def make_dircol_pendulum(ic=(-1., 0.), num_samples=32, min_timestep=0.002, max_timestep=0.25, warm_start="linear", seed=1776, should_vis=False, target_traj=None, **kwargs): # if 'warm_start' in kwargs: # print(kwargs['warm_start']) # else: # print("warm_start", warm_start) global dircol global plant global context plant = PendulumPlant() context = plant.CreateDefaultContext() dircol = DirectCollocation(plant, context, num_time_samples=num_samples, minimum_timestep=min_timestep, maximum_timestep=max_timestep) dircol.AddEqualTimeIntervalsConstraints() # torque_limit = input_limit # N*m. torque_limit = 5. u = dircol.input() dircol.AddConstraintToAllKnotPoints(-torque_limit <= u[0]) dircol.AddConstraintToAllKnotPoints(u[0] <= torque_limit) initial_state = ic dircol.AddBoundingBoxConstraint(initial_state, initial_state, dircol.initial_state()) final_state = (math.pi, 0.) dircol.AddBoundingBoxConstraint(final_state, final_state, dircol.final_state()) # R = 100 # Cost on input "effort". u = dircol.input() x = dircol.state() # print(x) dircol.AddRunningCost(2 * ((x[0] - math.pi) * (x[0] - math.pi) + x[1] * x[1]) + 25 * u.dot(u)) # Add a final cost equal to the total duration. # dircol.AddFinalCost(dircol.time()) if warm_start == "linear": initial_u_trajectory = PiecewisePolynomial() initial_x_trajectory = \ PiecewisePolynomial.FirstOrderHold([0., 4.], np.column_stack((initial_state, final_state))) dircol.SetInitialTrajectory(initial_u_trajectory, initial_x_trajectory) elif warm_start == "random": assert isinstance(seed, int) np.random.seed(seed) breaks = np.linspace(0, 4, num_samples).reshape( (-1, 1)) # using num_time_samples u_knots = np.random.rand( 1, num_samples) - 0.5 # num_inputs vs num_samples? x_knots = np.random.rand( 2, num_samples) - 0.5 # num_states vs num_samples? initial_u_trajectory = PiecewisePolynomial.Cubic( breaks, u_knots, False) initial_x_trajectory = PiecewisePolynomial.Cubic( breaks, x_knots, False) dircol.SetInitialTrajectory(initial_u_trajectory, initial_x_trajectory) elif warm_start == "target": assert target_traj != [], "Need a valid target for warm starting" (breaks, x_knots, u_knots) = target_traj #(breaks, u_knots, x_knots) = target_traj initial_u_trajectory = PiecewisePolynomial.Cubic( breaks.T, u_knots.T, False) initial_x_trajectory = PiecewisePolynomial.Cubic( breaks.T, x_knots.T, False) dircol.SetInitialTrajectory(initial_u_trajectory, initial_x_trajectory) def cb(decision_vars): global vis_cb_counter vis_cb_counter += 1 if vis_cb_counter % 10 != 0: return # Get the total cost all_costs = dircol.EvalBindings(dircol.GetAllCosts(), decision_vars) # Get the total cost of the constraints. # Additionally, the number and extent of any constraint violations. violated_constraint_count = 0 violated_constraint_cost = 0 constraint_cost = 0 for constraint in dircol.GetAllConstraints(): val = dircol.EvalBinding(constraint, decision_vars) # Consider switching to DoCheckSatisfied if you can find the binding... nudge = 1e-1 # This much constraint violation is not considered bad... lb = constraint.evaluator().lower_bound() ub = constraint.evaluator().upper_bound() good_lb = np.all(np.less_equal(lb, val + nudge)) good_ub = np.all(np.greater_equal(ub, val - nudge)) if not good_lb or not good_ub: # print("{} <= {} <= {}".format(lb, val, ub)) violated_constraint_count += 1 # violated_constraint_cost += np.sum(np.abs(val)) if not good_lb: violated_constraint_cost += np.sum(np.abs(lb - val)) if not good_ub: violated_constraint_cost += np.sum(np.abs(val - ub)) constraint_cost += np.sum(np.abs(val)) print("total cost: {: .2f} | \tconstraint {: .2f} \tbad {}, {: .2f}". format(sum(all_costs), constraint_cost, violated_constraint_count, violated_constraint_cost)) #dircol.AddVisualizationCallback(cb, dircol.decision_variables()) def MyVisualization(sample_times, values): global vis_cb_counter vis_cb_counter += 1 #print("counter: ", vis_cb_counter) if vis_cb_counter % 10 != 0: return x, x_dot = values[0], values[1] plt.plot(x, x_dot, '-o', label=vis_cb_counter) plt.show() if should_vis: plt.figure() plt.title('Tip trajectories') plt.xlabel('x') plt.ylabel('x_dot') dircol.AddStateTrajectoryCallback(MyVisualization) from pydrake.all import (SolverType) #dircol.SetSolverOption(SolverType.kSnopt, 'Major feasibility tolerance', 1.0e-6) # default="1.0e-6" #dircol.SetSolverOption(SolverType.kSnopt, 'Major optimality tolerance', 1.0e-6) # default="1.0e-6" #dircol.SetSolverOption(SolverType.kSnopt, 'Minor feasibility tolerance', 1.0e-6) # default="1.0e-6" #dircol.SetSolverOption(SolverType.kSnopt, 'Minor optimality tolerance', 1.0e-6) # default="1.0e-6" # dircol.SetSolverOption(SolverType.kSnopt, 'Major feasibility tolerance', 1.0e-6) # default="1.0e-6" # dircol.SetSolverOption(SolverType.kSnopt, 'Major optimality tolerance', 5.0e-2) # default="1.0e-6" was 5.0e-1 # dircol.SetSolverOption(SolverType.kSnopt, 'Minor feasibility tolerance', 1.0e-6) # default="1.0e-6" # dircol.SetSolverOption(SolverType.kSnopt, 'Minor optimality tolerance', 5.0e-2) # default="1.0e-6" was 5.0e-1 dircol.SetSolverOption( SolverType.kSnopt, 'Time limit (secs)', 60.0) # default="9999999.0" # Very aggressive cutoff... dircol.SetSolverOption( SolverType.kSnopt, 'Major step limit', 0.1) # default="2.0e+0" # HUGE!!! default takes WAY too huge steps # dircol.SetSolverOption(SolverType.kSnopt, 'Reduced Hessian dimension', 10000) # Default="min{2000, n1 + 1}" # dircol.SetSolverOption(SolverType.kSnopt, 'Hessian updates', 30) # Default="10" dircol.SetSolverOption(SolverType.kSnopt, 'Major iterations limit', 9300000) # Default="9300" dircol.SetSolverOption(SolverType.kSnopt, 'Minor iterations limit', 50000) # Default="500" dircol.SetSolverOption(SolverType.kSnopt, 'Iterations limit', 50 * 10000) # Default="10000" # Factoriztion? # dircol.SetSolverOption(SolverType.kSnopt, 'QPSolver Cholesky', True) # Default="*Cholesky/CG/QN" #dircol.SetSolverOption(SolverType.kSnopt, 'Major iterations limit', 1) # Default="9300" #dircol.SetSolverOption(SolverType.kSnopt, 'Minor iterations limit', 1) # Default="500" return dircol
xf = [pi, 0, 0, 0] prog.AddBoundingBoxConstraint(x0, x0, prog.initial_state()) prog.AddBoundingBoxConstraint(xf, xf, prog.final_state()) # Add running cost u = prog.input() R = 10 prog.AddRunningCost(R * u[0]**2) # Add final cost prog.AddFinalCost(prog.time()) # Create an initial guess at the trajectory init_x = PiecewisePolynomial.FirstOrderHold([0, 10.0], np.column_stack( (x0, xf))) init_u = PiecewisePolynomial.FirstOrderHold([0, 10.0], np.zeros(shape=(1, 2))) prog.SetInitialTrajectory(traj_init_u=init_u, traj_init_x=init_x) # Set SNOPT options prog.SetSolverOption(SnoptSolver().solver_id(), "Major Iterations Limit", 1000) prog.SetSolverOption(SnoptSolver().solver_id(), "Major Feasibility Tolerance", 1e-4) prog.SetSolverOption(SnoptSolver().solver_id(), "Major Optimality Tolerance", 1e-4) prog.SetSolverOption(SnoptSolver().solver_id(), "Scale Option", 2) solver = SnoptSolver() # Solve the problem print("Solving trajectory optimization") start = timeit.default_timer() result = solver.Solve(prog) stop = timeit.default_timer() print("Elapsed Time: ", stop - start) # Get the details of the solution print("Optimization successful? ", result.is_success()) print('solver is: ', result.get_solver_id().name())
def make_dircol_cartpole(ic=(-1., 0., 0., 0.), num_samples=21, min_timestep=0.0001, max_timestep=1., warm_start="linear", seed=1776, should_vis=False, torque_limit=250., target_traj=None, **kwargs): global dircol global plant global context tree = RigidBodyTree("/opt/underactuated/src/cartpole/cartpole.urdf", FloatingBaseType.kFixed) plant = RigidBodyPlant(tree) context = plant.CreateDefaultContext() dircol = DirectCollocation( plant, context, num_time_samples=num_samples, # minimum_timestep=0.01, maximum_timestep=0.01) minimum_timestep=min_timestep, maximum_timestep=max_timestep) # dircol.AddEqualTimeIntervalsConstraints() # torque_limit = input_limit # N*m. # torque_limit = 64. u = dircol.input() dircol.AddConstraintToAllKnotPoints(-torque_limit <= u[0]) dircol.AddConstraintToAllKnotPoints(u[0] <= torque_limit) initial_state = ic dircol.AddBoundingBoxConstraint(initial_state, initial_state, dircol.initial_state()) final_state = np.array([0., math.pi, 0., 0.]).astype(np.double) dircol.AddBoundingBoxConstraint(final_state, final_state, dircol.final_state()) # R = 100 # Cost on input "effort". u = dircol.input() x = dircol.state() # t = dircol.time() # let's add 100*t (seconds) to get in that min-time component! denom1 = float(10**2 + math.pi**2 + 10**2 + math.pi**2) denom2 = float(180**2) #denom1 = 10**2+math.pi**2+10**2+math.pi**2 #denom2 = 180**2 # dircol.AddRunningCost(u.dot(u)/denom2) # dircol.AddRunningCost(2*(x-final_state).dot(x-final_state)/denom1) dircol.AddRunningCost(1 + 2. * (x - final_state).dot(x - final_state) / denom1 + u.dot(u) / denom2) # Add a final cost equal to the total duration. #dircol.AddFinalCost(dircol.time()) # Enabled to sim min time cost? if warm_start == "linear": initial_u_trajectory = PiecewisePolynomial() initial_x_trajectory = \ PiecewisePolynomial.FirstOrderHold([0., 4.], np.column_stack((initial_state, final_state))) dircol.SetInitialTrajectory(initial_u_trajectory, initial_x_trajectory) elif warm_start == "random": assert isinstance(seed, int) np.random.seed(seed) breaks = np.linspace(0, 4, num_samples).reshape( (-1, 1)) # using num_time_samples u_knots = np.random.rand( 1, num_samples) - 0.5 # num_inputs vs num_samples? x_knots = np.random.rand( 2, num_samples) - 0.5 # num_states vs num_samples? initial_u_trajectory = PiecewisePolynomial.Cubic( breaks, u_knots, False) initial_x_trajectory = PiecewisePolynomial.Cubic( breaks, x_knots, False) dircol.SetInitialTrajectory(initial_u_trajectory, initial_x_trajectory) elif warm_start == "target": assert target_traj != [], "Need a valid target for warm starting" (breaks, x_knots, u_knots) = target_traj #(breaks, u_knots, x_knots) = target_traj initial_u_trajectory = PiecewisePolynomial.Cubic( breaks.T, u_knots.T, False) initial_x_trajectory = PiecewisePolynomial.Cubic( breaks.T, x_knots.T, False) dircol.SetInitialTrajectory(initial_u_trajectory, initial_x_trajectory) def cb(decision_vars): global vis_cb_counter vis_cb_counter += 1 if vis_cb_counter % 10 != 0: return # Get the total cost all_costs = dircol.EvalBindings(dircol.GetAllCosts(), decision_vars) # Get the total cost of the constraints. # Additionally, the number and extent of any constraint violations. violated_constraint_count = 0 violated_constraint_cost = 0 constraint_cost = 0 for constraint in dircol.GetAllConstraints(): val = dircol.EvalBinding(constraint, decision_vars) # Consider switching to DoCheckSatisfied if you can find the binding... nudge = 1e-1 # This much constraint violation is not considered bad... lb = constraint.evaluator().lower_bound() ub = constraint.evaluator().upper_bound() good_lb = np.all(np.less_equal(lb, val + nudge)) good_ub = np.all(np.greater_equal(ub, val - nudge)) if not good_lb or not good_ub: # print("{} <= {} <= {}".format(lb, val, ub)) violated_constraint_count += 1 # violated_constraint_cost += np.sum(np.abs(val)) if not good_lb: violated_constraint_cost += np.sum(np.abs(lb - val)) if not good_ub: violated_constraint_cost += np.sum(np.abs(val - ub)) constraint_cost += np.sum(np.abs(val)) print("total cost: {: .2f} | \tconstraint {: .2f} \tbad {}, {: .2f}". format(sum(all_costs), constraint_cost, violated_constraint_count, violated_constraint_cost)) #dircol.AddVisualizationCallback(cb, dircol.decision_variables()) def MyVisualization(sample_times, values): def state_to_tip_coord(state_vec): # State: (x, theta, x_dot, theta_dot) x, theta, _, _ = state_vec pole_length = 0.5 # manually looked this up #return (x-pole_length*np.sin(theta), pole_length-np.cos(theta)) return (x - pole_length * np.sin(theta), pole_length * (-np.cos(theta))) global vis_cb_counter vis_cb_counter += 1 if vis_cb_counter % 30 != 0: return coords = [state_to_tip_coord(state) for state in values.T] x, y = zip(*coords) plt.plot(x, y, '-o', label=vis_cb_counter) #plt.show() # good? #if should_vis: if False: plt.figure() plt.title('Tip trajectories') plt.xlabel('x') plt.ylabel('x_dot') dircol.AddStateTrajectoryCallback(MyVisualization) from pydrake.all import (SolverType) # dircol.SetSolverOption(SolverType.kSnopt, 'Major feasibility tolerance', 1.0e-6) # default="1.0e-6" # dircol.SetSolverOption(SolverType.kSnopt, 'Major optimality tolerance', 5.0e-2) # default="1.0e-6" was 5.0e-1 # dircol.SetSolverOption(SolverType.kSnopt, 'Minor feasibility tolerance', 1.0e-6) # default="1.0e-6" # dircol.SetSolverOption(SolverType.kSnopt, 'Minor optimality tolerance', 5.0e-2) # default="1.0e-6" was 5.0e-1 # dircol.SetSolverOption(SolverType.kSnopt, 'Time limit (secs)', 12.0) # default="9999999.0" # Very aggressive cutoff... dircol.SetSolverOption( SolverType.kSnopt, 'Major step limit', 0.1) # default="2.0e+0" # HUGE!!! default takes WAY too huge steps dircol.SetSolverOption(SolverType.kSnopt, 'Time limit (secs)', 15.0) # default="9999999.0" # was 15 # dircol.SetSolverOption(SolverType.kSnopt, 'Reduced Hessian dimension', 10000) # Default="min{2000, n1 + 1}" # dircol.SetSolverOption(SolverType.kSnopt, 'Hessian updates', 30) # Default="10" dircol.SetSolverOption(SolverType.kSnopt, 'Major iterations limit', 9300000) # Default="9300" dircol.SetSolverOption(SolverType.kSnopt, 'Minor iterations limit', 50000) # Default="500" dircol.SetSolverOption(SolverType.kSnopt, 'Iterations limit', 50 * 10000) # Default="10000" # Factoriztion? # dircol.SetSolverOption(SolverType.kSnopt, 'QPSolver Cholesky', True) # Default="*Cholesky/CG/QN" return dircol
# dircol.AddLinearConstraint(dircol.final_state() == final_state) R = 20 # Cost on input "effort". dircol.AddRunningCost(np.dot(u.T,np.dot(R,u))) # Add a final cost equal to the total duration. # dircol.AddFinalCost(dircol.time()) initial_x_trajectory = \ PiecewisePolynomial.FirstOrderHold([0., 10.], np.column_stack((x0, x0))) dircol.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory) tol = 1e-7; dircol.SetSolverOption(mp.SolverType.kIpopt,"tol", tol); dircol.SetSolverOption(mp.SolverType.kIpopt,"constr_viol_tol", tol); dircol.SetSolverOption(mp.SolverType.kIpopt,"acceptable_tol", tol); dircol.SetSolverOption(mp.SolverType.kIpopt,"acceptable_constr_viol_tol", tol); dircol.SetSolverOption(mp.SolverType.kIpopt, "print_level", 5) # CAUTION: Assuming that solver used Ipopt result = dircol.Solve() assert(result == SolutionResult.kSolutionFound) x_trajectory = dircol.ReconstructStateTrajectory() u_trajectory = dircol.ReconstructInputTrajectory() times = np.linspace(u_trajectory.start_time(), u_trajectory.end_time(), 100) # print("times:",times.shape)