def mbm_pipeline(options : MBMConf): s = Stages() imgs = [MincAtom(name, pipeline_sub_dir=os.path.join(options.application.output_directory, options.application.pipeline_name + "_processed")) for name in options.application.files] check_MINC_input_files([img.path for img in imgs]) prefix = options.application.pipeline_name mbm_result = s.defer(mbm(imgs=imgs, options=options, prefix=prefix, output_dir=options.application.output_directory)) # create useful CSVs (note the files listed therein won't yet exist ...) for filename, dataframe in (("transforms.csv", mbm_result.xfms), ("determinants.csv", mbm_result.determinants)): with open(filename, 'w') as f: f.write(dataframe.applymap(maybe_deref_path).to_csv(index=False)) # TODO moved here from inside `mbm` for now ... does this make most sense? if options.mbm.segmentation.run_maget: import copy maget_options = copy.deepcopy(options) #Namespace(maget=options) #maget_options #maget_options.maget = maget_options.mbm #maget_options.execution = options.execution #maget_options.application = options.application maget_options.application.output_directory = os.path.join(options.application.output_directory, "segmentation") maget_options.maget = options.mbm.maget fixup_maget_options(maget_options=maget_options.maget, nlin_options=maget_options.mbm.nlin, lsq12_options=maget_options.mbm.lsq12) del maget_options.mbm s.defer(maget([xfm.resampled for _ix, xfm in mbm_result.xfms.rigid_xfm.iteritems()], options=maget_options, prefix="%s_MAGeT" % prefix, output_dir=os.path.join(options.application.output_directory, prefix + "_processed"))) return Result(stages=s, output=mbm_result)
def mbm(imgs: List[MincAtom], options: MBMConf, prefix: str, output_dir: str = "", with_maget: bool = True): # TODO could also allow pluggable pipeline parts e.g. LSQ6 could be substituted out for the modified LSQ6 # for the kidney tips, etc... # TODO this is tedious and annoyingly similar to the registration chain ... lsq6_dir = os.path.join(output_dir, prefix + "_lsq6") lsq12_dir = os.path.join(output_dir, prefix + "_lsq12") nlin_dir = os.path.join(output_dir, prefix + "_nlin") s = Stages() if len(imgs) == 0: raise ValueError("Please, some files!") # FIXME: why do we have to call registration_targets *outside* of lsq6_nuc_inorm? is it just because of the extra # options required? Also, shouldn't options.registration be a required input (as it contains `input_space`) ...? targets = s.defer( registration_targets(lsq6_conf=options.mbm.lsq6, app_conf=options.application, reg_conf=options.registration, first_input_file=imgs[0].path)) # TODO this is quite tedious and duplicates stuff in the registration chain ... resolution = (options.registration.resolution or get_resolution_from_file( targets.registration_standard.path)) options.registration = options.registration.replace(resolution=resolution) # FIXME: this needs to go outside of the `mbm` function to avoid being run from within other pipelines (or # those other pipelines need to turn off this option) if with_maget: if options.mbm.segmentation.run_maget or options.mbm.maget.maget.mask: # temporary fix...? if options.mbm.maget.maget.mask and not options.mbm.segmentation.run_maget: # which means that --no-run-maget was specified if options.mbm.maget.maget.atlas_lib == None: # clearly you do not want to run MAGeT at any point in this pipeline err_msg_maget = "\nYou specified not to run MAGeT using the " \ "--no-run-maget flag. However, the code also " \ "wants to use MAGeT to generate masks for your " \ "input files after the 6 parameter alignment (lsq6). " \ "Because you did not specify a MAGeT atlas library " \ "this can not be done. \nTo run the pipeline without " \ "using MAGeT to mask your input files, please also " \ "specify: \n--maget-no-mask\n" raise ValueError(err_msg_maget) import copy maget_options = copy.deepcopy(options) #Namespace(maget=options) #maget_options #maget_options.maget = maget_options.mbm #maget_options.execution = options.execution #maget_options.application = options.application #maget_options.application.output_directory = os.path.join(options.application.output_directory, "segmentation") maget_options.maget = options.mbm.maget fixup_maget_options(maget_options=maget_options.maget, nlin_options=maget_options.mbm.nlin, lsq12_options=maget_options.mbm.lsq12) del maget_options.mbm #def with_new_output_dir(img : MincAtom): #img = copy.copy(img) #img.pipeline_sub_dir = img.pipeline_sub_dir + img.output_dir #img. #return img.newname_with_suffix(suffix="", subdir="segmentation") # FIXME it probably makes most sense if the lsq6 module itself (even within lsq6_nuc_inorm) handles the run_lsq6 # setting (via use of the identity transform) since then this doesn't have to be implemented for every pipeline if options.mbm.lsq6.run_lsq6: lsq6_result = s.defer( lsq6_nuc_inorm(imgs=imgs, resolution=resolution, registration_targets=targets, lsq6_dir=lsq6_dir, lsq6_options=options.mbm.lsq6)) else: # FIXME the code shouldn't branch here based on run_lsq6 (which should probably # be part of the lsq6 options rather than the MBM ones; see comments on #287. # TODO don't actually do this resampling if not required (i.e., if the imgs already have the same grids)?? # however, for now need to add the masks: identity_xfm = s.defer( param2xfm( out_xfm=FileAtom(name=os.path.join(lsq6_dir, 'tmp', "id.xfm"), pipeline_sub_dir=lsq6_dir, output_sub_dir='tmp'))) lsq6_result = [ XfmHandler(source=img, target=img, xfm=identity_xfm, resampled=s.defer( mincresample_new(img=img, like=targets.registration_standard, xfm=identity_xfm))) for img in imgs ] # what about running nuc/inorm without a linear registration step?? if with_maget and options.mbm.maget.maget.mask: masking_imgs = copy.deepcopy([xfm.resampled for xfm in lsq6_result]) masked_img = (s.defer( maget_mask(imgs=masking_imgs, resolution=resolution, maget_options=maget_options.maget, pipeline_sub_dir=os.path.join( options.application.output_directory, "%s_atlases" % prefix)))) masked_img.index = masked_img.apply(lambda x: x.path) # replace any masks of the resampled images with the newly created masks: for xfm in lsq6_result: xfm.resampled = masked_img.loc[xfm.resampled.path] elif with_maget: warnings.warn( "Not masking your images from atlas masks after LSQ6 alignment ... probably not what you want " "(this can have negative effects on your registration and statistics)" ) #full_hierarchy = get_nonlinear_configuration_from_options(nlin_protocol=options.mbm.nlin.nlin_protocol, # flag_nlin_protocol=next(iter(options.mbm.nlin.flags_.nlin_protocol)), # reg_method=options.mbm.nlin.reg_method, # file_resolution=resolution) #I = TypeVar("I") #X = TypeVar("X") #def wrap_minc(nlin_module: NLIN[I, X]) -> type[NLIN[MincAtom, XfmAtom]]: # class N(NLIN[MincAtom, XfmAtom]): pass # TODO now the user has to call get_nonlinear_component followed by parse_<...>; previously various things # like lsq12_nlin_pairwise all branched on the reg_method so one didn't have to call get_nonlinear_component; # they could still do this if it can be done safety (i.e., not breaking assumptions of various nonlinear units) nlin_module = get_nonlinear_component( reg_method=options.mbm.nlin.reg_method) nlin_build_model_component = get_model_building_procedure( options.mbm.nlin.reg_strategy, # was: model_building.reg_strategy reg_module=nlin_module) # does this belong here? # def model_building_with_initial_target_generation(prelim_model_building_component, # final_model_building_component): # class C(final_model_building_component): # @staticmethod # def build_model(imgs, # conf : BuildModelConf, # nlin_dir, # nlin_prefix, # initial_target, # output_name_wo_ext = None): pass # # return C #if options.mbm.model_building.prelim_reg_strategy is not None: # prelim_nlin_build_model_component = get_model_building_procedure(options.mbm.model_building.prelim_reg_strategy, # reg_module=nlin_module) # nlin_build_model_component = model_building_with_initial_target_generation( # final_model_building_component=nlin_build_model_component, # prelim_model_building_component=prelim_nlin_build_model_component) # TODO don't use name 'x_module' for something that's technically not a module ... perhaps unit/component? # TODO tedious: why can't parse_build_model_protocol handle the null protocol case? is this something we want? nlin_conf = (nlin_build_model_component.parse_build_model_protocol( options.mbm.nlin.nlin_protocol, resolution=resolution) if options.mbm.nlin.nlin_protocol is not None else nlin_build_model_component.get_default_build_model_conf( resolution=resolution)) lsq12_nlin_result = s.defer( lsq12_nlin_build_model( nlin_module=nlin_build_model_component, imgs=[xfm.resampled for xfm in lsq6_result], lsq12_dir=lsq12_dir, nlin_dir=nlin_dir, nlin_prefix=prefix, use_robust_averaging=options.mbm.nlin.use_robust_averaging, resolution=resolution, lsq12_conf=options.mbm.lsq12, nlin_conf=nlin_conf)) #options.mbm.nlin inverted_xfms = [ s.defer(invert_xfmhandler(xfm)) for xfm in lsq12_nlin_result.output ] if options.mbm.stats.stats_kernels: determinants = s.defer( determinants_at_fwhms(xfms=inverted_xfms, inv_xfms=lsq12_nlin_result.output, blur_fwhms=options.mbm.stats.stats_kernels)) else: determinants = None overall_xfms = [ s.defer(concat_xfmhandlers([rigid_xfm, lsq12_nlin_xfm])) for rigid_xfm, lsq12_nlin_xfm in zip(lsq6_result, lsq12_nlin_result.output) ] output_xfms = ( pd.DataFrame({ "rigid_xfm": lsq6_result, # maybe don't return this if LSQ6 not run?? "lsq12_nlin_xfm": lsq12_nlin_result.output, "overall_xfm": overall_xfms })) # we could `merge` the determinants with this table, but preserving information would cause lots of duplication # of the transforms (or storing determinants in more columns, but iterating over dynamically known columns # seems a bit odd ...) # TODO transpose these fields?}) #avg_img=lsq12_nlin_result.avg_img, # inconsistent w/ WithAvgImgs[...]-style outputs # "determinants" : determinants }) #output.avg_img = lsq12_nlin_result.avg_img #output.determinants = determinants # TODO temporary - remove once incorporated properly into `output` proper # TODO add more of lsq12_nlin_result? # FIXME moved above rest of registration for debugging ... shouldn't use and destructively modify lsq6_result!!! if with_maget and options.mbm.segmentation.run_maget: maget_options = copy.deepcopy(maget_options) maget_options.maget.maget.mask = maget_options.maget.maget.mask_only = False # already done above # use the original masks here otherwise the masking step will be re-run due to the previous masking run's # masks having been applied to the input images: maget_result = s.defer( maget( [xfm.resampled for xfm in lsq6_result], #[xfm.resampled for _ix, xfm in mbm_result.xfms.rigid_xfm.iteritems()], options=maget_options, prefix="%s_MAGeT" % prefix, output_dir=os.path.join(output_dir, prefix + "_processed"))) # FIXME add pipeline dir to path and uncomment! #maget.to_csv(path_or_buf="segmentations.csv", columns=['img', 'voted_labels']) # TODO return some MAGeT stuff from MBM function ?? # if options.mbm.mbm.run_maget: # import copy # maget_options = copy.deepcopy(options) #Namespace(maget=options) # #maget_options # #maget_options.maget = maget_options.mbm # #maget_options.execution = options.execution # #maget_options.application = options.application # maget_options.maget = options.mbm.maget # del maget_options.mbm # # s.defer(maget([xfm.resampled for xfm in lsq6_result], # options=maget_options, # prefix="%s_MAGeT" % prefix, # output_dir=os.path.join(output_dir, prefix + "_processed"))) # should also move outside `mbm` function ... #if options.mbm.thickness.run_thickness: # if not options.mbm.segmentation.run_maget: # warnings.warn("MAGeT files (atlases, protocols) are needed to run thickness calculation.") # # run MAGeT to segment the nlin average: # import copy # maget_options = copy.deepcopy(options) #Namespace(maget=options) # maget_options.maget = options.mbm.maget # del maget_options.mbm # segmented_avg = s.defer(maget(imgs=[lsq12_nlin_result.avg_img], # options=maget_options, # output_dir=os.path.join(options.application.output_directory, # prefix + "_processed"), # prefix="%s_thickness_MAGeT" % prefix)).ix[0].img # thickness = s.defer(cortical_thickness(xfms=pd.Series(inverted_xfms), atlas=segmented_avg, # label_mapping=FileAtom(options.mbm.thickness.label_mapping), # atlas_fwhm=0.56, thickness_fwhm=0.56)) # TODO magic fwhms # # TODO write CSV -- should `cortical_thickness` do this/return a table? output = Namespace(avg_img=lsq12_nlin_result.avg_img, xfms=output_xfms, determinants=determinants) if with_maget and options.mbm.segmentation.run_maget: output.maget_result = maget_result nlin_maget = ( s.defer( maget( [lsq12_nlin_result.avg_img], #[xfm.resampled for _ix, xfm in mbm_result.xfms.rigid_xfm.iteritems()], options=maget_options, prefix="%s_nlin_MAGeT" % prefix, output_dir=os.path.join( output_dir, prefix + "_processed")))).iloc[0] #.voted_labels #output.avg_img.mask = nlin_maget.mask # makes more sense, but might have weird effects elsewhere output.avg_img.labels = nlin_maget.labels return Result(stages=s, output=output)
def two_level(grouped_files_df, options : TwoLevelConf): """ grouped_files_df - must contain 'group':<any comparable, sortable type> and 'file':MincAtom columns """ # TODO weird naming since the grouped_files_df isn't a GroupBy object? just files_df? s = Stages() if grouped_files_df.isnull().values.any(): raise ValueError("NaN values in input dataframe; can't go") if options.mbm.lsq6.target_type == TargetType.bootstrap: # won't work since the second level part tries to get the resolution of *its* "first input file", which # hasn't been created. We could instead pass in a resolution to the `mbm` function, # but instead disable for now: raise ValueError("Bootstrap model building currently doesn't work with this pipeline; " "just specify an initial target instead") elif options.mbm.lsq6.target_type == TargetType.pride_of_models: pride_of_models_mapping = get_pride_of_models_mapping(pride_csv=options.mbm.lsq6.target_file, output_dir=options.application.output_directory, pipeline_name=options.application.pipeline_name) # FIXME this is the same as in the 'tamarack' except for names of arguments/enclosing variables def group_options(options, group): options = copy.deepcopy(options) if options.mbm.lsq6.target_type == TargetType.pride_of_models: targets = get_closest_model_from_pride_of_models(pride_of_models_dict=pride_of_models_mapping, time_point=group) options.mbm.lsq6 = options.mbm.lsq6.replace(target_type=TargetType.initial_model, target_file=targets.registration_standard.path) else: # this will ensure that all groups have the same resolution -- is it necessary? targets = registration_targets(lsq6_conf=options.mbm.lsq6, app_conf=options.application, first_input_file=grouped_files_df.file.iloc[0]) resolution = (options.registration.resolution or get_resolution_from_file(targets.registration_standard.path)) options.registration = options.registration.replace(resolution=resolution) return options first_level_results = ( grouped_files_df .groupby('group', as_index=False, sort=False) # the usual annoying pattern to do a aggregate with access .aggregate({ 'file' : lambda files: list(files) }) # to the groupby object's keys ... TODO: fix .rename(columns={ 'file' : "files" }) .assign(build_model=lambda df: df.apply(axis=1, func=lambda row: s.defer(mbm(imgs=row.files, options=group_options(options, row.group), prefix="%s" % row.group, output_dir=os.path.join( options.application.output_directory, options.application.pipeline_name + "_first_level", "%s_processed" % row.group))))) ) # TODO replace .assign(...apply(...)...) with just an apply, producing a series right away? # FIXME right now the same options set is being used for both levels -- use options.first/second_level second_level_options = copy.deepcopy(options) second_level_options.mbm.lsq6 = second_level_options.mbm.lsq6.replace(run_lsq6=False) # FIXME this is probably a hack -- instead add a --second-level-init-model option to specify which timepoint should be used # as the initial model in the second level ??? (at this point it doesn't matter due to lack of lsq6 ...) if second_level_options.mbm.lsq6.target_type == TargetType.pride_of_models: second_level_options.mbm.lsq6 = second_level_options.mbm.lsq6.replace( target_type=TargetType.target, # target doesn't really matter as no lsq6 here, just used for resolution... target_file=list(pride_of_models_mapping.values())[0].registration_standard.path) # NOTE: running lsq6_nuc_inorm here doesn't work in general (but possibly with rotational minctracc) # since the native-space initial model is used, but our images are # already in standard space (as we resampled there after the 1st-level lsq6). # On the other hand, we might want to run it here (although of course NOT nuc/inorm!) in the future, # for instance given a 'pride' of models (one for each group). second_level_results = s.defer(mbm(imgs=first_level_results.build_model.map(lambda m: m.avg_img), options=second_level_options, prefix=os.path.join(options.application.output_directory, options.application.pipeline_name + "_second_level"))) # FIXME sadly, `mbm` doesn't return a pd.Series of xfms, so we don't have convenient indexing ... overall_xfms = [s.defer(concat_xfmhandlers([xfm_1, xfm_2])) for xfms_1, xfm_2 in zip([r.xfms.lsq12_nlin_xfm for r in first_level_results.build_model], second_level_results.xfms.overall_xfm) for xfm_1 in xfms_1] resample = np.vectorize(mincresample_new, excluded={"extra_flags"}) defer = np.vectorize(s.defer) # TODO using the avg_img here is a bit clunky -- maybe better to propagate group indices ... # only necessary since `mbm` doesn't return DataFrames but namespaces ... first_level_determinants = pd.concat(list(first_level_results.build_model.apply( lambda x: x.determinants.assign(first_level_avg=x.avg_img))), ignore_index=True) resampled_determinants = (pd.merge( left=first_level_determinants, right=pd.DataFrame({'group_xfm' : second_level_results.xfms.overall_xfm}) .assign(source=lambda df: df.group_xfm.apply(lambda r: r.source)), left_on="first_level_avg", right_on="source") .assign(resampled_log_full_det=lambda df: defer(resample(img=df.log_full_det, xfm=df.group_xfm.apply(lambda x: x.xfm), like=second_level_results.avg_img)), resampled_log_nlin_det=lambda df: defer(resample(img=df.log_nlin_det, xfm=df.group_xfm.apply(lambda x: x.xfm), like=second_level_results.avg_img)))) # TODO only resamples the log determinants, but still a bit ugly ... abstract somehow? # TODO shouldn't be called resampled_determinants since this is basically the whole (first_level) thing ... inverted_overall_xfms = [s.defer(invert_xfmhandler(xfm)) for xfm in overall_xfms] overall_determinants = (s.defer(determinants_at_fwhms( xfms=inverted_overall_xfms, inv_xfms=overall_xfms, blur_fwhms=options.mbm.stats.stats_kernels)) .assign(overall_log_full_det=lambda df: df.log_full_det, overall_log_nlin_det=lambda df: df.log_nlin_det) .drop(['log_full_det', 'log_nlin_det'], axis=1)) # TODO return some MAGeT stuff from two_level function ?? # FIXME running MAGeT from within the `two_level` function has the same problem as running it from within `mbm`: # it will now run when this pipeline is called from within another one (e.g., n-level), which will be # redundant, create filename clashes, etc. -- this should be moved to `two_level_pipeline`. if options.mbm.segmentation.run_maget: maget_options = copy.deepcopy(options) maget_options.maget = options.mbm.maget fixup_maget_options(maget_options=maget_options.maget, lsq12_options=maget_options.mbm.lsq12, nlin_options=maget_options.mbm.nlin) del maget_options.mbm # again using a weird combination of vectorized and loop constructs ... s.defer(maget([xfm.resampled for _ix, m in first_level_results.iterrows() for xfm in m.build_model.xfms.rigid_xfm], options=maget_options, prefix="%s_MAGeT" % options.application.pipeline_name, output_dir=os.path.join(options.application.output_directory, options.application.pipeline_name + "_processed"))) # TODO resampling to database model ... # TODO there should be one table containing all determinants (first level, overall, resampled first level) for each file # and another containing some groupwise information (averages and transforms to the common average) return Result(stages=s, output=Namespace(first_level_results=first_level_results, resampled_determinants=resampled_determinants, overall_determinants=overall_determinants))