options
    #     #maget_options.maget = maget_options.mbm
    #     #maget_options.execution = options.execution
    #     #maget_options.application = options.application
    #     maget_options.maget = options.mbm.maget
    #     del maget_options.mbm
    #
    #     s.defer(maget([xfm.resampled for xfm in lsq6_result],
    #                   options=maget_options,
    #                   prefix="%s_MAGeT" % prefix,
    #                   output_dir=os.path.join(output_dir, prefix + "_processed")))

    # should also move outside `mbm` function ...
    #if options.mbm.thickness.run_thickness:
    #    if not options.mbm.segmentation.run_maget:
    #        warnings.warn("MAGeT files (atlases, protocols) are needed to run thickness calculation.")
    #    # run MAGeT to segment the nlin average:
    #    import copy
    #    maget_options = copy.deepcopy(options)  #Namespace(maget=options)
    #    maget_options.maget = options.mbm.maget
    #    del maget_options.mbm
    #    segmented_avg = s.defer(maget(imgs=[lsq12_nlin_result.avg_img],
    #                                  options=maget_options,
    #                                  output_dir=os.path.join(options.application.output_directory,
    #                                                          prefix + "_processed"),
    #                                  prefix="%s_thickness_MAGeT" % prefix)).ix[0].img
    #    thickness = s.defer(cortical_thickness(xfms=pd.Series(inverted_xfms), atlas=segmented_avg,
    #                                           label_mapping=FileAtom(options.mbm.thickness.label_mapping),
    #                                           atlas_fwhm=0.56, thickness_fwhm=0.56))  # TODO magic fwhms
    #    # TODO write CSV -- should `cortical_thickness` do this/return a table?


    # FIXME: this needs to go outside of the `mbm` function to avoid being run from within other pipelines (or
    # those other pipelines need to turn off this option)
    if options.mbm.common_space.do_common_space_registration:
        warnings.warn("This feature is experimental ...")
        if not options.mbm.common_space.common_space_model:
            raise ValueError("No common space template provided!")
        # TODO allow lsq6 registration as well ...
        common_space_model = MincAtom(options.mbm.common_space.common_space_model,
                                      pipeline_sub_dir=os.path.join(options.application.output_directory,
                                                         options.application.pipeline_name + "_processed"))
        # TODO allow different lsq12/nlin config params than the ones used in MBM ...
        # WEIRD ... see comment in lsq12_nlin code ...
        nlin_conf  = full_hierarchy.confs[-1] if isinstance(full_hierarchy, MultilevelMincANTSConf) else full_hierarchy
        # also weird that we need to call get_linear_configuration_from_options here ... ?
        lsq12_conf = get_linear_configuration_from_options(conf=options.mbm.lsq12,
                                                           transform_type=LinearTransType.lsq12,
                                                           file_resolution=resolution)
        xfm_to_common = s.defer(lsq12_nlin(source=lsq12_nlin_result.avg_img, target=common_space_model,
                                           lsq12_conf=lsq12_conf, nlin_conf=nlin_conf,
                                           resample_source=True))

        model_common = s.defer(mincresample_new(img=lsq12_nlin_result.avg_img,
                                                xfm=xfm_to_common.xfm, like=common_space_model,
                                                postfix="_common"))

        overall_xfms_common = [s.defer(concat_xfmhandlers([rigid_xfm, nlin_xfm, xfm_to_common]))
                               for rigid_xfm, nlin_xfm in zip(lsq6_result, lsq12_nlin_result.output)]

        xfms_common = [s.defer(concat_xfmhandlers([nlin_xfm, xfm_to_common]))
                       for nlin_xfm in lsq12_nlin_result.output]

        output_xfms = output_xfms.assign(xfm_common=xfms_common, overall_xfm_common=overall_xfms_common)

        log_nlin_det_common, log_full_det_common = [dets.map(lambda d:
                                                      s.defer(mincresample_new(
                                                        img=d,
                                                        xfm=xfm_to_common.xfm,
                                                        like=common_space_model,
                                                        postfix="_common",
                                                        extra_flags=("-keep_real_range",),
                                                        interpolation=Interpolation.nearest_neighbour)))
                                                    for dets in (determinants.log_nlin_det, determinants.log_full_det)]

        determinants = determinants.assign(log_nlin_det_common=log_nlin_det_common,
                                           log_full_det_common=log_full_det_common)

    output = Namespace(avg_img=lsq12_nlin_result.avg_img, xfms=output_xfms, determinants=determinants)

    if options.mbm.common_space.do_common_space_registration:
        output.model_common = model_common

    return Result(stages=s, output=output)
示例#13
0
def mbm(imgs: List[MincAtom],
        options: MBMConf,
        prefix: str,
        output_dir: str = "",
        with_maget: bool = True):

    # TODO could also allow pluggable pipeline parts e.g. LSQ6 could be substituted out for the modified LSQ6
    # for the kidney tips, etc...

    # TODO this is tedious and annoyingly similar to the registration chain ...
    lsq6_dir = os.path.join(output_dir, prefix + "_lsq6")
    lsq12_dir = os.path.join(output_dir, prefix + "_lsq12")
    nlin_dir = os.path.join(output_dir, prefix + "_nlin")

    s = Stages()

    if len(imgs) == 0:
        raise ValueError("Please, some files!")

    # FIXME: why do we have to call registration_targets *outside* of lsq6_nuc_inorm? is it just because of the extra
    # options required?  Also, shouldn't options.registration be a required input (as it contains `input_space`) ...?
    targets = s.defer(
        registration_targets(lsq6_conf=options.mbm.lsq6,
                             app_conf=options.application,
                             reg_conf=options.registration,
                             first_input_file=imgs[0].path))

    # TODO this is quite tedious and duplicates stuff in the registration chain ...
    resolution = (options.registration.resolution or get_resolution_from_file(
        targets.registration_standard.path))
    options.registration = options.registration.replace(resolution=resolution)

    # FIXME: this needs to go outside of the `mbm` function to avoid being run from within other pipelines (or
    # those other pipelines need to turn off this option)
    if with_maget:
        if options.mbm.segmentation.run_maget or options.mbm.maget.maget.mask:

            # temporary fix...?
            if options.mbm.maget.maget.mask and not options.mbm.segmentation.run_maget:
                # which means that --no-run-maget was specified
                if options.mbm.maget.maget.atlas_lib == None:
                    # clearly you do not want to run MAGeT at any point in this pipeline
                    err_msg_maget = "\nYou specified not to run MAGeT using the " \
                                    "--no-run-maget flag. However, the code also " \
                                    "wants to use MAGeT to generate masks for your " \
                                    "input files after the 6 parameter alignment (lsq6). " \
                                    "Because you did not specify a MAGeT atlas library " \
                                    "this can not be done. \nTo run the pipeline without " \
                                    "using MAGeT to mask your input files, please also " \
                                    "specify: \n--maget-no-mask\n"
                    raise ValueError(err_msg_maget)

            import copy
            maget_options = copy.deepcopy(options)  #Namespace(maget=options)
            #maget_options
            #maget_options.maget = maget_options.mbm
            #maget_options.execution = options.execution
            #maget_options.application = options.application
            #maget_options.application.output_directory = os.path.join(options.application.output_directory, "segmentation")
            maget_options.maget = options.mbm.maget

            fixup_maget_options(maget_options=maget_options.maget,
                                nlin_options=maget_options.mbm.nlin,
                                lsq12_options=maget_options.mbm.lsq12)
            del maget_options.mbm

        #def with_new_output_dir(img : MincAtom):
        #img = copy.copy(img)
        #img.pipeline_sub_dir = img.pipeline_sub_dir + img.output_dir
        #img.
        #return img.newname_with_suffix(suffix="", subdir="segmentation")

    # FIXME it probably makes most sense if the lsq6 module itself (even within lsq6_nuc_inorm) handles the run_lsq6
    # setting (via use of the identity transform) since then this doesn't have to be implemented for every pipeline
    if options.mbm.lsq6.run_lsq6:
        lsq6_result = s.defer(
            lsq6_nuc_inorm(imgs=imgs,
                           resolution=resolution,
                           registration_targets=targets,
                           lsq6_dir=lsq6_dir,
                           lsq6_options=options.mbm.lsq6))
    else:
        # FIXME the code shouldn't branch here based on run_lsq6 (which should probably
        # be part of the lsq6 options rather than the MBM ones; see comments on #287.
        # TODO don't actually do this resampling if not required (i.e., if the imgs already have the same grids)??
        # however, for now need to add the masks:
        identity_xfm = s.defer(
            param2xfm(
                out_xfm=FileAtom(name=os.path.join(lsq6_dir, 'tmp', "id.xfm"),
                                 pipeline_sub_dir=lsq6_dir,
                                 output_sub_dir='tmp')))
        lsq6_result = [
            XfmHandler(source=img,
                       target=img,
                       xfm=identity_xfm,
                       resampled=s.defer(
                           mincresample_new(img=img,
                                            like=targets.registration_standard,
                                            xfm=identity_xfm))) for img in imgs
        ]
    # what about running nuc/inorm without a linear registration step??

    if with_maget and options.mbm.maget.maget.mask:
        masking_imgs = copy.deepcopy([xfm.resampled for xfm in lsq6_result])
        masked_img = (s.defer(
            maget_mask(imgs=masking_imgs,
                       resolution=resolution,
                       maget_options=maget_options.maget,
                       pipeline_sub_dir=os.path.join(
                           options.application.output_directory,
                           "%s_atlases" % prefix))))

        masked_img.index = masked_img.apply(lambda x: x.path)

        # replace any masks of the resampled images with the newly created masks:
        for xfm in lsq6_result:
            xfm.resampled = masked_img.loc[xfm.resampled.path]
    elif with_maget:
        warnings.warn(
            "Not masking your images from atlas masks after LSQ6 alignment ... probably not what you want "
            "(this can have negative effects on your registration and statistics)"
        )

    #full_hierarchy = get_nonlinear_configuration_from_options(nlin_protocol=options.mbm.nlin.nlin_protocol,
    #                                                          flag_nlin_protocol=next(iter(options.mbm.nlin.flags_.nlin_protocol)),
    #                                                         reg_method=options.mbm.nlin.reg_method,
    #                                                          file_resolution=resolution)

    #I = TypeVar("I")
    #X = TypeVar("X")
    #def wrap_minc(nlin_module: NLIN[I, X]) -> type[NLIN[MincAtom, XfmAtom]]:
    #    class N(NLIN[MincAtom, XfmAtom]): pass

    # TODO now the user has to call get_nonlinear_component followed by parse_<...>; previously various things
    # like lsq12_nlin_pairwise all branched on the reg_method so one didn't have to call get_nonlinear_component;
    # they could still do this if it can be done safety (i.e., not breaking assumptions of various nonlinear units)
    nlin_module = get_nonlinear_component(
        reg_method=options.mbm.nlin.reg_method)

    nlin_build_model_component = get_model_building_procedure(
        options.mbm.nlin.reg_strategy,
        # was: model_building.reg_strategy
        reg_module=nlin_module)

    # does this belong here?
    # def model_building_with_initial_target_generation(prelim_model_building_component,
    #                                                   final_model_building_component):
    #     class C(final_model_building_component):
    #         @staticmethod
    #         def build_model(imgs,
    #                         conf     : BuildModelConf,
    #                         nlin_dir,
    #                         nlin_prefix,
    #                         initial_target,
    #                         output_name_wo_ext = None): pass
    #
    #     return C

    #if options.mbm.model_building.prelim_reg_strategy is not None:
    #    prelim_nlin_build_model_component = get_model_building_procedure(options.mbm.model_building.prelim_reg_strategy,
    #                                                                     reg_module=nlin_module)
    #    nlin_build_model_component = model_building_with_initial_target_generation(
    #                                   final_model_building_component=nlin_build_model_component,
    #                                   prelim_model_building_component=prelim_nlin_build_model_component)

    # TODO don't use name 'x_module' for something that's technically not a module ... perhaps unit/component?

    # TODO tedious: why can't parse_build_model_protocol handle the null protocol case? is this something we want?
    nlin_conf = (nlin_build_model_component.parse_build_model_protocol(
        options.mbm.nlin.nlin_protocol, resolution=resolution)
                 if options.mbm.nlin.nlin_protocol is not None else
                 nlin_build_model_component.get_default_build_model_conf(
                     resolution=resolution))

    lsq12_nlin_result = s.defer(
        lsq12_nlin_build_model(
            nlin_module=nlin_build_model_component,
            imgs=[xfm.resampled for xfm in lsq6_result],
            lsq12_dir=lsq12_dir,
            nlin_dir=nlin_dir,
            nlin_prefix=prefix,
            use_robust_averaging=options.mbm.nlin.use_robust_averaging,
            resolution=resolution,
            lsq12_conf=options.mbm.lsq12,
            nlin_conf=nlin_conf))  #options.mbm.nlin

    inverted_xfms = [
        s.defer(invert_xfmhandler(xfm)) for xfm in lsq12_nlin_result.output
    ]

    if options.mbm.stats.stats_kernels:
        determinants = s.defer(
            determinants_at_fwhms(xfms=inverted_xfms,
                                  inv_xfms=lsq12_nlin_result.output,
                                  blur_fwhms=options.mbm.stats.stats_kernels))
    else:
        determinants = None

    overall_xfms = [
        s.defer(concat_xfmhandlers([rigid_xfm, lsq12_nlin_xfm])) for rigid_xfm,
        lsq12_nlin_xfm in zip(lsq6_result, lsq12_nlin_result.output)
    ]

    output_xfms = (
        pd.DataFrame({
            "rigid_xfm":
            lsq6_result,  # maybe don't return this if LSQ6 not run??
            "lsq12_nlin_xfm": lsq12_nlin_result.output,
            "overall_xfm": overall_xfms
        }))
    # we could `merge` the determinants with this table, but preserving information would cause lots of duplication
    # of the transforms (or storing determinants in more columns, but iterating over dynamically known columns
    # seems a bit odd ...)

    # TODO transpose these fields?})
    #avg_img=lsq12_nlin_result.avg_img,  # inconsistent w/ WithAvgImgs[...]-style outputs
    # "determinants"    : determinants })

    #output.avg_img = lsq12_nlin_result.avg_img
    #output.determinants = determinants   # TODO temporary - remove once incorporated properly into `output` proper
    # TODO add more of lsq12_nlin_result?

    # FIXME moved above rest of registration for debugging ... shouldn't use and destructively modify lsq6_result!!!
    if with_maget and options.mbm.segmentation.run_maget:
        maget_options = copy.deepcopy(maget_options)
        maget_options.maget.maget.mask = maget_options.maget.maget.mask_only = False  # already done above
        # use the original masks here otherwise the masking step will be re-run due to the previous masking run's
        # masks having been applied to the input images:
        maget_result = s.defer(
            maget(
                [xfm.resampled for xfm in lsq6_result],
                #[xfm.resampled for _ix, xfm in mbm_result.xfms.rigid_xfm.iteritems()],
                options=maget_options,
                prefix="%s_MAGeT" % prefix,
                output_dir=os.path.join(output_dir, prefix + "_processed")))
        # FIXME add pipeline dir to path and uncomment!
        #maget.to_csv(path_or_buf="segmentations.csv", columns=['img', 'voted_labels'])

    # TODO return some MAGeT stuff from MBM function ??
    # if options.mbm.mbm.run_maget:
    #     import copy
    #     maget_options = copy.deepcopy(options)  #Namespace(maget=options)
    #     #maget_options
    #     #maget_options.maget = maget_options.mbm
    #     #maget_options.execution = options.execution
    #     #maget_options.application = options.application
    #     maget_options.maget = options.mbm.maget
    #     del maget_options.mbm
    #
    #     s.defer(maget([xfm.resampled for xfm in lsq6_result],
    #                   options=maget_options,
    #                   prefix="%s_MAGeT" % prefix,
    #                   output_dir=os.path.join(output_dir, prefix + "_processed")))

    # should also move outside `mbm` function ...
    #if options.mbm.thickness.run_thickness:
    #    if not options.mbm.segmentation.run_maget:
    #        warnings.warn("MAGeT files (atlases, protocols) are needed to run thickness calculation.")
    #    # run MAGeT to segment the nlin average:
    #    import copy
    #    maget_options = copy.deepcopy(options)  #Namespace(maget=options)
    #    maget_options.maget = options.mbm.maget
    #    del maget_options.mbm
    #    segmented_avg = s.defer(maget(imgs=[lsq12_nlin_result.avg_img],
    #                                  options=maget_options,
    #                                  output_dir=os.path.join(options.application.output_directory,
    #                                                          prefix + "_processed"),
    #                                  prefix="%s_thickness_MAGeT" % prefix)).ix[0].img
    #    thickness = s.defer(cortical_thickness(xfms=pd.Series(inverted_xfms), atlas=segmented_avg,
    #                                           label_mapping=FileAtom(options.mbm.thickness.label_mapping),
    #                                           atlas_fwhm=0.56, thickness_fwhm=0.56))  # TODO magic fwhms
    #    # TODO write CSV -- should `cortical_thickness` do this/return a table?

    output = Namespace(avg_img=lsq12_nlin_result.avg_img,
                       xfms=output_xfms,
                       determinants=determinants)

    if with_maget and options.mbm.segmentation.run_maget:
        output.maget_result = maget_result

        nlin_maget = (
            s.defer(
                maget(
                    [lsq12_nlin_result.avg_img],
                    #[xfm.resampled for _ix, xfm in mbm_result.xfms.rigid_xfm.iteritems()],
                    options=maget_options,
                    prefix="%s_nlin_MAGeT" % prefix,
                    output_dir=os.path.join(
                        output_dir,
                        prefix + "_processed")))).iloc[0]  #.voted_labels
        #output.avg_img.mask = nlin_maget.mask  # makes more sense, but might have weird effects elsewhere
        output.avg_img.labels = nlin_maget.labels

    return Result(stages=s, output=output)
示例#14
0
def NLIN_pipeline(options):

    output_dir = options.application.output_directory
    pipeline_name = options.application.pipeline_name

    # TODO this is tedious and annoyingly similar to the registration chain and MBM and LSQ6 ...
    processed_dir = os.path.join(output_dir, pipeline_name + "_processed")
    nlin_dir = os.path.join(output_dir, pipeline_name + "_nlin")

    resolution = (
        options.registration.
        resolution  # TODO does using the finest resolution here make sense?
        or min(
            [get_resolution_from_file(f) for f in options.application.files]))

    imgs = get_imgs(options.application)

    initial_target_mask = MincAtom(
        options.nlin.target_mask) if options.nlin.target_mask else None
    initial_target = MincAtom(options.nlin.target, mask=initial_target_mask)

    nlin_module = get_nonlinear_component(reg_method=options.nlin.reg_method)

    nlin_build_model_component = get_model_building_procedure(
        options.nlin.reg_strategy, reg_module=nlin_module)

    nlin_conf = (nlin_build_model_component.parse_build_model_protocol(
        options.nlin.nlin_protocol, resolution=resolution)
                 if options.nlin.nlin_protocol is not None else
                 nlin_build_model_component.get_default_build_model_conf(
                     resolution=resolution))

    s = Stages()

    nlin_result = s.defer(
        nlin_build_model_component.build_model(
            imgs=imgs,
            initial_target=initial_target,
            conf=nlin_conf,
            nlin_dir=nlin_dir,
            use_robust_averaging=options.nlin.use_robust_averaging,
            nlin_prefix=""))

    inverted_xfms = [
        s.defer(invert_xfmhandler(xfm)) for xfm in nlin_result.output
    ]

    if options.stats.calc_stats:

        determinants = s.defer(
            determinants_at_fwhms(xfms=inverted_xfms,
                                  inv_xfms=nlin_result.output,
                                  blur_fwhms=options.stats.stats_kernels))

        return Result(stages=s,
                      output=Namespace(nlin_xfms=nlin_result,
                                       avg_img=nlin_result.avg_img,
                                       determinants=determinants))
    else:
        # there's no consistency in what gets returned, yikes ...
        return Result(stages=s,
                      output=Namespace(nlin_xfms=nlin_result,
                                       avg_img=nlin_result.avg_img))
示例#15
0
        # we can not use the registration_targets() function. The pride_of_models
        # works in a fairly different way, so we will separate out that option.
        if options.lsq6.target_type == TargetType.pride_of_models:
            pride_of_models_mapping = get_pride_of_models_mapping(options.lsq6.target_file,
                                                                  options.application.output_directory,
                                                                  options.application.pipeline_name)
            # all initial models that are part of the pride of models must have
            # the same resolution (it's currently a requirement). So we can get the
            # resolution from any of the RegistrationTargets:
            random_key = list(pride_of_models_mapping)[0]
            file_for_resolution = pride_of_models_mapping[random_key].registration_standard.path
        else:
            file_for_resolution = registration_targets(lsq6_conf=options.lsq6,
                                                       app_conf=options.application).registration_standard.path
        options.registration = options.registration.replace(
                                   resolution=get_resolution_from_file(file_for_resolution))
    
    # *** *** *** *** *** *** *** *** ***

    chain_result = chain(options)
    chain_output = chain_result.output

    # write some useful CSVs:
    analysis_csv = open("".join([options.application.pipeline_name, "_analysis_files.csv"]), "w")
    print("subject_id, timepoint, fwhm, log_det_absolute_second_level, "
          "log_det_relative_second_level, log_det_absolute_first_level, "
          "log_det_relative_first_level", file=analysis_csv)
    for subj_id, subject in chain_output.determinants_from_common_avg_to_subject.items():
        for timept, img in subject.time_pt_dict.items():
            # these rows contain full_det, fwhm, inv_xfm, log_full_det, log_nlin_det,... (some more)
            for i, row in img.iterrows():