示例#1
0
 def solve(self):
     self.result = Solve(self)
示例#2
0
# Add a constraint that Vdot is strictly negative away from x0 (but make an
# exception for the upright fixed point by multipling by s^2).
constraint2 = prog.AddSosConstraint(-Vdot - L*(s**2+c**2-1) -
                                    eps*(x-x0).dot(x-x0)*s**2)

# Add V(0) = 0 constraint
constraint3 = prog.AddLinearConstraint(
    V.Substitute({s: 0, c: 1, thetadot: 0}) == 0)

# Add V(theta=pi) = mgl, just to set the scale.
constraint4 = prog.AddLinearConstraint(
    V.Substitute({s: 1, c: 0, thetadot: 0}) == p.mass()*p.gravity()*p.length())

# Call the solver.
result = Solve(prog)
assert(result.is_success())

# Note that I've added mgl to the potential energy (relative to the textbook),
# so that it would be non-negative... like the Lyapunov function.
mgl = p.mass()*p.gravity()*p.length()
print('Mechanical Energy = ')
print(.5*p.mass()*p.length()**2*thetadot**2 + mgl*(1-c))

print('V =')
Vsol = Polynomial(result.GetSolution(V))
print(Vsol.RemoveTermsWithSmallCoefficients(1e-6))


# Plot the results as contour plots.
nq = 151
final_state.set_thetadot(0.0)
dircol.AddBoundingBoxConstraint(final_state.get_value(),
                                final_state.get_value(),
                                dircol.final_state())
# dircol.AddLinearConstraint(dircol.final_state() == final_state.get_value())

R = 10  # Cost on input "effort".
dircol.AddRunningCost(R*u[0]**2)

initial_x_trajectory = \
    PiecewisePolynomial.FirstOrderHold([0., 4.],
                                       [initial_state.get_value(),
                                        final_state.get_value()])
dircol.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)

result = Solve(dircol)
assert result.is_success()

x_trajectory = dircol.ReconstructStateTrajectory(result)

fig, ax = plt.subplots(1, 2)

vis = PendulumVisualizer(ax[0])
ani = vis.animate(x_trajectory, repeat=True)

x_knots = np.hstack([x_trajectory.value(t) for t in
                     np.linspace(x_trajectory.start_time(),
                                 x_trajectory.end_time(), 100)])

ax[1].plot(x_knots[0, :], x_knots[1, :])
示例#4
0
import manipulation.meshcat_utils as dut

import numpy as np
from meshcat import Visualizer
from pydrake.all import MathematicalProgram, Solve

prog = MathematicalProgram()
x = prog.NewContinuousVariables(2)
prog.AddCost(x.dot(x))
prog.AddBoundingBoxConstraint(-2, 2, x)
result = Solve(prog)

meshcat = Visualizer()
X, Y = np.meshgrid(np.linspace(-3, 3, 35), np.linspace(-3, 3, 31))
dut.plot_mathematical_program(meshcat, prog, X, Y, result)
示例#5
0
def drake_trajectory_generation(file_name):
    global x_cmd_drake
    global u_cmd_drake
    print(file_name)
    Parser(plant).AddModelFromFile(file_name)
    plant.Finalize()
    context = plant.CreateDefaultContext()
    global dircol 
    dircol= DirectCollocation(
        plant,
        context,
        num_time_samples=11,
        minimum_timestep=0.1,
        maximum_timestep=0.4,
        input_port_index=plant.get_actuation_input_port().get_index())
    dircol.AddEqualTimeIntervalsConstraints()
    initial_state = (0., 0., 0., 0.)
    dircol.AddBoundingBoxConstraint(initial_state, initial_state,
                                dircol.initial_state())
    final_state = (0., math.pi, 0., 0.)
    dircol.AddBoundingBoxConstraint(final_state, final_state, dircol.final_state())
    R = 10  # Cost on input "effort".weight
    u = dircol.input()
    dircol.AddRunningCost(R * u[0]**2)
    # Add a final cost equal to the total duration.
    dircol.AddFinalCost(dircol.time())
    initial_x_trajectory = PiecewisePolynomial.FirstOrderHold(
        [0., 4.], np.column_stack((initial_state, final_state)))  # yapf: disable
    dircol.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)
    dircol.AddConstraintToAllKnotPoints(dircol.input()[1] <= 0)
    dircol.AddConstraintToAllKnotPoints(dircol.input()[1] >= 0)
    global result
    global u_values
    result = Solve(dircol)
    assert result.is_success()
    #plotphase_portrait()
    fig1, ax1 = plt.subplots()
    u_trajectory = dircol.ReconstructInputTrajectory(result)
    execution_time = u_trajectory.end_time()-u_trajectory.start_time()
    u_knots = np.hstack([
         u_trajectory.value(t) for t in np.linspace(u_trajectory.start_time(),
                                                    u_trajectory.end_time(), execution_time*50)
    ])#here the u_knots now takes 50 points every secs === 50Hz
    #u_trajectory = dircol.ReconstructInputTrajectory(result)
    times = np.linspace(u_trajectory.start_time(), u_trajectory.end_time(), execution_time*50)
    #u_lookup = np.vectorize(u_trajectory.value)
    #u_values = u_lookup(times)

    #ax1.plot(times, u_values)
    ax1.plot(times, u_knots[0])
    ax1.plot(times, u_knots[1])
    ax1.set_xlabel("time (seconds)")
    ax1.set_ylabel("force (Newtons)")
    ax1.set_title(' Direct collocation for Cartpole ')
    print('here2')
    plt.show()
    print('here3')
    #x_knots = np.hstack([
    #    x_trajectory.value(t) for t in np.linspace(x_trajectory.start_time(),
                                                 #  x_trajectory.end_time(), 100)
    #])
    x_trajectory = dircol.ReconstructStateTrajectory(result)
    x_knots = np.hstack([
        x_trajectory.value(t) for t in np.linspace(x_trajectory.start_time(),
                                                   x_trajectory.end_time(), execution_time*50)
    ])
    print(x_trajectory.start_time())
    print(x_trajectory.end_time())
   

    fig, ax = plt.subplots(4,1,figsize=(8,8))
    plt.subplots_adjust(wspace =0, hspace =0.4)
    #plt.tight_layout(3)#adjust total space
    ax[0].set_title('state of direct collocation for Cartpole')
    ax[0].plot(x_knots[0, :], x_knots[2, :], linewidth=2, color='b', linestyle='-')
    ax[0].set_xlabel("state_dot(theta1_dot and t|heta2_dot)")
    ax[0].set_ylabel("state(theta1 and theta2)");
    ax[0].plot(x_knots[1, :], x_knots[3, :],color='r',linewidth=2,linestyle='--')
    ax[0].legend(('theta1&theta1dot','theta2&theta2dot'));
    ax[1].set_title('input u(t) of direct collocation for Cartpole')
#    ax[1].plot(times,u_values, 'g')
    ax[1].plot(times, u_knots[0])
    ax[1].plot(times, u_knots[1])
    ax[1].legend(('input u(t)'))
    ax[1].set_xlabel("time")
    ax[1].set_ylabel("u(t)")
    ax[1].legend(('x joint ','thetajoint'))
    ax[1].set_title('input x(t) of direct collocation for Cartpole')
    ax[2].plot(times, x_knots[0, :])
    ax[2].set_xlabel("time")
    ax[2].set_ylabel("x(t)")
    ax[2].set_title('input theta(t) of direct collocation for Cartpole')
    ax[3].set_title('input theta(t) of direct collocation for Cartpole')
    ax[3].plot(times, x_knots[1, :])
    ax[3].set_xlabel("time")
    ax[3].set_ylabel("theta(t)")
    print('here4')
    plt.show()
    print('here5')
    x_cmd_drake=x_knots
    #return x_knots[0, :]#u_values
   # u_cmd_drake=u_values
    u_cmd_drake=u_knots
                                dircol.final_state())
# dircol.AddLinearConstraint(dircol.final_state() == final_state)

R = 10  # Cost on input "effort".
dircol.AddRunningCost(R*u[0]**2)

# Add a final cost equal to the total duration.
dircol.AddFinalCost(dircol.time())

initial_x_trajectory = \
    PiecewisePolynomial.FirstOrderHold([0., 4.],
                                       np.column_stack((initial_state,
                                                        final_state)))
dircol.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)

result = Solve(dircol)
print(result.get_solver_id().name())
print(result.get_solution_result())
assert(result.is_success())

x_trajectory = dircol.ReconstructStateTrajectory(result)

tree = RigidBodyTree(FindResource("acrobot/acrobot.urdf"),
                     FloatingBaseType.kFixed)
vis = PlanarRigidBodyVisualizer(tree, xlim=[-4., 4.], ylim=[-4., 4.])
ani = vis.animate(x_trajectory, repeat=True)

u_trajectory = dircol.ReconstructInputTrajectory(result)
times = np.linspace(u_trajectory.start_time(), u_trajectory.end_time(), 100)
u_lookup = np.vectorize(u_trajectory.value)
u_values = u_lookup(times)
示例#7
0
class PPTrajectory():
    def __init__(self, sample_times, num_vars, degree, continuity_degree):
        self.sample_times = sample_times
        self.n = num_vars
        self.degree = degree

        self.prog = MathematicalProgram()
        self.coeffs = []
        for i in range(len(sample_times)):
            self.coeffs.append(
                self.prog.NewContinuousVariables(num_vars, degree + 1, "C"))
        self.result = None

        # Add continuity constraints
        for s in range(len(sample_times) - 1):
            trel = sample_times[s + 1] - sample_times[s]
            coeffs = self.coeffs[s]
            for var in range(self.n):
                for deg in range(continuity_degree + 1):
                    # Don't use eval here, because I want left and right
                    # values of the same time
                    left_val = 0
                    for d in range(deg, self.degree + 1):
                        left_val += coeffs[var, d]*np.power(trel, d-deg) * \
                               math.factorial(d)/math.factorial(d-deg)
                    right_val = self.coeffs[s + 1][var,
                                                   deg] * math.factorial(deg)
                    self.prog.AddLinearConstraint(left_val == right_val)

        # Add cost to minimize highest order terms
        for s in range(len(sample_times) - 1):
            self.prog.AddQuadraticCost(np.eye(num_vars), np.zeros(
                (num_vars, 1)), self.coeffs[s][:, -1])

    def eval(self, t, derivative_order=0):
        if derivative_order > self.degree:
            return 0

        s = 0
        while s < len(self.sample_times) - 1 and t >= self.sample_times[s + 1]:
            s += 1
        trel = t - self.sample_times[s]

        if self.result is None:
            coeffs = self.coeffs[s]
        else:
            coeffs = self.result.GetSolution(self.coeffs[s])

        deg = derivative_order
        val = 0 * coeffs[:, 0]
        for var in range(self.n):
            for d in range(deg, self.degree + 1):
                val[var] += coeffs[var, d]*np.power(trel, d-deg) * \
                       math.factorial(d)/math.factorial(d-deg)

        return val

    def add_constraint(self, t, derivative_order, lb, ub=None):
        '''
        Adds a constraint of the form d^deg lb <= x(t) / dt^deg <= ub
        '''
        if ub is None:
            ub = lb

        assert (derivative_order <= self.degree)
        val = self.eval(t, derivative_order)
        self.prog.AddLinearConstraint(val, lb, ub)

    def generate(self):
        self.result = Solve(self.prog)
        assert (self.result.is_success())
    def __init__(self, system_dynamics, constraints):
        start_time = time.time()

        self.prog = MathematicalProgram()
        self.N = 50  # Number of collocation points
        self.M = 10  # Number of frequencies
        self.system_dynamics = system_dynamics

        self.psi = np.pi * (0.7)  # TODO change

        (
            min_height,
            max_height,
            min_vel,
            max_vel,
            h0,
            min_travelled_distance,
            t_f_min,
            t_f_max,
            avg_vel_min,
            avg_vel_max,
        ) = constraints

        initial_pos = np.array([0, 0, h0])

        # Add state trajectory parameters as decision variables
        self.coeffs = self.prog.NewContinuousVariables(
            3, self.M + 1, "c"
        )  # (x,y,z) for every frequency
        self.phase_delays = self.prog.NewContinuousVariables(3, self.M, "eta")
        self.t_f = self.prog.NewContinuousVariables(1, 1, "t_f")[0, 0]
        self.avg_vel = self.prog.NewContinuousVariables(1, 1, "V_bar")[0, 0]

        # Enforce initial conditions
        residuals = self.get_pos_fourier(collocation_time=0) - initial_pos
        for residual in residuals:
            self.prog.AddConstraint(residual == 0)

        # Enforce dynamics at collocation points
        for n in range(self.N):
            collocation_time = (n / self.N) * self.t_f
            pos = self.get_pos_fourier(collocation_time)
            vel = self.get_vel_fourier(collocation_time)
            vel_dot = self.get_vel_dot_fourier(collocation_time)

            residuals = self.continuous_dynamics(pos, vel, vel_dot)
            for residual in residuals[3:6]:  # TODO only these last three are residuals
                self.prog.AddConstraint(residual == 0)

            if True:
                # Add velocity constraints
                squared_vel_norm = vel.T.dot(vel)
                self.prog.AddConstraint(min_vel ** 2 <= squared_vel_norm)
                self.prog.AddConstraint(squared_vel_norm <= max_vel ** 2)

                # Add height constraints
                self.prog.AddConstraint(pos[2] <= max_height)
                self.prog.AddConstraint(min_height <= pos[2])

        # Add constraint on min travelled distance
        self.prog.AddConstraint(min_travelled_distance <= self.avg_vel * self.t_f)

        # Add constraints on coefficients
        if False:
            for coeff in self.coeffs.T:
                lb = np.array([-500, -500, -500])
                ub = np.array([500, 500, 500])
                self.prog.AddBoundingBoxConstraint(lb, ub, coeff)

        # Add constraints on phase delays
        if False:
            for etas in self.phase_delays.T:
                lb = np.array([0, 0, 0])
                ub = np.array([2 * np.pi, 2 * np.pi, 2 * np.pi])
                self.prog.AddBoundingBoxConstraint(lb, ub, etas)

        # Add constraints on final time and avg vel
        self.prog.AddBoundingBoxConstraint(t_f_min, t_f_max, self.t_f)
        self.prog.AddBoundingBoxConstraint(avg_vel_min, avg_vel_max, self.avg_vel)

        # Add objective function
        self.prog.AddCost(-self.avg_vel)

        # Set initial guess
        coeffs_guess = np.zeros((3, self.M + 1))
        coeffs_guess += np.random.rand(*coeffs_guess.shape) * 100

        self.prog.SetInitialGuess(self.coeffs, coeffs_guess)

        phase_delays_guess = np.zeros((3, self.M))
        phase_delays_guess += np.random.rand(*phase_delays_guess.shape) * 1e-1

        self.prog.SetInitialGuess(self.phase_delays, phase_delays_guess)
        self.prog.SetInitialGuess(self.avg_vel, (avg_vel_max - avg_vel_min) / 2)
        self.prog.SetInitialGuess(self.t_f, (t_f_max - t_f_min) / 2)

        print(
            "Finished formulating the optimization problem in: {0} s".format(
                time.time() - start_time
            )
        )

        start_solve_time = time.time()
        self.result = Solve(self.prog)
        print("Found solution: {0}".format(self.result.is_success()))
        print("Found a solution in: {0} s".format(time.time() - start_solve_time))

        # TODO input costs
        # assert self.result.is_success()

        return
示例#9
0
    def compute_trajectory(self, state_initial, minimum_time, maximum_time):
        '''
        :param: state_initial: :param state_initial: numpy array of length 6, see satellite_dynamics for documentation
        :param: minimum_time: float, minimum time allowed for trajectory
        :param: maximum_time: float, maximum time allowed for trajectory

        :return: three return args separated by commas:

            trajectory, input_trajectory, time_array

            trajectory: a 2d array with N rows, and 6 columns. See simulate_states_over_time for more documentation.
            input_trajectory: a 2d array with N-1 row, and 4 columns. See simulate_states_over_time for more documentation.
            time_array: an array with N rows. 

        '''
        mp = MathematicalProgram()

        # use direct transcription
        N = 50
        #N = 200

        # Unpack state bounds
        pmax = self.pmax
        vmax = self.vmax
        hmax = self.hmax
        wmax = self.wmax

        # Calculate number of states and control input
        nq = len(state_initial)
        nu = 4

        #### BEGIN: Decision Variables ####
        # Inputs
        k = 0
        u = mp.NewContinuousVariables(nu,"u_%d" % k)
        u_over_time = u

        for k in range(1,N-1):
            u = mp.NewContinuousVariables(nu, "u_%d" % k)
            u_over_time = np.vstack((u_over_time, u))

        # States
        k = 0
        states = mp.NewContinuousVariables(nq,"states_over_time_%d" % k)
        states_over_time = states

        for k in range(1,N):
            states = mp.NewContinuousVariables(nq, "states_over_time_%d" % k)
            states_over_time = np.vstack((states_over_time, states))
        
        # Final Time
        tf = mp.NewContinuousVariables(1,"tf")
        dt = tf / (N-1)
        #### END: Decision Variables ####

        #### BEGIN: Input constraints ####
        for i in range(N-1):  
            for j in range(nu):
                mp.AddConstraint(u_over_time[i,j] >= 0.0)
                mp.AddConstraint(u_over_time[i,j] <= 0.10)
        #### END: Input constraints ####        

        #### BEGIN: Time constraints ####
        # Final time must be between minimum_time and maximum_time
        mp.AddConstraint(tf[0] <= maximum_time)
        mp.AddConstraint(tf[0] >= minimum_time)
        #### END: Time constraints ####

        #### BEGIN: State constraints ####
        # initial state constraint
        for j in range(nq):
            mp.AddLinearConstraint(states_over_time[0,j] >= state_initial[j])
            mp.AddLinearConstraint(states_over_time[0,j] <= state_initial[j])

        # state constraints for all time
        for i in range(N):
            mp.AddLinearConstraint(states_over_time[i,0] <= pmax)
            mp.AddLinearConstraint(states_over_time[i,0] >= -pmax)
            mp.AddLinearConstraint(states_over_time[i,1] <= pmax)
            mp.AddLinearConstraint(states_over_time[i,1] >= -pmax)
            mp.AddLinearConstraint(states_over_time[i,2] <= vmax)
            mp.AddLinearConstraint(states_over_time[i,2] >= -vmax)
            mp.AddLinearConstraint(states_over_time[i,3] <= vmax)
            mp.AddLinearConstraint(states_over_time[i,3] >= -vmax)
            mp.AddLinearConstraint(states_over_time[i,4] <= hmax)
            mp.AddLinearConstraint(states_over_time[i,4] >= -hmax)
            mp.AddLinearConstraint(states_over_time[i,5] <= wmax)
            mp.AddLinearConstraint(states_over_time[i,5] >= -wmax)

        # dynamic constraint
        for i in range(N-1):
            dx = self.satellite_dynamics(states_over_time[i,:],u_over_time[i,:])
            for j in range(nq):
                mp.AddConstraint(states_over_time[i+1,j]<=states_over_time[i,j]+dx[j]*dt[0])
                mp.AddConstraint(states_over_time[i+1,j]>=states_over_time[i,j]+dx[j]*dt[0])

        # Final state constraint
        final_state_error = states_over_time[-1,:] - self.goalState
        mp.AddConstraint((final_state_error).dot(final_state_error) <= 0.001**2)
        #### END: State constraints ####

        #### BEGIN: Costs ####
        # Quadratic cost on fuel (aka control)
        for j in range(nu):
        	mp.AddQuadraticCost(u_over_time[:,j].dot(u_over_time[:,j]))

        #### END: Costs ####

        #### Solve the Optimization! ####
        result = Solve(mp)
        #print result.is_success()

        #### Name outputs appropriately ####
        # Time - knot points
        optimal_tf = result.GetSolution(tf)
        time_step = optimal_tf / (N-1)
        time_array = np.arange(0.0,optimal_tf+time_step,time_step)

        # Allocate to input trajectory
        input_trajectory = result.GetSolution(u_over_time)

        # Allocate to trajectory output
        trajectory = result.GetSolution(states_over_time)

        # save to csv
        if os.path.exists("traj.csv"):
            os.remove("traj.csv")

        if os.path.exists("input_traj.csv"):
            os.remove("input_traj.csv")

        with open('traj.csv', 'a') as csvFile:
        	writer = csv.writer(csvFile)
        	for i in range(N):
        		row = [time_array[i], trajectory[i,0], trajectory[i,1], trajectory[i,2], trajectory[i,3], trajectory[i,4], trajectory[i,5]]
        		writer.writerow(row)

        with open('input_traj.csv', 'a') as csvFile:
        	writer = csv.writer(csvFile)
        	for i in range(N-1):
        		row = [input_trajectory[i,0], input_trajectory[i,1], input_trajectory[i,2], input_trajectory[i,3]]
        		writer.writerow(row)

        csvFile.close()
 
        return trajectory, input_trajectory, time_array
from pydrake.all import MathematicalProgram, Solve

prog = MathematicalProgram()
x = prog.NewIndeterminates(2, "x")
f = [-x[0] - 2 * x[1]**2, -x[1] - x[0] * x[1] - 2 * x[1]**3]

V = x[0]**2 + 2 * x[1]**2
Vdot = V.Jacobian(x).dot(f)

prog.AddSosConstraint(-Vdot)

result = Solve(prog)
assert (result.is_success())

print('Successfully verified Lyapunov candidate')
示例#11
0
def direct_collocation_zhao_glider():
    print("Running direct collocation")

    plant = SlotineGlider()
    context = plant.CreateDefaultContext()

    N = 21
    initial_guess = True
    max_dt = 0.5
    max_tf = N * max_dt
    dircol = DirectCollocation(
        plant,
        context,
        num_time_samples=N,
        minimum_timestep=0.05,
        maximum_timestep=max_dt,
    )

    # Constrain all timesteps, $h[k]$, to be equal, so the trajectory breaks are evenly distributed.
    dircol.AddEqualTimeIntervalsConstraints()

    # Add input constraints
    u = dircol.input()
    dircol.AddConstraintToAllKnotPoints(0 <= u[0])
    dircol.AddConstraintToAllKnotPoints(u[0] <= 3)
    dircol.AddConstraintToAllKnotPoints(-np.pi / 2 <= u[1])
    dircol.AddConstraintToAllKnotPoints(u[1] <= np.pi / 2)

    # Add state constraints
    x = dircol.state()
    min_speed = 5
    dircol.AddConstraintToAllKnotPoints(x[0] >= min_speed)
    min_height = 0.5
    dircol.AddConstraintToAllKnotPoints(x[3] >= min_height)

    # Add initial state
    travel_angle = (3 / 2) * np.pi
    h0 = 10
    dir_vector = np.array([np.cos(travel_angle), np.sin(travel_angle)])

    # Start at initial position
    x0_pos = np.array([h0, 0, 0])
    dircol.AddBoundingBoxConstraint(x0_pos, x0_pos,
                                    dircol.initial_state()[3:6])

    # Periodicity constraints
    dircol.AddLinearConstraint(
        dircol.final_state()[0] == dircol.initial_state()[0])
    dircol.AddLinearConstraint(
        dircol.final_state()[1] == dircol.initial_state()[1])
    dircol.AddLinearConstraint(
        dircol.final_state()[2] == dircol.initial_state()[2])
    dircol.AddLinearConstraint(
        dircol.final_state()[3] == dircol.initial_state()[3])

    # Always end in right direction
    # NOTE this assumes that we always are starting in origin
    if travel_angle % np.pi == 0:  # Travel along x-axis
        dircol.AddConstraint(
            dircol.final_state()[5] == dircol.initial_state()[5])
    elif travel_angle % ((1 / 2) * np.pi) == 0:  # Travel along y-axis
        dircol.AddConstraint(
            dircol.final_state()[4] == dircol.initial_state()[4])
    else:
        dircol.AddConstraint(
            dircol.final_state()[5] == dircol.final_state()[4] *
            np.tan(travel_angle))

    # Maximize distance travelled in desired direction
    p0 = dircol.initial_state()
    p1 = dircol.final_state()
    Q = 1
    dist_travelled = np.array([p1[4], p1[5]])  # NOTE assume starting in origin
    dircol.AddFinalCost(-(dir_vector.T.dot(dist_travelled)) * Q)

    if True:
        # Cost on input effort
        R = 0.1
        dircol.AddRunningCost(R * (u[0])**2 + R * u[1]**2)

    # Initial guess is a straight line from x0 in direction
    if initial_guess:
        avg_vel_guess = 10  # Guess for initial velocity
        x0_guess = np.array([avg_vel_guess, travel_angle, 0, h0, 0, 0])

        guessed_total_dist_travelled = 200
        xf_guess = np.array([
            avg_vel_guess,
            travel_angle,
            0,
            h0,
            dir_vector[0] * guessed_total_dist_travelled,
            dir_vector[1] * guessed_total_dist_travelled,
        ])
        initial_x_trajectory = PiecewisePolynomial.FirstOrderHold(
            [0.0, 4.0], np.column_stack((x0_guess, xf_guess)))
        dircol.SetInitialTrajectory(PiecewisePolynomial(),
                                    initial_x_trajectory)

    # Solve direct collocation
    result = Solve(dircol)
    assert result.is_success()
    print("Found a solution!")

    # PLOTTING
    N_plot = 200

    # Plot trajectory
    x_trajectory = dircol.ReconstructStateTrajectory(result)
    times = np.linspace(x_trajectory.start_time(), x_trajectory.end_time(),
                        N_plot)
    x_knots = np.hstack([x_trajectory.value(t) for t in times])
    z = x_knots[3, :]
    x = x_knots[4, :]
    y = x_knots[5, :]
    plot_trj_3_wind(np.vstack((x, y, z)).T, dir_vector)

    # Plot input
    u_trajectory = dircol.ReconstructInputTrajectory(result)
    u_knots = np.hstack([u_trajectory.value(t) for t in times])

    plot_input_zhao_glider(times, u_knots.T)

    plt.show()
    return 0
示例#12
0
def direct_transcription():
    prog = MathematicalProgram()

    N = 500
    dt = 0.01

    # Create decision variables
    n_x = 6
    n_u = 2

    x = np.empty((n_x, N), dtype=Variable)
    u = np.empty((n_u, N - 1), dtype=Variable)

    for n in range(N - 1):
        x[:, n] = prog.NewContinuousVariables(n_x, "x" + str(n))
        u[:, n] = prog.NewContinuousVariables(n_u, "u" + str(n))
    x[:, N - 1] = prog.NewContinuousVariables(n_x, "x" + str(N))
    T = N - 1

    # Add constraints
    # x0 = np.array([10, -np.pi / 2, 0, 40, 0, 0])
    # Slotine dynamics: x = [airspeed, heading, flight_path_angle, z, x, y]

    for n in range(N - 1):
        # Dynamics
        prog.AddConstraint(
            eq(x[:, n + 1],
               x[:, n] + dt * continuous_dynamics(x[:, n], u[:, n])))

        # Never below sea level
        prog.AddConstraint(x[3, n + 1] >= 0 + 0.5)

        # Always positive velocity
        prog.AddConstraint(x[0, n + 1] >= 0)

    # TODO use residuals
    # Add periodic constraints
    prog.AddConstraint(x[0, 0] - x[0, T] == 0)
    prog.AddConstraint(x[1, 0] - x[1, T] == 0)
    prog.AddConstraint(x[2, 0] - x[2, T] == 0)
    prog.AddConstraint(x[3, 0] - x[3, T] == 0)

    # Start at 20 meter height
    prog.AddConstraint(x[4, 0] == 0)
    prog.AddConstraint(x[5, 0] == 0)
    h0 = 20
    prog.AddConstraint(x[3, 0] == h0)

    # Add cost function
    p0 = x[4:6, 0]
    p1 = x[4:6, T]

    travel_angle = np.pi  # TODO start along y direction
    dir_vector = np.array([np.sin(travel_angle), np.cos(travel_angle)])
    prog.AddCost(dir_vector.T.dot(p1 - p0))  # Maximize distance travelled

    print("Initialized opt problem")

    # Initial guess
    V0 = 10
    x_guess = np.zeros((n_x, N))
    x_guess[:, 0] = np.array([V0, travel_angle, 0, h0, 0, 0])

    for n in range(N - 1):
        # Constant airspeed, heading and height
        x_guess[0, n + 1] = V0
        x_guess[1, n + 1] = travel_angle
        x_guess[3, n + 1] = h0

        # Interpolate position
        avg_speed = 10  # conservative estimate
        x_guess[4:6, n + 1] = dir_vector * avg_speed * n * dt

        # Let the rest of the variables be initialized to zero

    prog.SetInitialGuess(x, x_guess)

    # solve mathematical program
    solver = SnoptSolver()
    result = solver.Solve(prog)

    # be sure that the solution is optimal
    # assert result.is_success()

    # retrieve optimal solution
    thrust_opt = result.GetSolution(x)
    state_opt = result.GetSolution(u)

    result = Solve(prog)

    x_sol = result.GetSolution(x)
    u_sol = result.GetSolution(u)

    breakpoint()

    # Slotine dynamics: x = [airspeed, heading, flight_path_angle, z, x, y]
    z = x_sol[:, 3]
    x = x_sol[:, 4]
    y = x_sol[:, 5]

    plot_trj_3_wind(np.vstack((x, y, z)).T, get_wind_field)

    return
示例#13
0
from pydrake.all import Jacobian, MathematicalProgram, Solve


def dynamics(x):
    return -x + x**3


prog = MathematicalProgram()
x = prog.NewIndeterminates(1, "x")
rho = prog.NewContinuousVariables(1, "rho")[0]

# Define the Lyapunov function.
V = x.dot(x)
Vdot = Jacobian([V], x).dot(dynamics(x))[0]

# Define the Lagrange multiplier.
lambda_ = prog.NewContinuousVariables(1, "lambda")[0]
prog.AddConstraint(lambda_ >= 0)

prog.AddSosConstraint((V - rho) * x.dot(x) - lambda_ * Vdot)
prog.AddLinearCost(-rho)

result = Solve(prog)

assert (result.is_success())

print("Verified that " + str(V) + " < " + str(result.GetSolution(rho)) +
      " is in the region of attraction.")

assert (math.fabs(result.GetSolution(rho) - 1) < 1e-5)
from pydrake.all import MathematicalProgram, Solve, Polynomial, Variables

prog = MathematicalProgram()
x = prog.NewIndeterminates(2, "x")
f = [-x[0] - 2*x[1]**2,
     -x[1] - x[0]*x[1] - 2*x[1]**3]

V = prog.NewSosPolynomial(Variables(x), 2)[0].ToExpression()
prog.AddLinearConstraint(V.Substitute({x[0]: 0, x[1]: 0}) == 0)
prog.AddLinearConstraint(V.Substitute({x[0]: 1, x[1]: 0}) == 1)
Vdot = V.Jacobian(x).dot(f)

prog.AddSosConstraint(-Vdot)

result = Solve(prog)
assert(result.is_success())

print('V = ' + str(Polynomial(result.GetSolution(V))
                   .RemoveTermsWithSmallCoefficients(1e-5)))
示例#15
0
 def generate(self):
     self.result = Solve(self.prog)
     assert (self.result.is_success())
class FourierCollocationProblem:
    def __init__(self, system_dynamics, constraints):
        start_time = time.time()

        self.prog = MathematicalProgram()
        self.N = 50  # Number of collocation points
        self.M = 10  # Number of frequencies
        self.system_dynamics = system_dynamics

        self.psi = np.pi * (0.7)  # TODO change

        (
            min_height,
            max_height,
            min_vel,
            max_vel,
            h0,
            min_travelled_distance,
            t_f_min,
            t_f_max,
            avg_vel_min,
            avg_vel_max,
        ) = constraints

        initial_pos = np.array([0, 0, h0])

        # Add state trajectory parameters as decision variables
        self.coeffs = self.prog.NewContinuousVariables(
            3, self.M + 1, "c"
        )  # (x,y,z) for every frequency
        self.phase_delays = self.prog.NewContinuousVariables(3, self.M, "eta")
        self.t_f = self.prog.NewContinuousVariables(1, 1, "t_f")[0, 0]
        self.avg_vel = self.prog.NewContinuousVariables(1, 1, "V_bar")[0, 0]

        # Enforce initial conditions
        residuals = self.get_pos_fourier(collocation_time=0) - initial_pos
        for residual in residuals:
            self.prog.AddConstraint(residual == 0)

        # Enforce dynamics at collocation points
        for n in range(self.N):
            collocation_time = (n / self.N) * self.t_f
            pos = self.get_pos_fourier(collocation_time)
            vel = self.get_vel_fourier(collocation_time)
            vel_dot = self.get_vel_dot_fourier(collocation_time)

            residuals = self.continuous_dynamics(pos, vel, vel_dot)
            for residual in residuals[3:6]:  # TODO only these last three are residuals
                self.prog.AddConstraint(residual == 0)

            if True:
                # Add velocity constraints
                squared_vel_norm = vel.T.dot(vel)
                self.prog.AddConstraint(min_vel ** 2 <= squared_vel_norm)
                self.prog.AddConstraint(squared_vel_norm <= max_vel ** 2)

                # Add height constraints
                self.prog.AddConstraint(pos[2] <= max_height)
                self.prog.AddConstraint(min_height <= pos[2])

        # Add constraint on min travelled distance
        self.prog.AddConstraint(min_travelled_distance <= self.avg_vel * self.t_f)

        # Add constraints on coefficients
        if False:
            for coeff in self.coeffs.T:
                lb = np.array([-500, -500, -500])
                ub = np.array([500, 500, 500])
                self.prog.AddBoundingBoxConstraint(lb, ub, coeff)

        # Add constraints on phase delays
        if False:
            for etas in self.phase_delays.T:
                lb = np.array([0, 0, 0])
                ub = np.array([2 * np.pi, 2 * np.pi, 2 * np.pi])
                self.prog.AddBoundingBoxConstraint(lb, ub, etas)

        # Add constraints on final time and avg vel
        self.prog.AddBoundingBoxConstraint(t_f_min, t_f_max, self.t_f)
        self.prog.AddBoundingBoxConstraint(avg_vel_min, avg_vel_max, self.avg_vel)

        # Add objective function
        self.prog.AddCost(-self.avg_vel)

        # Set initial guess
        coeffs_guess = np.zeros((3, self.M + 1))
        coeffs_guess += np.random.rand(*coeffs_guess.shape) * 100

        self.prog.SetInitialGuess(self.coeffs, coeffs_guess)

        phase_delays_guess = np.zeros((3, self.M))
        phase_delays_guess += np.random.rand(*phase_delays_guess.shape) * 1e-1

        self.prog.SetInitialGuess(self.phase_delays, phase_delays_guess)
        self.prog.SetInitialGuess(self.avg_vel, (avg_vel_max - avg_vel_min) / 2)
        self.prog.SetInitialGuess(self.t_f, (t_f_max - t_f_min) / 2)

        print(
            "Finished formulating the optimization problem in: {0} s".format(
                time.time() - start_time
            )
        )

        start_solve_time = time.time()
        self.result = Solve(self.prog)
        print("Found solution: {0}".format(self.result.is_success()))
        print("Found a solution in: {0} s".format(time.time() - start_solve_time))

        # TODO input costs
        # assert self.result.is_success()

        return

    def get_solution(self):
        coeffs_opt = self.result.GetSolution(self.coeffs)
        phase_delays_opt = self.result.GetSolution(self.phase_delays)
        t_f_opt = self.result.GetSolution(self.t_f)
        avg_vel_opt = self.result.GetSolution(self.avg_vel)

        sim_N = 100
        dt = t_f_opt / sim_N
        times = np.arange(0, t_f_opt, dt)
        pos_traj = np.zeros((3, sim_N))
        # TODO remove vel traj
        vel_traj = np.zeros((3, sim_N))
        for i in range(sim_N):
            t = times[i]
            pos = self.evaluate_pos_traj(
                coeffs_opt, phase_delays_opt, t_f_opt, avg_vel_opt, t
            )
            pos_traj[:, i] = pos
            vel = self.evaluate_vel_traj(
                coeffs_opt, phase_delays_opt, t_f_opt, avg_vel_opt, t
            )
            vel_traj[:, i] = vel

        # TODO move plotting out
        plot_trj_3_wind(pos_traj.T, np.array([np.sin(self.psi), np.cos(self.psi), 0]))

        plt.show()
        breakpoint()

        return

    def evaluate_pos_traj(self, coeffs, phase_delays, t_f, avg_vel, t):
        pos_traj = np.copy(coeffs[:, 0])
        for m in range(1, self.M):
            sine_terms = np.array(
                [
                    np.sin((2 * np.pi * m * t) / t_f + phase_delays[0, m]),
                    np.sin((2 * np.pi * m * t) / t_f + phase_delays[1, m]),
                    np.sin((2 * np.pi * m * t) / t_f + phase_delays[2, m]),
                ]
            )
            pos_traj += coeffs[:, m] * sine_terms

        direction_term = np.array(
            [
                avg_vel * np.sin(self.psi) * t,
                avg_vel * np.cos(self.psi) * t,
                0,
            ]
        )
        pos_traj += direction_term
        return pos_traj

    def evaluate_vel_traj(self, coeffs, phase_delays, t_f, avg_vel, t):
        vel_traj = np.array([0, 0, 0], dtype=object)
        for m in range(1, self.M):
            cos_terms = np.array(
                [
                    (2 * np.pi * m)
                    / t_f
                    * np.cos((2 * np.pi * m * t) / t_f + phase_delays[0, m]),
                    (2 * np.pi * m)
                    / t_f
                    * np.cos((2 * np.pi * m * t) / t_f + phase_delays[1, m]),
                    (2 * np.pi * m)
                    / t_f
                    * np.cos((2 * np.pi * m * t) / t_f + phase_delays[2, m]),
                ]
            )
            vel_traj += coeffs[:, m] * cos_terms

        direction_term = np.array(
            [
                avg_vel * np.sin(self.psi),
                avg_vel * np.cos(self.psi),
                0,
            ]
        )
        vel_traj += direction_term
        return vel_traj

    def get_pos_fourier(self, collocation_time):
        pos_traj = np.copy(self.coeffs[:, 0])
        for m in range(1, self.M):
            a = (2 * np.pi * m) / self.t_f
            sine_terms = np.array(
                [
                    np.sin(a * collocation_time + self.phase_delays[0, m]),
                    np.sin(a * collocation_time + self.phase_delays[1, m]),
                    np.sin(a * collocation_time + self.phase_delays[2, m]),
                ]
            )
            pos_traj += self.coeffs[:, m] * sine_terms

        direction_term = np.array(
            [
                self.avg_vel * np.sin(self.psi) * collocation_time,
                self.avg_vel * np.cos(self.psi) * collocation_time,
                0,
            ]
        )
        pos_traj += direction_term

        return pos_traj

    def get_vel_fourier(self, collocation_time):
        vel_traj = np.array([0, 0, 0], dtype=object)
        for m in range(1, self.M):
            a = (2 * np.pi * m) / self.t_f
            cos_terms = np.array(
                [
                    a * np.cos(a * collocation_time + self.phase_delays[0, m]),
                    a * np.cos(a * collocation_time + self.phase_delays[1, m]),
                    a * np.cos(a * collocation_time + self.phase_delays[2, m]),
                ]
            )
            vel_traj += self.coeffs[:, m] * cos_terms

        direction_term = np.array(
            [
                self.avg_vel * np.sin(self.psi),
                self.avg_vel * np.cos(self.psi),
                0,
            ]
        )
        vel_traj += direction_term
        return vel_traj

    def get_vel_dot_fourier(self, collocation_time):
        vel_dot_traj = np.array([0, 0, 0], dtype=object)
        for m in range(1, self.M):
            a = (2 * np.pi * m) / self.t_f
            sine_terms = np.array(
                [
                    -(a ** 2) * np.sin(a * collocation_time + self.phase_delays[0, m]),
                    -(a ** 2) * np.sin(a * collocation_time + self.phase_delays[1, m]),
                    -(a ** 2) * np.sin(a * collocation_time + self.phase_delays[2, m]),
                ]
            )
            vel_dot_traj += self.coeffs[:, m] * sine_terms
        return vel_dot_traj

    def continuous_dynamics(self, pos, vel, vel_dot):
        x = np.concatenate((pos, vel))
        x_dot = np.concatenate((vel, vel_dot))

        # TODO need to somehow implement input to make this work

        return x_dot - self.system_dynamics(x, u)
示例#17
0
    def __init__(self, start, goal, degree, n_segments, duration, regions,
                 H):  #sample_times, num_vars, continuity_degree):
        R = len(regions)
        N = n_segments
        M = 100
        prog = MathematicalProgram()

        # Set H
        if H is None:
            H = prog.NewBinaryVariables(R, N)
            for n_idx in range(N):
                prog.AddLinearConstraint(np.sum(H[:, n_idx]) == 1)

        poly_xs, poly_ys, poly_zs = [], [], []
        vars_ = np.zeros((N, )).astype(object)
        for n_idx in range(N):
            # for each segment
            t = prog.NewIndeterminates(1, "t" + str(n_idx))
            vars_[n_idx] = t[0]
            poly_x = prog.NewFreePolynomial(Variables(t), degree,
                                            "c_x_" + str(n_idx))
            poly_y = prog.NewFreePolynomial(Variables(t), degree,
                                            "c_y_" + str(n_idx))
            poly_z = prog.NewFreePolynomial(Variables(t), degree,
                                            "c_z_" + str(n_idx))
            for var_ in poly_x.decision_variables():
                prog.AddLinearConstraint(var_ <= M)
                prog.AddLinearConstraint(var_ >= -M)
            for var_ in poly_y.decision_variables():
                prog.AddLinearConstraint(var_ <= M)
                prog.AddLinearConstraint(var_ >= -M)
            for var_ in poly_z.decision_variables():
                prog.AddLinearConstraint(var_ <= M)
                prog.AddLinearConstraint(var_ >= -M)
            poly_xs.append(poly_x)
            poly_ys.append(poly_y)
            poly_zs.append(poly_z)
            phi = np.array([poly_x, poly_y, poly_z])
            for r_idx, region in enumerate(regions):
                # if r_idx == 0:
                #     break
                A = region[0]
                b = region[1]
                b = b + (1 - H[r_idx, n_idx]) * M
                b = [Polynomial(this_b) for this_b in b]
                q = b - A.dot(phi)
                sigma = []
                for q_idx in range(len(q)):
                    sigma_1 = prog.NewFreePolynomial(Variables(t), degree - 1)
                    prog.AddSosConstraint(sigma_1)
                    sigma_2 = prog.NewFreePolynomial(Variables(t), degree - 1)
                    prog.AddSosConstraint(sigma_2)
                    sigma.append(
                        Polynomial(t[0]) * sigma_1 +
                        (1 - Polynomial(t[0])) * sigma_2)
                    # for var_ in sigma[q_idx].decision_variables():
                    #     prog.AddLinearConstraint(var_<=M)
                    #     prog.AddLinearConstraint(var_>=-M)
                    q_coeffs = q[q_idx].monomial_to_coefficient_map()
                    sigma_coeffs = sigma[q_idx].monomial_to_coefficient_map()
                    both_coeffs = set(q_coeffs.keys()) & set(
                        sigma_coeffs.keys())
                    for coeff in both_coeffs:
                        # import pdb; pdb.set_trace()
                        prog.AddConstraint(
                            q_coeffs[coeff] == sigma_coeffs[coeff])
                # res = Solve(prog)
                # print("x: " + str(res.GetSolution(poly_xs[0].ToExpression())))
                # print("y: " + str(res.GetSolution(poly_ys[0].ToExpression())))
                # print("z: " + str(res.GetSolution(poly_zs[0].ToExpression())))
                # import pdb; pdb.set_trace()
                # for this_q in q:
                #     prog.AddSosConstraint(this_q)
                # import pdb; pdb.set_trace()

        # cost = 0
        print("Constraint: x0(0)=x0")
        prog.AddConstraint(
            poly_xs[0].ToExpression().Substitute(vars_[0], 0.0) == start[0])
        prog.AddConstraint(
            poly_ys[0].ToExpression().Substitute(vars_[0], 0.0) == start[1])
        prog.AddConstraint(
            poly_zs[0].ToExpression().Substitute(vars_[0], 0.0) == start[2])
        for idx, poly_x, poly_y, poly_z in zip(range(N), poly_xs, poly_ys,
                                               poly_zs):
            if idx < N - 1:
                print("Constraint: x" + str(idx) + "(1)=x" + str(idx + 1) +
                      "(0)")
                next_poly_x, next_poly_y, next_poly_z = poly_xs[
                    idx + 1], poly_ys[idx + 1], poly_zs[idx + 1]
                prog.AddConstraint(
                    poly_x.ToExpression().Substitute(vars_[idx], 1.0) ==
                    next_poly_x.ToExpression().Substitute(vars_[idx + 1], 0.0))
                prog.AddConstraint(
                    poly_y.ToExpression().Substitute(vars_[idx], 1.0) ==
                    next_poly_y.ToExpression().Substitute(vars_[idx + 1], 0.0))
                prog.AddConstraint(
                    poly_z.ToExpression().Substitute(vars_[idx], 1.0) ==
                    next_poly_z.ToExpression().Substitute(vars_[idx + 1], 0.0))
            else:
                print("Constraint: x" + str(idx) + "(1)=xf")
                prog.AddConstraint(poly_x.ToExpression().Substitute(
                    vars_[idx], 1.0) == goal[0])
                prog.AddConstraint(poly_y.ToExpression().Substitute(
                    vars_[idx], 1.0) == goal[1])
                prog.AddConstraint(poly_z.ToExpression().Substitute(
                    vars_[idx], 1.0) == goal[2])

            # for

        cost = Expression()
        for var_, polys in zip(vars_, [poly_xs, poly_ys, poly_zs]):
            for poly in polys:
                for _ in range(2):  #range(2):
                    poly = poly.Differentiate(var_)
                poly = poly.ToExpression().Substitute({var_: 1.0})
                cost += poly**2
                # for dv in poly.decision_variables():
                #     cost += (Expression(dv))**2
        prog.AddCost(cost)

        res = Solve(prog)

        print("x: " + str(res.GetSolution(poly_xs[0].ToExpression())))
        print("y: " + str(res.GetSolution(poly_ys[0].ToExpression())))
        print("z: " + str(res.GetSolution(poly_zs[0].ToExpression())))

        self.poly_xs = [
            res.GetSolution(poly_x.ToExpression()) for poly_x in poly_xs
        ]
        self.poly_ys = [
            res.GetSolution(poly_y.ToExpression()) for poly_y in poly_ys
        ]
        self.poly_zs = [
            res.GetSolution(poly_z.ToExpression()) for poly_z in poly_zs
        ]
        self.vars_ = vars_
        self.degree = degree
from pydrake.all import MathematicalProgram, Solve, Polynomial, Variables

prog = MathematicalProgram()
x = prog.NewIndeterminates(2, "x")
f = [-x[0] - 2 * x[1]**2, -x[1] - x[0] * x[1] - 2 * x[1]**3]

V = prog.NewSosPolynomial(Variables(x), 2)[0].ToExpression()
prog.AddLinearConstraint(V.Substitute({x[0]: 0, x[1]: 0}) == 0)
prog.AddLinearConstraint(V.Substitute({x[0]: 1, x[1]: 0}) == 1)
Vdot = V.Jacobian(x).dot(f)

prog.AddSosConstraint(-Vdot)

result = Solve(prog)
assert result.is_success()

print("V = " + str(
    Polynomial(result.GetSolution(V)).RemoveTermsWithSmallCoefficients(1e-5)))
    V.Substitute({
        s: 0,
        c: 1,
        thetadot: 0
    }) == 0)

# Add V(theta=pi) = mgl, just to set the scale.
constraint4 = prog.AddLinearConstraint(
    V.Substitute({
        s: 1,
        c: 0,
        thetadot: 0
    }) == p.mass() * p.gravity() * p.length())

# Call the solver.
result = Solve(prog)
assert (result.is_success())
print(result.get_solver_id().name())

# Note that I've added mgl to the potential energy (relative to the textbook),
# so that it would be non-negative... like the Lyapunov function.
mgl = p.mass() * p.gravity() * p.length()
print('Mechanical Energy = ')
print(.5 * p.mass() * p.length()**2 * thetadot**2 + mgl * (1 - c))

print('V =')
Vsol = Polynomial(result.GetSolution(V))
print(Vsol.RemoveTermsWithSmallCoefficients(1e-6))

# Plot the results as contour plots.
nq = 151
示例#20
0
x0 = dircol.initial_state()
xf = dircol.final_state()
dircol.AddConstraintToAllKnotPoints(-thrust_limit <= u[0])
dircol.AddConstraintToAllKnotPoints(u[0] <= thrust_limit)
dircol.AddConstraintToAllKnotPoints(-thrust_limit <= u[1])
dircol.AddConstraintToAllKnotPoints(u[1] <= thrust_limit)
# dircol.AddConstraintToAllKnotPoints()
dircol.AddBoundingBoxConstraint(-2., -2., x0[0])
dircol.AddBoundingBoxConstraint(-1, -1., x0[1])
dircol.AddBoundingBoxConstraint(-np.pi / 3, -np.pi / 3, x0[2])

dircol.AddBoundingBoxConstraint(0, 0, xf[0])
dircol.AddBoundingBoxConstraint(0, 0, xf[1])
dircol.AddBoundingBoxConstraint(0, 0, xf[2])

result = Solve(dircol)
assert result.is_success()

x_trajectory = dircol.ReconstructStateTrajectory(result)
u_trajectory = dircol.ReconstructInputTrajectory(result)
x_knots = np.hstack([
    x_trajectory.value(t)
    for t in np.linspace(x_trajectory.start_time(), x_trajectory.end_time(), N)
])
u_knots = np.hstack([
    u_trajectory.value(t)
    for t in np.linspace(u_trajectory.start_time(), u_trajectory.end_time(), N)
])

time = np.linspace(x_trajectory.start_time(), x_trajectory.end_time(), N)
# print(x_knots)
    def diff_drive_pd_mp(
            self, x,
            x_des):  # x_des = [x, theta, yaw, x_dot, theta_dot, yaw_dot]
        m_s = 0.2  #kg
        d = 0.085  #m
        m_c = 0.056
        I_3 = 0.000228373  #.0000989844 #kg*m^2
        I_2 = .0000989844
        R = 0.0333375
        g = -9.81  #may need to be set as -9.81; test to see
        L = 0.03
        A_val_theta = (m_s * d * g *
                       (3 * m_c + m_s)) / (3 * m_c * I_3 +
                                           3 * m_c * m_s * d**2 + m_s * I_3)
        B_val_theta = (-m_s * d / R - 3 * m_c * m_s) / (
            3 * m_c * I_3 + 3 * m_c * m_s * d**2 + m_s *
            I_3) * math.pi / 180  #multiplicand for u to change in theta_dot
        B_val_phi = -(2 * L / R) / (6 * m_c * L**2 + m_c * R**2 + 2 * I_2)
        mp = MathematicalProgram()
        k = mp.NewContinuousVariables(3, 'k_val')  # [kp, kd, ky]
        u = mp.NewContinuousVariables(2, 'u_val')
        theta_dot_post = mp.NewContinuousVariables(
            1,
            'theta_dot_post_val')  #estimated value of theta dot after control
        phi_dot_post = mp.NewContinuousVariables(
            1, 'phi_dot_post_val')  #estimated value of theta dot after control
        '''
        kp = 1. #regulate theta (pitch) position
        kd = kp / 20. #regulate theta (pitch) velocity
        ky = 0.5 #regulate phi (yaw) position
        '''
        actuator_limit = .1  #estimate; 0.1 is probably high
        #mp.AddConstraint(theta[0] == np.arcsin(2*(x[0]*x[2] - x[1]*x[3]))) #pitch
        theta = np.arcsin(2 * (x[0] * x[2] - x[1] * x[3]))
        phi = np.arctan2(2 * (x[0] * x[1] + x[2] * x[3]),
                         1 - 2 * (x[1]**2 + x[2]**2))  #yaw
        theta_dot = x[
            10]  #Shown to be ~1.5% below true theta_dot on average in experiments
        mp.AddConstraint(k[0] >= 0.)
        mp.AddConstraint(k[1] >= 0.)
        mp.AddConstraint(k[2] >= 0.)
        mp.AddConstraint(u[0] == k[0] * (x_des[1] - theta + k[1] *
                                         (x_des[4] - theta_dot)) + k[2] *
                         (x_des[2] - phi))
        mp.AddConstraint(u[0] <= -actuator_limit)
        mp.AddConstraint(u[0] >= -actuator_limit)
        mp.AddConstraint(u[1] == -u[0])
        mp.AddConstraint(theta_dot_post[0] == theta_dot +
                         B_val_theta * u[0] * 0.0005 +
                         A_val_theta * theta * .0005)
        mp.AddConstraint(phi_dot_post[0] == x[11] + B_val_phi * u[0] * .0005)
        theta_dot_des = -(theta - x_des[1]) / (2 * .0005)
        mp.AddQuadraticCost((theta_dot_post[0] - theta_dot_des)**2)
        phi_dot_des = -(phi - x_des[2]) / 2
        print('theta_dot_des', theta_dot_des)
        print('theta', theta)
        mp.AddQuadraticCost(0.001 * (phi_dot_post[0] - phi_dot_des)**2)

        result = Solve(mp)
        print('Success: ', result.is_success())
        print('Solver id: ', result.get_solver_id().name())
        print('k: ', result.GetSolution(k))
        print('u: ', result.GetSolution(u))
        return result.GetSolution(u)
# Construct an n-by-n positive semi-definite matrix as the decision
# variables.
num_states = A[0].shape[0]
P = prog.NewSymmetricContinuousVariables(num_states, "P")
prog.AddPositiveSemidefiniteConstraint(P - .01*np.identity(num_states))

# Add the common Lyapunov conditions.
for i in range(len(A)):
    prog.AddPositiveSemidefiniteConstraint(-A[i].transpose().dot(P)
                                           - P.dot(A[i])
                                           - .01*np.identity(num_states))

# Add an objective.
prog.AddLinearCost(np.trace(P))

# Run the optimization.
result = Solve(prog)

if result.is_success():
    P = result.GetSolution(P)
    print("eig(P) =" + str(np.linalg.eig(P)[0]))
    for i in range(len(A)):
        print("eig(Pdot" + str(i) + ") = " +
              str(np.linalg.eig(A[i].transpose().dot(P) + P.dot(A[i]))[0]))
else:
    print('Could not find a common Lyapunov function.')
    print('This is expected to occur with some probability:  not all')
    print('random sets of stable matrices will have a common Lyapunov')
    print('function.')
示例#23
0
def achieves_force_closure(points, normals, mu, debug=False):
    """
    Determines whether the given forces achieve force closure.

    Note that each of points and normals are lists of variable 
    length, but should be the same length.

    Here's an example valid set of input args:
        points  = [np.asarray([0.1, 0.2]), np.asarray([0.5,-0.1])]
        normals = [np.asarray([-1.0,0.0]), np.asarray([0.0, 1.0])]
        mu = 0.2
        achieves_force_closure(points, normals, mu)

    NOTE: your normals should be normalized (be unit vectors)

    :param points: a list of arrays where each array is the
        position of the force points relative to the center of mass.
    :type points: a list of 1-d numpy arrays of shape (2,)

    :param normals: a list of arrays where each array is the normal
        of the local surface of the object, pointing in towards
        the object
    :type normals: a list of 1-d numpy arrays of shape (2,)

    :param mu: coulombic kinetic friction coefficient
    :type mu: float, greater than 0.

    :return: whether or not the given parameters achieves force closure
    :rtype: bool (True or False)
    """
    assert len(points) == len(normals)
    assert mu >= 0.0
    assert_unit_normals(normals)

    ## YOUR CODE HERE
    G = get_G(points, normals)
    if not is_full_row_rank(G):
        print("G is not full row rank")
        return False

    N_points = len(points)
    max_force = 1000

    mp = MathematicalProgram()

    ## Decision vars
    # force tangent to surface
    forces_x = mp.NewContinuousVariables(N_points, "forces_x")
    # force normal to surface
    forces_z = mp.NewContinuousVariables(N_points, "forces_z")
    # -1<=slack_var<=0 used to convert inequalities to strict inequalities
    slack_var = mp.NewContinuousVariables(1, "slack_var")

    # put force vars in single array
    forces = [None] * 2 * N_points
    for point_idx in range(N_points):
        forces[point_idx * 2] = forces_x[point_idx]
        forces[point_idx * 2 + 1] = forces_z[point_idx]

    # ensure forces/moments add to zero
    for row_idx in range(np.shape(G)[0]):
        # 3 rows (LMB_x, LMB_z, AMB) = 0 for static system
        mp.AddLinearConstraint(G[row_idx, :].dot(forces) == 0)
        if debug:
            print("Static force/moment constraints = 0:")
            print(G[row_idx, :].dot(forces))

    # ensure forces stay within friction cone and use slack to avoid trivial 0 solution
    for point_idx in range(N_points):
        # normal force must be positive (slack allows us to catch if it's zero)
        mp.AddLinearConstraint(forces_z[point_idx] + slack_var[0] >= 0)
        mp.AddLinearConstraint(
            forces_x[point_idx] <= mu * forces_z[point_idx] + slack_var[0])
        mp.AddLinearConstraint(
            forces_x[point_idx] >= -(mu * forces_z[point_idx] + slack_var[0]))

    # restrict slack
    mp.AddLinearConstraint(slack_var[0] <= 0)
    mp.AddLinearConstraint(slack_var[0] >= -1)
    mp.AddLinearCost(slack_var[0])

    # restrict solution within bounds
    for force in forces:
        mp.AddLinearConstraint(force >= -max_force)
        mp.AddLinearConstraint(force <= max_force)

    result = Solve(mp)
    if (not result.is_success()):
        print("solver failed to find solution")
        return False

    gamma = result.GetSolution(slack_var)
    if (gamma < 0):
        print("acheived force closure, gamma = {}".format(gamma))
        if debug:
            x = result.GetSolution(forces_x)
            z = result.GetSolution(forces_z)
            print("solution forces_x: {}".format(x))
            print("solution forces_z: {}".format(z))
        return True
    else:
        print("only trivial solution with 0 forces found")
        return False
from pydrake.all import Jacobian, MathematicalProgram, Solve


def dynamics(x):
    return -x + x**3


prog = MathematicalProgram()
x = prog.NewIndeterminates(1, "x")
rho = prog.NewContinuousVariables(1, "rho")[0]

# Define the Lyapunov function.
V = x.dot(x)
Vdot = Jacobian([V], x).dot(dynamics(x))[0]

# Define the Lagrange multiplier.
lambda_ = prog.NewContinuousVariables(1, "lambda")[0]
prog.AddConstraint(lambda_ >= 0)

prog.AddSosConstraint((V-rho) * x.dot(x) - lambda_ * Vdot)
prog.AddLinearCost(-rho)

result = Solve(prog)

assert(result.is_success())

print("Verified that " + str(V) + " < " + str(result.GetSolution(rho)) +
      " is in the region of attraction.")

assert(math.fabs(result.GetSolution(rho) - 1) < 1e-5)
示例#25
0
    def compute_trajectory_to_other_world(self, state_initial, minimum_time,
                                          maximum_time):
        '''
        Your mission is to implement this function.

        A successful implementation of this function will compute a dynamically feasible trajectory
        which satisfies these criteria:
            - Efficiently conserve fuel
            - Reach "orbit" of the far right world
            - Approximately obey the dynamic constraints
            - Begin at the state_initial provided
            - Take no more than maximum_time, no less than minimum_time

        The above are defined more precisely in the provided notebook.

        Please note there are two return args.

        :param: state_initial: :param state_initial: numpy array of length 4, see rocket_dynamics for documentation
        :param: minimum_time: float, minimum time allowed for trajectory
        :param: maximum_time: float, maximum time allowed for trajectory

        :return: three return args separated by commas:

            trajectory, input_trajectory, time_array

            trajectory: a 2d array with N rows, and 4 columns. See simulate_states_over_time for more documentation.
            input_trajectory: a 2d array with N-1 row, and 2 columns. See simulate_states_over_time for more documentation.
            time_array: an array with N rows. 

        '''
        #Determine a time within the middle of the range for (min time, max time)
        N = 50
        time_diff = ((maximum_time - minimum_time) / 2.)
        if (maximum_time - minimum_time) % 2 == 1:
            time_used = (time_diff - .5) + minimum_time + 3
        else:
            time_used = (time_diff) + minimum_time + 3
        print(time_used)
        time_array = np.arange(0.0, time_used, time_used / (1.0 * N))
        dt = time_used / (1.0 * N)
        mp = MathematicalProgram()
        #Base case for state/control variables
        k = 0
        state = mp.NewContinuousVariables(4, "state_%d" % k)  #x,y,xdot,ydot
        state_over_time = state
        u = mp.NewContinuousVariables(2, "u_%d" % k)
        u_over_time = u
        num_time_steps = N  #int(time_used)

        #Set Nx4 vector to represent the state variables; (N-1)x2 vector to represent the control inputs
        for k in range(1, num_time_steps):
            state = mp.NewContinuousVariables(4,
                                              "state_%d" % k)  #x,y,xdot,ydot
            state_over_time = np.vstack((state_over_time, state))
        for k in range(1, num_time_steps - 1):
            u = mp.NewContinuousVariables(2, "u_%d" % k)
            u_over_time = np.vstack((u_over_time, u))

        #constrain initial states
        print(state_initial)
        mp.AddLinearConstraint(state_over_time[
            0, 0] == state_initial[0]).evaluator().set_description('start [0]')
        mp.AddLinearConstraint(state_over_time[
            0, 1] == state_initial[1]).evaluator().set_description('start [1]')
        mp.AddLinearConstraint(state_over_time[
            0, 2] == state_initial[2]).evaluator().set_description('start [2]')
        mp.AddLinearConstraint(state_over_time[0, 3] <= state_initial[3]
                               ).evaluator().set_description('start [3], less')
        mp.AddLinearConstraint(
            state_over_time[0, 3] >= state_initial[3]).evaluator(
            ).set_description('start [3], greater')

        #find dynamics constraints for each state to make standard direct transcription constraints
        for i in range(0, num_time_steps - 1):
            next_state_change = self.rocket_dynamics(state_over_time[i, :],
                                                     u_over_time[i, :])
            #constrain every state via dynamics
            mp.AddLinearConstraint(
                state_over_time[i + 1, 0] == state_over_time[i, 0] +
                next_state_change[0] *
                dt).evaluator().set_description('dynamics[0]' + str(i))
            mp.AddLinearConstraint(
                state_over_time[i + 1, 1] == state_over_time[i, 1] +
                next_state_change[1] * dt +
                np.cos(u_over_time[i, 0] /
                       100.)).evaluator().set_description('dynamics[1]' +
                                                          str(i))

            mp.AddConstraint(
                state_over_time[i + 1, 2] == state_over_time[i, 2] +
                next_state_change[2] * dt +
                np.sin(state_over_time[i, 0] /
                       100.)).evaluator().set_description('dynamics[2]' +
                                                          str(i))

            mp.AddConstraint(state_over_time[i + 1,
                                             3] == state_over_time[i, 3] +
                             next_state_change[3] *
                             dt).evaluator().set_description('dynamics[3]' +
                                                             str(i))

        #Add a quadratic cost for the amount of fuel used over the course of the trajectory
        fuel_cost_gain = 100.0
        mp.AddQuadraticCost(fuel_cost_gain *
                            u_over_time[:, 0].dot(u_over_time[:, 0]))
        mp.AddQuadraticCost(fuel_cost_gain *
                            u_over_time[:, 1].dot(u_over_time[:, 1]))

        #constrain final states
        world_2 = self.world_2_position
        mp.AddConstraint(
            (state_over_time[-1, 2]**2 +
             state_over_time[-1, 3]**2) <= 1.0).evaluator().set_description(
                 'speed constraint')  #final vel < 1m/s
        mp.AddConstraint(((state_over_time[-1, 0] - world_2[0])**2 +
                          (state_over_time[-1, 1] - world_2[1])**2) <= .5**2
                         ).evaluator().set_description('distance constraint')

        #constrain system to not stray to far from planets
        world_1 = self.world_1_position
        dist_between_planets = (world_1[0] - world_2[0])**2 + (world_1[1] -
                                                               world_2[1])**2
        kp = 5.0
        for i in range(num_time_steps):
            mp.AddConstraint(((state_over_time[i, 0] - world_2[0])**2 +
                              (state_over_time[i, 1] -
                               world_2[1])**2) <= dist_between_planets * kp)

        result = Solve(mp)
        trajectory = result.GetSolution(state_over_time)
        input_trajectory = result.GetSolution(u_over_time)
        print(result.is_success())
        if not result.is_success():
            infeasible = GetInfeasibleConstraints(mp, result)
            print "Infeasible constraints:"
            for i in range(len(infeasible)):
                print infeasible[i]

        return trajectory, input_trajectory, time_array