示例#1
0
 def test_ipopt_solver_deprecated(self):
     # This serves as the (only) unit test coverage for the deprecated
     # SolverBase method that writes the solution back into the program.
     prog, x, x_expected = self._make_prog()
     solver = IpoptSolver()
     with catch_drake_warnings(expected_count=2):
         result = solver.Solve(prog)
         solution = prog.GetSolution(x)
     self.assertEqual(result, mp.SolutionResult.kSolutionFound)
     self.assertTrue(np.allclose(solution, x_expected))
示例#2
0
 def test_ipopt_solver_deprecated(self):
     # This serves as the (only) unit test coverage for the deprecated
     # SolverBase method that writes the solution back into the program.
     prog, x, x_expected = self._make_prog()
     solver = IpoptSolver()
     with warnings.catch_warnings(record=True) as w:
         warnings.simplefilter('always', DrakeDeprecationWarning)
         result = solver.Solve(prog)
         solution = prog.GetSolution(x)
         self.assertEqual(len(w), 2)
     self.assertEqual(result, mp.SolutionResult.kSolutionFound)
     self.assertTrue(np.allclose(solution, x_expected))
示例#3
0
 def test_ipopt_solver(self):
     prog, x, x_expected = self._make_prog()
     solver = IpoptSolver()
     self.assertTrue(solver.available())
     self.assertEqual(solver.solver_id().name(), "IPOPT")
     self.assertEqual(solver.SolverName(), "IPOPT")
     self.assertEqual(solver.solver_type(), mp.SolverType.kIpopt)
     result = solver.Solve(prog, None, None)
     self.assertTrue(result.is_success())
     self.assertTrue(np.allclose(result.GetSolution(x), x_expected))
示例#4
0
 def test_ipopt_solver(self):
     prog, x, x_expected = self._make_prog()
     solver = IpoptSolver()
     self.assertEqual(solver.solver_id(), IpoptSolver.id())
     self.assertTrue(solver.available())
     self.assertTrue(solver.enabled())
     self.assertEqual(solver.solver_id().name(), "IPOPT")
     self.assertEqual(solver.SolverName(), "IPOPT")
     self.assertEqual(solver.solver_type(), mp.SolverType.kIpopt)
     result = solver.Solve(prog, None, None)
     self.assertTrue(result.is_success())
     self.assertTrue(np.allclose(result.GetSolution(x), x_expected))
     self.assertEqual(result.get_solver_details().status, 0)
     self.assertEqual(result.get_solver_details().ConvertStatusToString(),
                      "Success")
     np.testing.assert_allclose(result.get_solver_details().z_L,
                                np.array([1., 1.]))
     np.testing.assert_allclose(result.get_solver_details().z_U,
                                np.array([0., 0.]))
     np.testing.assert_allclose(result.get_solver_details().g, np.array([]))
     np.testing.assert_allclose(result.get_solver_details().lambda_val,
                                np.array([]))
示例#5
0
    def test_two_boxes(self):
        # test with 2 boxes.
        masses = [1., 2]
        box_sizes = [np.array([0.1, 0.1, 0.1]), np.array([0.1, 0.1, 0.2])]
        plant, scene_graph, diagram, boxes, ground_geometry_id,\
            boxes_geometry_id = construct_environment(
                masses, box_sizes)
        diagram_context = diagram.CreateDefaultContext()
        plant_context = diagram.GetMutableSubsystemContext(
            plant, diagram_context)
        # Ignore the collision between box-box, since currently Drake doesn't
        # support box-box collision with AutoDiffXd.
        ignored_collision_pairs = set()
        for i in range(len(boxes_geometry_id)):
            ignored_collision_pairs.add(
                tuple((ground_geometry_id, boxes_geometry_id[i])))
            for j in range(i + 1, len(boxes_geometry_id)):
                ignored_collision_pairs.add(
                    tuple((boxes_geometry_id[i], boxes_geometry_id[j])))

        dut = StaticEquilibriumProblem(plant, plant_context,
                                       ignored_collision_pairs)

        # Add the constraint that the quaternion should have unit length.
        ik.AddUnitQuaternionConstraintOnPlant(plant, dut.q_vars(),
                                              dut.get_mutable_prog())
        for i in range(len(boxes)):
            box_quaternion_start = 7 * i
            box_quat, box_xyz = split_se3(
                dut.q_vars()[box_quaternion_start:box_quaternion_start + 7])
            dut.get_mutable_prog().SetInitialGuess(
                box_quat, np.array([0.5, 0.5, 0.5, 0.5]))
            dut.get_mutable_prog().SetInitialGuess(
                box_xyz, np.array([0, 0, 0.3 + 0.2 * i]))

        dut.UpdateComplementarityTolerance(0.001)
        ipopt_solver = IpoptSolver()
        result = ipopt_solver.Solve(dut.prog())
        self.assertTrue(result.is_success())
示例#6
0
 def test_ipopt_solver(self):
     prog = mp.MathematicalProgram()
     x = prog.NewContinuousVariables(2, "x")
     prog.AddLinearConstraint(x[0] >= 1)
     prog.AddLinearConstraint(x[1] >= 1)
     prog.AddQuadraticCost(np.eye(2), np.zeros(2), x)
     solver = IpoptSolver()
     self.assertTrue(solver.available())
     self.assertEqual(solver.solver_id().name(), "IPOPT")
     self.assertEqual(solver.SolverName(), "IPOPT")
     self.assertEqual(solver.solver_type(), mp.SolverType.kIpopt)
     result = solver.Solve(prog)
     self.assertEqual(result, mp.SolutionResult.kSolutionFound)
     x_expected = np.array([1, 1])
     self.assertTrue(np.allclose(prog.GetSolution(x), x_expected))
示例#7
0
 def unavailable(self):
     """Per the BUILD file, this test is only run when IPOPT is disabled."""
     solver = IpoptSolver()
     self.assertFalse(solver.available())
示例#8
0
def test_Feedback_Linearization_controller_BS(x, t):
    # Output feedback linearization 2
    #
    # y1= ||r-rf||^2/2
    # y2= wx
    # y3= wy
    # y4= wz
    #
    # Analysis: The zero dynamics is unstable.
    global g, xf, Aout, Bout, Mout, T_period, w_freq, radius

    print("%%%%%%%%%%%%%%%%%%%%%")
    print("%%CLF-QP  %%%%%%%%%%%")
    print("%%%%%%%%%%%%%%%%%%%%%")

    print("t:", t)
    prog = MathematicalProgram()
    u_var = prog.NewContinuousVariables(4, "u_var")
    c_var = prog.NewContinuousVariables(1, "c_var")

    # # # Example 1 : Circle

    x_f = radius * math.cos(w_freq * t)
    y_f = radius * math.sin(w_freq * t)
    # print("x_f:",x_f)
    # print("y_f:",y_f)
    dx_f = -radius * math.pow(w_freq, 1) * math.sin(w_freq * t)
    dy_f = radius * math.pow(w_freq, 1) * math.cos(w_freq * t)
    ddx_f = -radius * math.pow(w_freq, 2) * math.cos(w_freq * t)
    ddy_f = -radius * math.pow(w_freq, 2) * math.sin(w_freq * t)
    dddx_f = radius * math.pow(w_freq, 3) * math.sin(w_freq * t)
    dddy_f = -radius * math.pow(w_freq, 3) * math.cos(w_freq * t)
    ddddx_f = radius * math.pow(w_freq, 4) * math.cos(w_freq * t)
    ddddy_f = radius * math.pow(w_freq, 4) * math.sin(w_freq * t)

    # # Example 2 : Lissajous curve a=1 b=2
    # ratio_ab=2;
    # a=1;
    # b=ratio_ab*a;
    # delta_lissajous = 0 #math.pi/2;

    # x_f = radius*math.sin(a*w_freq*t+delta_lissajous)
    # y_f = radius*math.sin(b*w_freq*t)
    # # print("x_f:",x_f)
    # # print("y_f:",y_f)
    # dx_f = radius*math.pow(a*w_freq,1)*math.cos(a*w_freq*t+delta_lissajous)
    # dy_f = radius*math.pow(b*w_freq,1)*math.cos(b*w_freq*t)
    # ddx_f = -radius*math.pow(a*w_freq,2)*math.sin(a*w_freq*t+delta_lissajous)
    # ddy_f = -radius*math.pow(b*w_freq,2)*math.sin(b*w_freq*t)
    # dddx_f = -radius*math.pow(a*w_freq,3)*math.cos(a*w_freq*t+delta_lissajous)
    # dddy_f = -radius*math.pow(b*w_freq,3)*math.cos(b*w_freq*t)
    # ddddx_f = radius*math.pow(a*w_freq,4)*math.sin(a*w_freq*t+delta_lissajous)
    # ddddy_f = radius*math.pow(b*w_freq,4)*math.sin(b*w_freq*t)

    e1 = np.array([1, 0, 0])  # e3 elementary vector
    e2 = np.array([0, 1, 0])  # e3 elementary vector
    e3 = np.array([0, 0, 1])  # e3 elementary vector

    # epsilonn= 1e-0
    # alpha = 100;
    # kp1234=alpha*1/math.pow(epsilonn,4) # gain for y
    # kd1=4/math.pow(epsilonn,3) # gain for y^(1)
    # kd2=12/math.pow(epsilonn,2) # gain for y^(2)
    # kd3=4/math.pow(epsilonn,1)  # gain for y^(3)

    # kp5= 10;                    # gain for y5

    q = np.zeros(7)
    qd = np.zeros(6)
    q = x[0:8]
    qd = x[8:15]

    print("qnorm:", np.dot(q[3:7], q[3:7]))

    q0 = q[3]
    q1 = q[4]
    q2 = q[5]
    q3 = q[6]
    xi1 = q[7]

    v = qd[0:3]
    w = qd[3:6]
    xi2 = qd[6]

    xd = xf[0]
    yd = xf[1]
    zd = xf[2]
    wd = xf[11:14]

    # Useful vectors and matrices

    (Rq, Eq, wIw, I_inv) = robobee_plantBS.GetManipulatorDynamics(q, qd)

    F1q = np.zeros((3, 4))
    F1q[0, :] = np.array([q2, q3, q0, q1])
    F1q[1, :] = np.array([-1 * q1, -1 * q0, q3, q2])
    F1q[2, :] = np.array([q0, -1 * q1, -1 * q2, q3])

    Rqe3 = np.dot(Rq, e3)
    Rqe3_hat = np.zeros((3, 3))
    Rqe3_hat[0, :] = np.array([0, -Rqe3[2], Rqe3[1]])
    Rqe3_hat[1, :] = np.array([Rqe3[2], 0, -Rqe3[0]])
    Rqe3_hat[2, :] = np.array([-Rqe3[1], Rqe3[0], 0])

    Rqe1 = np.dot(Rq, e1)
    Rqe1_hat = np.zeros((3, 3))
    Rqe1_hat[0, :] = np.array([0, -Rqe1[2], Rqe1[1]])
    Rqe1_hat[1, :] = np.array([Rqe1[2], 0, -Rqe1[0]])
    Rqe1_hat[2, :] = np.array([-Rqe1[1], Rqe1[0], 0])

    Rqe1_x = np.dot(e2.T, Rqe1)
    Rqe1_y = np.dot(e1.T, Rqe1)

    w_hat = np.zeros((3, 3))
    w_hat[0, :] = np.array([0, -w[2], w[1]])
    w_hat[1, :] = np.array([w[2], 0, -w[0]])
    w_hat[2, :] = np.array([-w[1], w[0], 0])

    Rw = np.dot(Rq, w)
    Rw_hat = np.zeros((3, 3))
    Rw_hat[0, :] = np.array([0, -Rw[2], Rw[1]])
    Rw_hat[1, :] = np.array([Rw[2], 0, -Rw[0]])
    Rw_hat[2, :] = np.array([-Rw[1], Rw[0], 0])
    #- Checking the derivation

    # print("F1qEqT-(-Rqe3_hat)",np.dot(F1q,Eq.T)-(-Rqe3_hat))
    # Rqe3_cal = np.zeros(3)
    # Rqe3_cal[0] = 2*(q3*q1+q0*q2)
    # Rqe3_cal[1] = 2*(q3*q2-q0*q1)
    # Rqe3_cal[2] = (q0*q0+q3*q3-q1*q1-q2*q2)

    # print("Rqe3 - Rqe3_cal", Rqe3-Rqe3_cal)

    # Four output
    y1 = x[0] - x_f
    y2 = x[1] - y_f
    y3 = x[2] - zd - 0
    y4 = math.atan2(Rqe1_x, Rqe1_y) - math.pi / 8
    # print("Rqe1_x:", Rqe1_x)

    eta1 = np.zeros(3)
    eta1 = np.array([y1, y2, y3])
    eta5 = y4

    # print("y4", y4)

    # First derivative of first three output and yaw output
    eta2 = np.zeros(3)
    eta2 = v - np.array([dx_f, dy_f, 0])
    dy1 = eta2[0]
    dy2 = eta2[1]
    dy3 = eta2[2]

    x2y2 = (math.pow(Rqe1_x, 2) + math.pow(Rqe1_y, 2))  # x^2+y^2

    eta6_temp = np.zeros(3)  #eta6_temp = (ye2T-xe1T)/(x^2+y^2)
    eta6_temp = (Rqe1_y * e2.T - Rqe1_x * e1.T) / x2y2
    # print("eta6_temp:", eta6_temp)
    # Body frame w  ( multiply R)
    eta6 = np.dot(eta6_temp, np.dot(-Rqe1_hat, np.dot(Rq, w)))

    # World frame w
    # eta6 = np.dot(eta6_temp,np.dot(-Rqe1_hat,w))
    # print("Rqe1_hat:", Rqe1_hat)

    # Second derivative of first three output
    eta3 = np.zeros(3)
    eta3 = -g * e3 + Rqe3 * xi1 - np.array([ddx_f, ddy_f, 0])
    ddy1 = eta3[0]
    ddy2 = eta3[1]
    ddy3 = eta3[2]

    # Third derivative of first three output
    eta4 = np.zeros(3)
    # Body frame w ( multiply R)
    eta4 = Rqe3 * xi2 + np.dot(-Rqe3_hat, np.dot(Rq, w)) * xi1 - np.array(
        [dddx_f, dddy_f, 0])

    # World frame w
    # eta4 = Rqe3*xi2+np.dot(np.dot(F1q,Eq.T),w)*xi1 - np.array([dddx_f,dddy_f,0])
    dddy1 = eta4[0]
    dddy2 = eta4[1]
    dddy3 = eta4[2]

    # Fourth derivative of first three output
    B_qw_temp = np.zeros(3)
    # Body frame w
    B_qw_temp = xi1 * (-np.dot(Rw_hat, np.dot(Rqe3_hat, Rw)) +
                       np.dot(Rqe3_hat, np.dot(Rq, np.dot(I_inv, wIw)))
                       )  # np.dot(I_inv,wIw)*xi1-2*w*xi2
    B_qw = B_qw_temp + xi2 * (-2 * np.dot(Rqe3_hat, Rw)) - np.array(
        [ddddx_f, ddddy_f, 0])  #np.dot(Rqe3_hat,B_qw_temp)

    # World frame w
    # B_qw_temp = xi1*(-np.dot(w_hat,np.dot(Rqe3_hat,w))+np.dot(Rqe3_hat,np.dot(I_inv,wIw))) # np.dot(I_inv,wIw)*xi1-2*w*xi2
    # B_qw      = B_qw_temp+xi2*(-2*np.dot(Rqe3_hat,w)) - np.array([ddddx_f,ddddy_f,0])   #np.dot(Rqe3_hat,B_qw_temp)

    # B_qw = B_qw_temp - np.dot(w_hat,np.dot(Rqe3_hat,w))*xi1

    # Second derivative of yaw output

    # Body frame w
    dRqe1_x = np.dot(e2, np.dot(-Rqe1_hat, Rw))  # \dot{x}
    dRqe1_y = np.dot(e1, np.dot(-Rqe1_hat, Rw))  # \dot{y}
    alpha1 = 2 * (Rqe1_x * dRqe1_x +
                  Rqe1_y * dRqe1_y) / x2y2  # (2xdx +2ydy)/(x^2+y^2)

    # World frame w
    # dRqe1_x = np.dot(e2,np.dot(-Rqe1_hat,w)) # \dot{x}
    # dRqe1_y = np.dot(e1,np.dot(-Rqe1_hat,w)) # \dot{y}

    # alpha1 = 2*(Rqe1_x*dRqe1_x+Rqe1_y*dRqe1_y)/x2y2 # (2xdx +2ydy)/(x^2+y^2)
    # # alpha2 = math.pow(dRqe1_y,2)-math.pow(dRqe1_x,2)

    # Body frame w

    B_yaw_temp3 = np.zeros(3)
    B_yaw_temp3 = alpha1 * np.dot(Rqe1_hat, Rw) + np.dot(
        Rqe1_hat, np.dot(Rq, np.dot(I_inv, wIw))) - np.dot(
            Rw_hat, np.dot(Rqe1_hat, Rw))

    B_yaw = np.dot(eta6_temp,
                   B_yaw_temp3)  # +alpha2 :Could be an error in math.
    g_yaw = np.zeros(3)
    g_yaw = -np.dot(eta6_temp, np.dot(Rqe1_hat, np.dot(Rq, I_inv)))

    # World frame w
    # B_yaw_temp3 =np.zeros(3)
    # B_yaw_temp3 = alpha1*np.dot(Rqe1_hat,w)+np.dot(Rqe1_hat,np.dot(I_inv,wIw))-np.dot(w_hat,np.dot(Rqe1_hat,w))

    # B_yaw = np.dot(eta6_temp,B_yaw_temp3) # +alpha2 :Could be an error in math.
    # g_yaw = np.zeros(3)
    # g_yaw = -np.dot(eta6_temp,np.dot(Rqe1_hat,I_inv))

    # print("g_yaw:", g_yaw)
    # Decoupling matrix A(x)\in\mathbb{R}^4

    A_fl = np.zeros((4, 4))
    A_fl[0:3, 0] = Rqe3
    # Body frame w
    A_fl[0:3, 1:4] = -np.dot(Rqe3_hat, np.dot(Rq, I_inv)) * xi1
    # World frame w
    # A_fl[0:3,1:4] = -np.dot(Rqe3_hat,I_inv)*xi1
    A_fl[3, 1:4] = g_yaw

    A_fl_inv = np.linalg.inv(A_fl)
    A_fl_det = np.linalg.det(A_fl)
    # print("I_inv:", I_inv)
    print("A_fl:", A_fl)
    print("A_fl_det:", A_fl_det)

    # Drift in the output dynamics

    U_temp = np.zeros(4)
    U_temp[0:3] = B_qw
    U_temp[3] = B_yaw

    # Output dyamics

    eta = np.hstack([eta1, eta2, eta3, eta5, eta4, eta6])
    eta_norm = np.dot(eta, eta)

    # v-CLF QP controller

    FP_PF = np.dot(Aout.T, Mout) + np.dot(Mout, Aout)
    PG = np.dot(Mout, Bout)

    L_FVx = np.dot(eta, np.dot(FP_PF, eta))
    L_GVx = 2 * np.dot(eta.T, PG)  # row vector
    L_fhx_star = U_temp

    Vx = np.dot(eta, np.dot(Mout, eta))
    # phi0_exp = L_FVx+np.dot(L_GVx,L_fhx_star)+(min_e_Q/max_e_P)*Vx*1    # exponentially stabilizing
    # phi0_exp = L_FVx+np.dot(L_GVx,L_fhx_star)+min_e_Q*eta_norm      # more exact bound - exponentially stabilizing
    phi0_exp = L_FVx + np.dot(
        L_GVx, L_fhx_star)  # more exact bound - exponentially stabilizing

    phi1_decouple = np.dot(L_GVx, A_fl)

    # # Solve QP
    v_var = np.dot(A_fl, u_var) + L_fhx_star
    Quadratic_Positive_def = np.matmul(A_fl.T, A_fl)
    QP_det = np.linalg.det(Quadratic_Positive_def)
    c_QP = 2 * np.dot(L_fhx_star.T, A_fl)

    c_QP_extned = np.hstack([c_QP, -1])
    u_var_extended = np.hstack([u_var, c_var])

    # CLF_QP_cost_v = np.dot(v_var,v_var) // Exact quadratic cost
    CLF_QP_cost_v_effective = np.dot(
        u_var, np.dot(Quadratic_Positive_def, u_var)) + np.dot(
            c_QP, u_var) - c_var[0]  # Quadratic cost without constant term

    # CLF_QP_cost_u = np.dot(u_var,u_var)

    phi1 = np.dot(phi1_decouple, u_var) + c_var[0] * eta_norm

    #----Printing intermediate states

    # print("L_fhx_star: ",L_fhx_star)
    # print("c_QP:", c_QP)
    # print("Qp : ",Quadratic_Positive_def)
    # print("Qp det: ", QP_det)
    # print("c_QP", c_QP)

    # print("phi0_exp: ", phi0_exp)
    # print("PG:", PG)
    # print("L_GVx:", L_GVx)
    # print("eta6", eta6)
    # print("d : ", phi1_decouple)
    # print("Cost expression:", CLF_QP_cost_v)
    #print("Const expression:", phi0_exp+phi1)

    #----Different solver option // Gurobi did not work with python at this point (some binding issue 8/8/2018)
    solver = IpoptSolver()
    # solver = GurobiSolver()
    # print solver.available()
    # assert(solver.available()==True)
    # assertEqual(solver.solver_type(), mp.SolverType.kGurobi)
    # solver.Solve(prog)
    # assertEqual(result, mp.SolutionResult.kSolutionFound)

    # mp.AddLinearConstraint()
    # print("x:", x)
    # print("phi_0_exp:", phi0_exp)
    # print("phi1_decouple:", phi1_decouple)

    # print("eta1:", eta1)
    # print("eta2:", eta2)
    # print("eta3:", eta3)
    # print("eta4:", eta4)
    # print("eta5:", eta5)
    # print("eta6:", eta6)

    # Output Feedback Linearization controller
    mu = np.zeros(4)
    k = np.zeros((4, 14))
    k = np.matmul(Bout.T, Mout)
    k = np.matmul(np.linalg.inv(R), k)

    mu = -1 / 1 * np.matmul(k, eta)

    v = -U_temp + mu

    U_fl = np.matmul(
        A_fl_inv, v
    )  # Output Feedback controller to comare the result with CLF-QP solver

    # Set up the QP problem
    prog.AddQuadraticCost(CLF_QP_cost_v_effective)
    prog.AddConstraint(phi0_exp + phi1 <= 0)
    prog.AddConstraint(c_var[0] >= 0)
    prog.AddConstraint(c_var[0] <= 100)
    prog.AddConstraint(u_var[0] <= 30)
    prog.SetSolverOption(mp.SolverType.kIpopt, "print_level",
                         5)  # CAUTION: Assuming that solver used Ipopt

    print("CLF value:", Vx)  # Current CLF value

    prog.SetInitialGuess(u_var, U_fl)
    prog.Solve()  # Solve with default osqp

    # solver.Solve(prog)
    print("Optimal u : ", prog.GetSolution(u_var))
    U_CLF_QP = prog.GetSolution(u_var)
    C_CLF_QP = prog.GetSolution(c_var)

    #---- Printing for debugging
    # dx = robobee_plantBS.evaluate_f(U_fl,x)
    # print("dx", dx)
    # print("\n######################")
    # # print("qe3:", A_fl[0,0])
    # print("u:", u)
    # print("\n####################33")

    # deta4 = B_qw+Rqe3*U_fl_zero[0]+np.matmul(-np.matmul(Rqe3_hat,I_inv),U_fl_zero[1:4])*xi1
    # deta6 = B_yaw+np.dot(g_yaw,U_fl_zero[1:4])
    # print("deta4:",deta4)
    # print("deta6:",deta6)
    print(C_CLF_QP)

    phi1_opt = np.dot(phi1_decouple, U_CLF_QP) + C_CLF_QP * eta_norm
    phi1_opt_FL = np.dot(phi1_decouple, U_fl)

    print("FL u: ", U_fl)
    print("CLF u:", U_CLF_QP)
    print("Cost FL: ", np.dot(mu, mu))

    v_CLF = np.dot(A_fl, U_CLF_QP) + L_fhx_star
    print("Cost CLF: ", np.dot(v_CLF, v_CLF))
    print("Constraint FL : ", phi0_exp + phi1_opt_FL)
    print("Constraint CLF : ", phi0_exp + phi1_opt)
    u = U_CLF_QP

    print("eigenvalues minQ maxP:", [min_e_Q, max_e_P])

    return u
示例#9
0
d = np.array([5.0752e+01, 4.7343e+05, 8.4125e+05, 6.2668e+05])

phi0 = -36332.36234347365

print("Qp : ", Quadratic_Positive_def)
print("Qp det: ", QP_det)

# Quadratic cost : u^TQu + c^Tu
CLF_QP_cost_v_effective = np.dot(u_var, np.dot(Quadratic_Positive_def,
                                               u_var)) + np.dot(c, u_var)

prog.AddQuadraticCost(CLF_QP_cost_v_effective)
prog.AddConstraint(np.dot(d, u_var) + phi0 <= 0)

solver = IpoptSolver()

prog.Solve()
# solver.Solve(prog)
print("Optimal u : ", prog.GetSolution(u_var))
u_CLF_QP = prog.GetSolution(u_var)

# ('A_fl:', )
# ('A_fl_det:', 137180180557.17741)
# ('Qp : ', array([[ 1.0000e+00, -1.5475e-13,  4.0035e-14,  3.7932e-15],
#        [-1.5475e-13,  5.7298e+07,  2.1803e+05, -3.3461e+06],
#        [ 4.0035e-14,  2.1803e+05,  6.2061e+07,  3.5442e+07],
#        [ 3.7932e-15, -3.3461e+06,  3.5442e+07,  2.5742e+07]]))
# ('Qp det: ', 1.8818401937699662e+22)
# ('c_QP', array([-8.3592e+00, -8.3708e+06, -5.1451e+05,  2.0752e+05]))
# ('phi0_exp: ', -36332.36234347365)
    # prog.AddConstraint(eq(x[1,n+1], x[1,n] + dt*dx[1,n]))
    # prog.AddConstraint(eq(x[2,n+1], x[2,n] + dt*dx[2,n]))

    prog.AddBoundingBoxConstraint([-f*m*g]*2, [f*m*g]*2, u[:,n])
    prog.AddBoundingBoxConstraint(-5, 5, x[0,n])
    prog.AddBoundingBoxConstraint(-5, 5, x[1,n])
    prog.AddBoundingBoxConstraint(-np.pi, np.pi, x[2,n])

xf = [0., 0., 0.]
prog.AddBoundingBoxConstraint(xf, xf, x[:, N-1])
uf = [m*g/2, m*g/2]
prog.AddBoundingBoxConstraint(uf, uf, u[:, N-1])
x1 = [0]*3
prog.AddBoundingBoxConstraint(x1, x1, dx[:, N-1])

solver = IpoptSolver()
result = solver.Solve(prog)

# result = Solve(prog)

x_sol = result.GetSolution(x)
dx_sol = result.GetSolution(dx)
u_sol = result.GetSolution(u)
assert(result.is_success()), "Optimization failed"
time = np.linspace(0, T, N)
# print(len(time))
plt.figure()
plt.subplot(311)
plt.plot(time, x_sol[0,:], 'r', label='x')
plt.plot(time, x_sol[1,:], 'g', label='y')
plt.plot(time, x_sol[2,:], 'b', label='theta')
示例#11
0
    def compute_input(self, x, xd, initial_guess=None):
        prog = MathematicalProgram()

        # Joint configuration states & Contact forces
        q = prog.NewContinuousVariables(rows=self.T + 1,
                                        cols=self.nq,
                                        name='q')
        v = prog.NewContinuousVariables(rows=self.T + 1,
                                        cols=self.nq,
                                        name='v')
        u = prog.NewContinuousVariables(rows=self.T, cols=self.nu, name='u')
        contact = prog.NewContinuousVariables(rows=self.T,
                                              cols=self.nf,
                                              name='lambda1')

        z = prog.NewBinaryVariables(rows=self.T, cols=self.nf, name='z')

        # Add Initial Condition Constraint
        prog.AddConstraint(eq(q[0], np.array(x[0:3])))
        prog.AddConstraint(eq(v[0], np.array(x[3:6])))

        # Add Final Condition Constraint
        prog.AddConstraint(eq(q[self.T], np.array(xd[0:3])))
        prog.AddConstraint(eq(v[self.T], np.array(xd[3:6])))

        prog.AddConstraint(z[0, 0] == 0)
        prog.AddConstraint(z[0, 1] == 0)

        # Add Dynamics Constraints
        for t in range(self.T):
            # Add Dynamics Constraints
            prog.AddConstraint(
                eq(q[t + 1], (q[t] + self.sim.params['h'] * v[t + 1])))

            prog.AddConstraint(v[t + 1, 0] == (
                v[t, 0] + self.sim.params['h'] *
                (-self.sim.params['c'] * v[t, 0] - contact[t, 0] + u[t, 0])))
            prog.AddConstraint(v[t + 1,
                                 1] == (v[t, 1] + self.sim.params['h'] *
                                        (-self.sim.params['c'] * v[t, 1] +
                                         contact[t, 0] - contact[t, 1])))
            prog.AddConstraint(v[t + 1, 2] == (
                v[t, 2] + self.sim.params['h'] *
                (-self.sim.params['c'] * v[t, 2] + contact[t, 1] + u[t, 1])))

            # Add Contact Constraints with big M = self.contact
            prog.AddConstraint(ge(contact[t], 0))
            prog.AddConstraint(contact[t, 0] + self.sim.params['k'] *
                               (q[t, 1] - q[t, 0] - self.sim.params['d']) >= 0)
            prog.AddConstraint(contact[t, 1] + self.sim.params['k'] *
                               (q[t, 2] - q[t, 1] - self.sim.params['d']) >= 0)

            # Mixed Integer Constraints
            M = self.contact_max
            prog.AddConstraint(contact[t, 0] <= M)
            prog.AddConstraint(contact[t, 1] <= M)
            prog.AddConstraint(contact[t, 0] <= M * z[t, 0])
            prog.AddConstraint(contact[t, 1] <= M * z[t, 1])
            prog.AddConstraint(
                contact[t, 0] + self.sim.params['k'] *
                (q[t, 1] - q[t, 0] - self.sim.params['d']) <= M *
                (1 - z[t, 0]))
            prog.AddConstraint(
                contact[t, 1] + self.sim.params['k'] *
                (q[t, 2] - q[t, 1] - self.sim.params['d']) <= M *
                (1 - z[t, 1]))
            prog.AddConstraint(z[t, 0] + z[t, 1] == 1)

            # Add Input Constraints. Contact Constraints already enforced in big-M
            # prog.AddConstraint(le(u[t], self.input_max))
            # prog.AddConstraint(ge(u[t], -self.input_max))

            # Add Costs
            prog.AddCost(u[t].dot(u[t]))

        # Set Initial Guess as empty. Otherwise, start from last solver iteration.
        if (type(initial_guess) == type(None)):
            initial_guess = np.empty(prog.num_vars())

            # Populate initial guess by linearly interpolating between initial
            # and final states
            #qinit = np.linspace(x[0:3], xd[0:3], self.T + 1)
            qinit = np.tile(np.array(x[0:3]), (self.T + 1, 1))
            vinit = np.tile(np.array(x[3:6]), (self.T + 1, 1))
            uinit = np.tile(np.array([0, 0]), (self.T, 1))
            finit = np.tile(np.array([0, 0]), (self.T, 1))

            prog.SetDecisionVariableValueInVector(q, qinit, initial_guess)
            prog.SetDecisionVariableValueInVector(v, vinit, initial_guess)
            prog.SetDecisionVariableValueInVector(u, uinit, initial_guess)
            prog.SetDecisionVariableValueInVector(contact, finit,
                                                  initial_guess)

        # Solve the program
        if (self.solver == "ipopt"):
            solver_id = IpoptSolver().solver_id()
        elif (self.solver == "snopt"):
            solver_id = SnoptSolver().solver_id()
        elif (self.solver == "osqp"):
            solver_id = OsqpSolver().solver_id()
        elif (self.solver == "mosek"):
            solver_id = MosekSolver().solver_id()
        elif (self.solver == "gurobi"):
            solver_id = GurobiSolver().solver_id()

        solver = MixedIntegerBranchAndBound(prog, solver_id)

        #result = solver.Solve(prog, initial_guess)
        result = solver.Solve()

        if result != result.kSolutionFound:
            raise ValueError('Infeasible optimization problem')

        sol = result.GetSolution()
        q_opt = result.GetSolution(q)
        v_opt = result.GetSolution(v)
        u_opt = result.GetSolution(u)
        f_opt = result.GetSolution(contact)

        return sol, q_opt, v_opt, u_opt, f_opt
示例#12
0
    def compute_input(self, x, xd, initial_guess=None, tol=0.0):
        prog = MathematicalProgram()

        # Joint configuration states & Contact forces
        q = prog.NewContinuousVariables(rows=self.T + 1,
                                        cols=self.nq,
                                        name='q')
        v = prog.NewContinuousVariables(rows=self.T + 1,
                                        cols=self.nq,
                                        name='v')
        u = prog.NewContinuousVariables(rows=self.T, cols=self.nu, name='u')
        contact = prog.NewContinuousVariables(rows=self.T,
                                              cols=self.nf,
                                              name='lambda')

        #
        alpha = prog.NewContinuousVariables(rows=self.T, cols=2, name='alpha')
        beta = prog.NewContinuousVariables(rows=self.T, cols=2, name='beta')

        # Add Initial Condition Constraint
        prog.AddConstraint(eq(q[0], np.array(x[0:3])))
        prog.AddConstraint(eq(v[0], np.array(x[3:6])))

        # Add Final Condition Constraint
        prog.AddConstraint(eq(q[self.T], np.array(xd[0:3])))
        prog.AddConstraint(eq(v[self.T], np.array(xd[3:6])))

        # Add Dynamics Constraints
        for t in range(self.T):
            # Add Dynamics Constraints
            prog.AddConstraint(
                eq(q[t + 1], (q[t] + self.sim.params['h'] * v[t + 1])))

            prog.AddConstraint(v[t + 1, 0] == (
                v[t, 0] + self.sim.params['h'] *
                (-self.sim.params['c'] * v[t, 0] - contact[t, 0] + u[t, 0])))
            prog.AddConstraint(v[t + 1,
                                 1] == (v[t, 1] + self.sim.params['h'] *
                                        (-self.sim.params['c'] * v[t, 1] +
                                         contact[t, 0] - contact[t, 1])))
            prog.AddConstraint(v[t + 1, 2] == (
                v[t, 2] + self.sim.params['h'] *
                (-self.sim.params['c'] * v[t, 2] + contact[t, 1] + u[t, 1])))

            # Add Contact Constraints
            prog.AddConstraint(ge(alpha[t], 0))
            prog.AddConstraint(ge(beta[t], 0))
            prog.AddConstraint(alpha[t, 0] == contact[t, 0])
            prog.AddConstraint(alpha[t, 1] == contact[t, 1])
            prog.AddConstraint(
                beta[t, 0] == (contact[t, 0] + self.sim.params['k'] *
                               (q[t, 1] - q[t, 0] - self.sim.params['d'])))
            prog.AddConstraint(
                beta[t, 1] == (contact[t, 1] + self.sim.params['k'] *
                               (q[t, 2] - q[t, 1] - self.sim.params['d'])))

            # Complementarity constraints. Start with relaxed version and start constraining.
            prog.AddConstraint(alpha[t, 0] * beta[t, 0] <= tol)
            prog.AddConstraint(alpha[t, 1] * beta[t, 1] <= tol)

            # Add Input Constraints and Contact Constraints
            prog.AddConstraint(le(contact[t], self.contact_max))
            prog.AddConstraint(ge(contact[t], -self.contact_max))
            prog.AddConstraint(le(u[t], self.input_max))
            prog.AddConstraint(ge(u[t], -self.input_max))

            # Add Costs
            prog.AddCost(u[t].dot(u[t]))

        # Set Initial Guess as empty. Otherwise, start from last solver iteration.
        if (type(initial_guess) == type(None)):
            initial_guess = np.empty(prog.num_vars())

            # Populate initial guess by linearly interpolating between initial
            # and final states
            #qinit = np.linspace(x[0:3], xd[0:3], self.T + 1)
            qinit = np.tile(np.array(x[0:3]), (self.T + 1, 1))
            vinit = np.tile(np.array(x[3:6]), (self.T + 1, 1))
            uinit = np.tile(np.array([0, 0]), (self.T, 1))
            finit = np.tile(np.array([0, 0]), (self.T, 1))

            prog.SetDecisionVariableValueInVector(q, qinit, initial_guess)
            prog.SetDecisionVariableValueInVector(v, vinit, initial_guess)
            prog.SetDecisionVariableValueInVector(u, uinit, initial_guess)
            prog.SetDecisionVariableValueInVector(contact, finit,
                                                  initial_guess)

        # Solve the program
        if (self.solver == "ipopt"):
            solver = IpoptSolver()
        elif (self.solver == "snopt"):
            solver = SnoptSolver()

        result = solver.Solve(prog, initial_guess)

        if (self.solver == "ipopt"):
            print("Ipopt Solver Status: ",
                  result.get_solver_details().status, ", meaning ",
                  result.get_solver_details().ConvertStatusToString())
        elif (self.solver == "snopt"):
            val = result.get_solver_details().info
            status = self.snopt_status(val)
            print("Snopt Solver Status: ",
                  result.get_solver_details().info, ", meaning ", status)

        sol = result.GetSolution()
        q_opt = result.GetSolution(q)
        v_opt = result.GetSolution(v)
        u_opt = result.GetSolution(u)
        f_opt = result.GetSolution(contact)

        return sol, q_opt, v_opt, u_opt, f_opt