def test_ipopt_solver_deprecated(self): # This serves as the (only) unit test coverage for the deprecated # SolverBase method that writes the solution back into the program. prog, x, x_expected = self._make_prog() solver = IpoptSolver() with catch_drake_warnings(expected_count=2): result = solver.Solve(prog) solution = prog.GetSolution(x) self.assertEqual(result, mp.SolutionResult.kSolutionFound) self.assertTrue(np.allclose(solution, x_expected))
def test_ipopt_solver_deprecated(self): # This serves as the (only) unit test coverage for the deprecated # SolverBase method that writes the solution back into the program. prog, x, x_expected = self._make_prog() solver = IpoptSolver() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always', DrakeDeprecationWarning) result = solver.Solve(prog) solution = prog.GetSolution(x) self.assertEqual(len(w), 2) self.assertEqual(result, mp.SolutionResult.kSolutionFound) self.assertTrue(np.allclose(solution, x_expected))
def test_ipopt_solver(self): prog, x, x_expected = self._make_prog() solver = IpoptSolver() self.assertTrue(solver.available()) self.assertEqual(solver.solver_id().name(), "IPOPT") self.assertEqual(solver.SolverName(), "IPOPT") self.assertEqual(solver.solver_type(), mp.SolverType.kIpopt) result = solver.Solve(prog, None, None) self.assertTrue(result.is_success()) self.assertTrue(np.allclose(result.GetSolution(x), x_expected))
def test_ipopt_solver(self): prog, x, x_expected = self._make_prog() solver = IpoptSolver() self.assertEqual(solver.solver_id(), IpoptSolver.id()) self.assertTrue(solver.available()) self.assertTrue(solver.enabled()) self.assertEqual(solver.solver_id().name(), "IPOPT") self.assertEqual(solver.SolverName(), "IPOPT") self.assertEqual(solver.solver_type(), mp.SolverType.kIpopt) result = solver.Solve(prog, None, None) self.assertTrue(result.is_success()) self.assertTrue(np.allclose(result.GetSolution(x), x_expected)) self.assertEqual(result.get_solver_details().status, 0) self.assertEqual(result.get_solver_details().ConvertStatusToString(), "Success") np.testing.assert_allclose(result.get_solver_details().z_L, np.array([1., 1.])) np.testing.assert_allclose(result.get_solver_details().z_U, np.array([0., 0.])) np.testing.assert_allclose(result.get_solver_details().g, np.array([])) np.testing.assert_allclose(result.get_solver_details().lambda_val, np.array([]))
def test_two_boxes(self): # test with 2 boxes. masses = [1., 2] box_sizes = [np.array([0.1, 0.1, 0.1]), np.array([0.1, 0.1, 0.2])] plant, scene_graph, diagram, boxes, ground_geometry_id,\ boxes_geometry_id = construct_environment( masses, box_sizes) diagram_context = diagram.CreateDefaultContext() plant_context = diagram.GetMutableSubsystemContext( plant, diagram_context) # Ignore the collision between box-box, since currently Drake doesn't # support box-box collision with AutoDiffXd. ignored_collision_pairs = set() for i in range(len(boxes_geometry_id)): ignored_collision_pairs.add( tuple((ground_geometry_id, boxes_geometry_id[i]))) for j in range(i + 1, len(boxes_geometry_id)): ignored_collision_pairs.add( tuple((boxes_geometry_id[i], boxes_geometry_id[j]))) dut = StaticEquilibriumProblem(plant, plant_context, ignored_collision_pairs) # Add the constraint that the quaternion should have unit length. ik.AddUnitQuaternionConstraintOnPlant(plant, dut.q_vars(), dut.get_mutable_prog()) for i in range(len(boxes)): box_quaternion_start = 7 * i box_quat, box_xyz = split_se3( dut.q_vars()[box_quaternion_start:box_quaternion_start + 7]) dut.get_mutable_prog().SetInitialGuess( box_quat, np.array([0.5, 0.5, 0.5, 0.5])) dut.get_mutable_prog().SetInitialGuess( box_xyz, np.array([0, 0, 0.3 + 0.2 * i])) dut.UpdateComplementarityTolerance(0.001) ipopt_solver = IpoptSolver() result = ipopt_solver.Solve(dut.prog()) self.assertTrue(result.is_success())
def test_ipopt_solver(self): prog = mp.MathematicalProgram() x = prog.NewContinuousVariables(2, "x") prog.AddLinearConstraint(x[0] >= 1) prog.AddLinearConstraint(x[1] >= 1) prog.AddQuadraticCost(np.eye(2), np.zeros(2), x) solver = IpoptSolver() self.assertTrue(solver.available()) self.assertEqual(solver.solver_id().name(), "IPOPT") self.assertEqual(solver.SolverName(), "IPOPT") self.assertEqual(solver.solver_type(), mp.SolverType.kIpopt) result = solver.Solve(prog) self.assertEqual(result, mp.SolutionResult.kSolutionFound) x_expected = np.array([1, 1]) self.assertTrue(np.allclose(prog.GetSolution(x), x_expected))
def unavailable(self): """Per the BUILD file, this test is only run when IPOPT is disabled.""" solver = IpoptSolver() self.assertFalse(solver.available())
def test_Feedback_Linearization_controller_BS(x, t): # Output feedback linearization 2 # # y1= ||r-rf||^2/2 # y2= wx # y3= wy # y4= wz # # Analysis: The zero dynamics is unstable. global g, xf, Aout, Bout, Mout, T_period, w_freq, radius print("%%%%%%%%%%%%%%%%%%%%%") print("%%CLF-QP %%%%%%%%%%%") print("%%%%%%%%%%%%%%%%%%%%%") print("t:", t) prog = MathematicalProgram() u_var = prog.NewContinuousVariables(4, "u_var") c_var = prog.NewContinuousVariables(1, "c_var") # # # Example 1 : Circle x_f = radius * math.cos(w_freq * t) y_f = radius * math.sin(w_freq * t) # print("x_f:",x_f) # print("y_f:",y_f) dx_f = -radius * math.pow(w_freq, 1) * math.sin(w_freq * t) dy_f = radius * math.pow(w_freq, 1) * math.cos(w_freq * t) ddx_f = -radius * math.pow(w_freq, 2) * math.cos(w_freq * t) ddy_f = -radius * math.pow(w_freq, 2) * math.sin(w_freq * t) dddx_f = radius * math.pow(w_freq, 3) * math.sin(w_freq * t) dddy_f = -radius * math.pow(w_freq, 3) * math.cos(w_freq * t) ddddx_f = radius * math.pow(w_freq, 4) * math.cos(w_freq * t) ddddy_f = radius * math.pow(w_freq, 4) * math.sin(w_freq * t) # # Example 2 : Lissajous curve a=1 b=2 # ratio_ab=2; # a=1; # b=ratio_ab*a; # delta_lissajous = 0 #math.pi/2; # x_f = radius*math.sin(a*w_freq*t+delta_lissajous) # y_f = radius*math.sin(b*w_freq*t) # # print("x_f:",x_f) # # print("y_f:",y_f) # dx_f = radius*math.pow(a*w_freq,1)*math.cos(a*w_freq*t+delta_lissajous) # dy_f = radius*math.pow(b*w_freq,1)*math.cos(b*w_freq*t) # ddx_f = -radius*math.pow(a*w_freq,2)*math.sin(a*w_freq*t+delta_lissajous) # ddy_f = -radius*math.pow(b*w_freq,2)*math.sin(b*w_freq*t) # dddx_f = -radius*math.pow(a*w_freq,3)*math.cos(a*w_freq*t+delta_lissajous) # dddy_f = -radius*math.pow(b*w_freq,3)*math.cos(b*w_freq*t) # ddddx_f = radius*math.pow(a*w_freq,4)*math.sin(a*w_freq*t+delta_lissajous) # ddddy_f = radius*math.pow(b*w_freq,4)*math.sin(b*w_freq*t) e1 = np.array([1, 0, 0]) # e3 elementary vector e2 = np.array([0, 1, 0]) # e3 elementary vector e3 = np.array([0, 0, 1]) # e3 elementary vector # epsilonn= 1e-0 # alpha = 100; # kp1234=alpha*1/math.pow(epsilonn,4) # gain for y # kd1=4/math.pow(epsilonn,3) # gain for y^(1) # kd2=12/math.pow(epsilonn,2) # gain for y^(2) # kd3=4/math.pow(epsilonn,1) # gain for y^(3) # kp5= 10; # gain for y5 q = np.zeros(7) qd = np.zeros(6) q = x[0:8] qd = x[8:15] print("qnorm:", np.dot(q[3:7], q[3:7])) q0 = q[3] q1 = q[4] q2 = q[5] q3 = q[6] xi1 = q[7] v = qd[0:3] w = qd[3:6] xi2 = qd[6] xd = xf[0] yd = xf[1] zd = xf[2] wd = xf[11:14] # Useful vectors and matrices (Rq, Eq, wIw, I_inv) = robobee_plantBS.GetManipulatorDynamics(q, qd) F1q = np.zeros((3, 4)) F1q[0, :] = np.array([q2, q3, q0, q1]) F1q[1, :] = np.array([-1 * q1, -1 * q0, q3, q2]) F1q[2, :] = np.array([q0, -1 * q1, -1 * q2, q3]) Rqe3 = np.dot(Rq, e3) Rqe3_hat = np.zeros((3, 3)) Rqe3_hat[0, :] = np.array([0, -Rqe3[2], Rqe3[1]]) Rqe3_hat[1, :] = np.array([Rqe3[2], 0, -Rqe3[0]]) Rqe3_hat[2, :] = np.array([-Rqe3[1], Rqe3[0], 0]) Rqe1 = np.dot(Rq, e1) Rqe1_hat = np.zeros((3, 3)) Rqe1_hat[0, :] = np.array([0, -Rqe1[2], Rqe1[1]]) Rqe1_hat[1, :] = np.array([Rqe1[2], 0, -Rqe1[0]]) Rqe1_hat[2, :] = np.array([-Rqe1[1], Rqe1[0], 0]) Rqe1_x = np.dot(e2.T, Rqe1) Rqe1_y = np.dot(e1.T, Rqe1) w_hat = np.zeros((3, 3)) w_hat[0, :] = np.array([0, -w[2], w[1]]) w_hat[1, :] = np.array([w[2], 0, -w[0]]) w_hat[2, :] = np.array([-w[1], w[0], 0]) Rw = np.dot(Rq, w) Rw_hat = np.zeros((3, 3)) Rw_hat[0, :] = np.array([0, -Rw[2], Rw[1]]) Rw_hat[1, :] = np.array([Rw[2], 0, -Rw[0]]) Rw_hat[2, :] = np.array([-Rw[1], Rw[0], 0]) #- Checking the derivation # print("F1qEqT-(-Rqe3_hat)",np.dot(F1q,Eq.T)-(-Rqe3_hat)) # Rqe3_cal = np.zeros(3) # Rqe3_cal[0] = 2*(q3*q1+q0*q2) # Rqe3_cal[1] = 2*(q3*q2-q0*q1) # Rqe3_cal[2] = (q0*q0+q3*q3-q1*q1-q2*q2) # print("Rqe3 - Rqe3_cal", Rqe3-Rqe3_cal) # Four output y1 = x[0] - x_f y2 = x[1] - y_f y3 = x[2] - zd - 0 y4 = math.atan2(Rqe1_x, Rqe1_y) - math.pi / 8 # print("Rqe1_x:", Rqe1_x) eta1 = np.zeros(3) eta1 = np.array([y1, y2, y3]) eta5 = y4 # print("y4", y4) # First derivative of first three output and yaw output eta2 = np.zeros(3) eta2 = v - np.array([dx_f, dy_f, 0]) dy1 = eta2[0] dy2 = eta2[1] dy3 = eta2[2] x2y2 = (math.pow(Rqe1_x, 2) + math.pow(Rqe1_y, 2)) # x^2+y^2 eta6_temp = np.zeros(3) #eta6_temp = (ye2T-xe1T)/(x^2+y^2) eta6_temp = (Rqe1_y * e2.T - Rqe1_x * e1.T) / x2y2 # print("eta6_temp:", eta6_temp) # Body frame w ( multiply R) eta6 = np.dot(eta6_temp, np.dot(-Rqe1_hat, np.dot(Rq, w))) # World frame w # eta6 = np.dot(eta6_temp,np.dot(-Rqe1_hat,w)) # print("Rqe1_hat:", Rqe1_hat) # Second derivative of first three output eta3 = np.zeros(3) eta3 = -g * e3 + Rqe3 * xi1 - np.array([ddx_f, ddy_f, 0]) ddy1 = eta3[0] ddy2 = eta3[1] ddy3 = eta3[2] # Third derivative of first three output eta4 = np.zeros(3) # Body frame w ( multiply R) eta4 = Rqe3 * xi2 + np.dot(-Rqe3_hat, np.dot(Rq, w)) * xi1 - np.array( [dddx_f, dddy_f, 0]) # World frame w # eta4 = Rqe3*xi2+np.dot(np.dot(F1q,Eq.T),w)*xi1 - np.array([dddx_f,dddy_f,0]) dddy1 = eta4[0] dddy2 = eta4[1] dddy3 = eta4[2] # Fourth derivative of first three output B_qw_temp = np.zeros(3) # Body frame w B_qw_temp = xi1 * (-np.dot(Rw_hat, np.dot(Rqe3_hat, Rw)) + np.dot(Rqe3_hat, np.dot(Rq, np.dot(I_inv, wIw))) ) # np.dot(I_inv,wIw)*xi1-2*w*xi2 B_qw = B_qw_temp + xi2 * (-2 * np.dot(Rqe3_hat, Rw)) - np.array( [ddddx_f, ddddy_f, 0]) #np.dot(Rqe3_hat,B_qw_temp) # World frame w # B_qw_temp = xi1*(-np.dot(w_hat,np.dot(Rqe3_hat,w))+np.dot(Rqe3_hat,np.dot(I_inv,wIw))) # np.dot(I_inv,wIw)*xi1-2*w*xi2 # B_qw = B_qw_temp+xi2*(-2*np.dot(Rqe3_hat,w)) - np.array([ddddx_f,ddddy_f,0]) #np.dot(Rqe3_hat,B_qw_temp) # B_qw = B_qw_temp - np.dot(w_hat,np.dot(Rqe3_hat,w))*xi1 # Second derivative of yaw output # Body frame w dRqe1_x = np.dot(e2, np.dot(-Rqe1_hat, Rw)) # \dot{x} dRqe1_y = np.dot(e1, np.dot(-Rqe1_hat, Rw)) # \dot{y} alpha1 = 2 * (Rqe1_x * dRqe1_x + Rqe1_y * dRqe1_y) / x2y2 # (2xdx +2ydy)/(x^2+y^2) # World frame w # dRqe1_x = np.dot(e2,np.dot(-Rqe1_hat,w)) # \dot{x} # dRqe1_y = np.dot(e1,np.dot(-Rqe1_hat,w)) # \dot{y} # alpha1 = 2*(Rqe1_x*dRqe1_x+Rqe1_y*dRqe1_y)/x2y2 # (2xdx +2ydy)/(x^2+y^2) # # alpha2 = math.pow(dRqe1_y,2)-math.pow(dRqe1_x,2) # Body frame w B_yaw_temp3 = np.zeros(3) B_yaw_temp3 = alpha1 * np.dot(Rqe1_hat, Rw) + np.dot( Rqe1_hat, np.dot(Rq, np.dot(I_inv, wIw))) - np.dot( Rw_hat, np.dot(Rqe1_hat, Rw)) B_yaw = np.dot(eta6_temp, B_yaw_temp3) # +alpha2 :Could be an error in math. g_yaw = np.zeros(3) g_yaw = -np.dot(eta6_temp, np.dot(Rqe1_hat, np.dot(Rq, I_inv))) # World frame w # B_yaw_temp3 =np.zeros(3) # B_yaw_temp3 = alpha1*np.dot(Rqe1_hat,w)+np.dot(Rqe1_hat,np.dot(I_inv,wIw))-np.dot(w_hat,np.dot(Rqe1_hat,w)) # B_yaw = np.dot(eta6_temp,B_yaw_temp3) # +alpha2 :Could be an error in math. # g_yaw = np.zeros(3) # g_yaw = -np.dot(eta6_temp,np.dot(Rqe1_hat,I_inv)) # print("g_yaw:", g_yaw) # Decoupling matrix A(x)\in\mathbb{R}^4 A_fl = np.zeros((4, 4)) A_fl[0:3, 0] = Rqe3 # Body frame w A_fl[0:3, 1:4] = -np.dot(Rqe3_hat, np.dot(Rq, I_inv)) * xi1 # World frame w # A_fl[0:3,1:4] = -np.dot(Rqe3_hat,I_inv)*xi1 A_fl[3, 1:4] = g_yaw A_fl_inv = np.linalg.inv(A_fl) A_fl_det = np.linalg.det(A_fl) # print("I_inv:", I_inv) print("A_fl:", A_fl) print("A_fl_det:", A_fl_det) # Drift in the output dynamics U_temp = np.zeros(4) U_temp[0:3] = B_qw U_temp[3] = B_yaw # Output dyamics eta = np.hstack([eta1, eta2, eta3, eta5, eta4, eta6]) eta_norm = np.dot(eta, eta) # v-CLF QP controller FP_PF = np.dot(Aout.T, Mout) + np.dot(Mout, Aout) PG = np.dot(Mout, Bout) L_FVx = np.dot(eta, np.dot(FP_PF, eta)) L_GVx = 2 * np.dot(eta.T, PG) # row vector L_fhx_star = U_temp Vx = np.dot(eta, np.dot(Mout, eta)) # phi0_exp = L_FVx+np.dot(L_GVx,L_fhx_star)+(min_e_Q/max_e_P)*Vx*1 # exponentially stabilizing # phi0_exp = L_FVx+np.dot(L_GVx,L_fhx_star)+min_e_Q*eta_norm # more exact bound - exponentially stabilizing phi0_exp = L_FVx + np.dot( L_GVx, L_fhx_star) # more exact bound - exponentially stabilizing phi1_decouple = np.dot(L_GVx, A_fl) # # Solve QP v_var = np.dot(A_fl, u_var) + L_fhx_star Quadratic_Positive_def = np.matmul(A_fl.T, A_fl) QP_det = np.linalg.det(Quadratic_Positive_def) c_QP = 2 * np.dot(L_fhx_star.T, A_fl) c_QP_extned = np.hstack([c_QP, -1]) u_var_extended = np.hstack([u_var, c_var]) # CLF_QP_cost_v = np.dot(v_var,v_var) // Exact quadratic cost CLF_QP_cost_v_effective = np.dot( u_var, np.dot(Quadratic_Positive_def, u_var)) + np.dot( c_QP, u_var) - c_var[0] # Quadratic cost without constant term # CLF_QP_cost_u = np.dot(u_var,u_var) phi1 = np.dot(phi1_decouple, u_var) + c_var[0] * eta_norm #----Printing intermediate states # print("L_fhx_star: ",L_fhx_star) # print("c_QP:", c_QP) # print("Qp : ",Quadratic_Positive_def) # print("Qp det: ", QP_det) # print("c_QP", c_QP) # print("phi0_exp: ", phi0_exp) # print("PG:", PG) # print("L_GVx:", L_GVx) # print("eta6", eta6) # print("d : ", phi1_decouple) # print("Cost expression:", CLF_QP_cost_v) #print("Const expression:", phi0_exp+phi1) #----Different solver option // Gurobi did not work with python at this point (some binding issue 8/8/2018) solver = IpoptSolver() # solver = GurobiSolver() # print solver.available() # assert(solver.available()==True) # assertEqual(solver.solver_type(), mp.SolverType.kGurobi) # solver.Solve(prog) # assertEqual(result, mp.SolutionResult.kSolutionFound) # mp.AddLinearConstraint() # print("x:", x) # print("phi_0_exp:", phi0_exp) # print("phi1_decouple:", phi1_decouple) # print("eta1:", eta1) # print("eta2:", eta2) # print("eta3:", eta3) # print("eta4:", eta4) # print("eta5:", eta5) # print("eta6:", eta6) # Output Feedback Linearization controller mu = np.zeros(4) k = np.zeros((4, 14)) k = np.matmul(Bout.T, Mout) k = np.matmul(np.linalg.inv(R), k) mu = -1 / 1 * np.matmul(k, eta) v = -U_temp + mu U_fl = np.matmul( A_fl_inv, v ) # Output Feedback controller to comare the result with CLF-QP solver # Set up the QP problem prog.AddQuadraticCost(CLF_QP_cost_v_effective) prog.AddConstraint(phi0_exp + phi1 <= 0) prog.AddConstraint(c_var[0] >= 0) prog.AddConstraint(c_var[0] <= 100) prog.AddConstraint(u_var[0] <= 30) prog.SetSolverOption(mp.SolverType.kIpopt, "print_level", 5) # CAUTION: Assuming that solver used Ipopt print("CLF value:", Vx) # Current CLF value prog.SetInitialGuess(u_var, U_fl) prog.Solve() # Solve with default osqp # solver.Solve(prog) print("Optimal u : ", prog.GetSolution(u_var)) U_CLF_QP = prog.GetSolution(u_var) C_CLF_QP = prog.GetSolution(c_var) #---- Printing for debugging # dx = robobee_plantBS.evaluate_f(U_fl,x) # print("dx", dx) # print("\n######################") # # print("qe3:", A_fl[0,0]) # print("u:", u) # print("\n####################33") # deta4 = B_qw+Rqe3*U_fl_zero[0]+np.matmul(-np.matmul(Rqe3_hat,I_inv),U_fl_zero[1:4])*xi1 # deta6 = B_yaw+np.dot(g_yaw,U_fl_zero[1:4]) # print("deta4:",deta4) # print("deta6:",deta6) print(C_CLF_QP) phi1_opt = np.dot(phi1_decouple, U_CLF_QP) + C_CLF_QP * eta_norm phi1_opt_FL = np.dot(phi1_decouple, U_fl) print("FL u: ", U_fl) print("CLF u:", U_CLF_QP) print("Cost FL: ", np.dot(mu, mu)) v_CLF = np.dot(A_fl, U_CLF_QP) + L_fhx_star print("Cost CLF: ", np.dot(v_CLF, v_CLF)) print("Constraint FL : ", phi0_exp + phi1_opt_FL) print("Constraint CLF : ", phi0_exp + phi1_opt) u = U_CLF_QP print("eigenvalues minQ maxP:", [min_e_Q, max_e_P]) return u
d = np.array([5.0752e+01, 4.7343e+05, 8.4125e+05, 6.2668e+05]) phi0 = -36332.36234347365 print("Qp : ", Quadratic_Positive_def) print("Qp det: ", QP_det) # Quadratic cost : u^TQu + c^Tu CLF_QP_cost_v_effective = np.dot(u_var, np.dot(Quadratic_Positive_def, u_var)) + np.dot(c, u_var) prog.AddQuadraticCost(CLF_QP_cost_v_effective) prog.AddConstraint(np.dot(d, u_var) + phi0 <= 0) solver = IpoptSolver() prog.Solve() # solver.Solve(prog) print("Optimal u : ", prog.GetSolution(u_var)) u_CLF_QP = prog.GetSolution(u_var) # ('A_fl:', ) # ('A_fl_det:', 137180180557.17741) # ('Qp : ', array([[ 1.0000e+00, -1.5475e-13, 4.0035e-14, 3.7932e-15], # [-1.5475e-13, 5.7298e+07, 2.1803e+05, -3.3461e+06], # [ 4.0035e-14, 2.1803e+05, 6.2061e+07, 3.5442e+07], # [ 3.7932e-15, -3.3461e+06, 3.5442e+07, 2.5742e+07]])) # ('Qp det: ', 1.8818401937699662e+22) # ('c_QP', array([-8.3592e+00, -8.3708e+06, -5.1451e+05, 2.0752e+05])) # ('phi0_exp: ', -36332.36234347365)
# prog.AddConstraint(eq(x[1,n+1], x[1,n] + dt*dx[1,n])) # prog.AddConstraint(eq(x[2,n+1], x[2,n] + dt*dx[2,n])) prog.AddBoundingBoxConstraint([-f*m*g]*2, [f*m*g]*2, u[:,n]) prog.AddBoundingBoxConstraint(-5, 5, x[0,n]) prog.AddBoundingBoxConstraint(-5, 5, x[1,n]) prog.AddBoundingBoxConstraint(-np.pi, np.pi, x[2,n]) xf = [0., 0., 0.] prog.AddBoundingBoxConstraint(xf, xf, x[:, N-1]) uf = [m*g/2, m*g/2] prog.AddBoundingBoxConstraint(uf, uf, u[:, N-1]) x1 = [0]*3 prog.AddBoundingBoxConstraint(x1, x1, dx[:, N-1]) solver = IpoptSolver() result = solver.Solve(prog) # result = Solve(prog) x_sol = result.GetSolution(x) dx_sol = result.GetSolution(dx) u_sol = result.GetSolution(u) assert(result.is_success()), "Optimization failed" time = np.linspace(0, T, N) # print(len(time)) plt.figure() plt.subplot(311) plt.plot(time, x_sol[0,:], 'r', label='x') plt.plot(time, x_sol[1,:], 'g', label='y') plt.plot(time, x_sol[2,:], 'b', label='theta')
def compute_input(self, x, xd, initial_guess=None): prog = MathematicalProgram() # Joint configuration states & Contact forces q = prog.NewContinuousVariables(rows=self.T + 1, cols=self.nq, name='q') v = prog.NewContinuousVariables(rows=self.T + 1, cols=self.nq, name='v') u = prog.NewContinuousVariables(rows=self.T, cols=self.nu, name='u') contact = prog.NewContinuousVariables(rows=self.T, cols=self.nf, name='lambda1') z = prog.NewBinaryVariables(rows=self.T, cols=self.nf, name='z') # Add Initial Condition Constraint prog.AddConstraint(eq(q[0], np.array(x[0:3]))) prog.AddConstraint(eq(v[0], np.array(x[3:6]))) # Add Final Condition Constraint prog.AddConstraint(eq(q[self.T], np.array(xd[0:3]))) prog.AddConstraint(eq(v[self.T], np.array(xd[3:6]))) prog.AddConstraint(z[0, 0] == 0) prog.AddConstraint(z[0, 1] == 0) # Add Dynamics Constraints for t in range(self.T): # Add Dynamics Constraints prog.AddConstraint( eq(q[t + 1], (q[t] + self.sim.params['h'] * v[t + 1]))) prog.AddConstraint(v[t + 1, 0] == ( v[t, 0] + self.sim.params['h'] * (-self.sim.params['c'] * v[t, 0] - contact[t, 0] + u[t, 0]))) prog.AddConstraint(v[t + 1, 1] == (v[t, 1] + self.sim.params['h'] * (-self.sim.params['c'] * v[t, 1] + contact[t, 0] - contact[t, 1]))) prog.AddConstraint(v[t + 1, 2] == ( v[t, 2] + self.sim.params['h'] * (-self.sim.params['c'] * v[t, 2] + contact[t, 1] + u[t, 1]))) # Add Contact Constraints with big M = self.contact prog.AddConstraint(ge(contact[t], 0)) prog.AddConstraint(contact[t, 0] + self.sim.params['k'] * (q[t, 1] - q[t, 0] - self.sim.params['d']) >= 0) prog.AddConstraint(contact[t, 1] + self.sim.params['k'] * (q[t, 2] - q[t, 1] - self.sim.params['d']) >= 0) # Mixed Integer Constraints M = self.contact_max prog.AddConstraint(contact[t, 0] <= M) prog.AddConstraint(contact[t, 1] <= M) prog.AddConstraint(contact[t, 0] <= M * z[t, 0]) prog.AddConstraint(contact[t, 1] <= M * z[t, 1]) prog.AddConstraint( contact[t, 0] + self.sim.params['k'] * (q[t, 1] - q[t, 0] - self.sim.params['d']) <= M * (1 - z[t, 0])) prog.AddConstraint( contact[t, 1] + self.sim.params['k'] * (q[t, 2] - q[t, 1] - self.sim.params['d']) <= M * (1 - z[t, 1])) prog.AddConstraint(z[t, 0] + z[t, 1] == 1) # Add Input Constraints. Contact Constraints already enforced in big-M # prog.AddConstraint(le(u[t], self.input_max)) # prog.AddConstraint(ge(u[t], -self.input_max)) # Add Costs prog.AddCost(u[t].dot(u[t])) # Set Initial Guess as empty. Otherwise, start from last solver iteration. if (type(initial_guess) == type(None)): initial_guess = np.empty(prog.num_vars()) # Populate initial guess by linearly interpolating between initial # and final states #qinit = np.linspace(x[0:3], xd[0:3], self.T + 1) qinit = np.tile(np.array(x[0:3]), (self.T + 1, 1)) vinit = np.tile(np.array(x[3:6]), (self.T + 1, 1)) uinit = np.tile(np.array([0, 0]), (self.T, 1)) finit = np.tile(np.array([0, 0]), (self.T, 1)) prog.SetDecisionVariableValueInVector(q, qinit, initial_guess) prog.SetDecisionVariableValueInVector(v, vinit, initial_guess) prog.SetDecisionVariableValueInVector(u, uinit, initial_guess) prog.SetDecisionVariableValueInVector(contact, finit, initial_guess) # Solve the program if (self.solver == "ipopt"): solver_id = IpoptSolver().solver_id() elif (self.solver == "snopt"): solver_id = SnoptSolver().solver_id() elif (self.solver == "osqp"): solver_id = OsqpSolver().solver_id() elif (self.solver == "mosek"): solver_id = MosekSolver().solver_id() elif (self.solver == "gurobi"): solver_id = GurobiSolver().solver_id() solver = MixedIntegerBranchAndBound(prog, solver_id) #result = solver.Solve(prog, initial_guess) result = solver.Solve() if result != result.kSolutionFound: raise ValueError('Infeasible optimization problem') sol = result.GetSolution() q_opt = result.GetSolution(q) v_opt = result.GetSolution(v) u_opt = result.GetSolution(u) f_opt = result.GetSolution(contact) return sol, q_opt, v_opt, u_opt, f_opt
def compute_input(self, x, xd, initial_guess=None, tol=0.0): prog = MathematicalProgram() # Joint configuration states & Contact forces q = prog.NewContinuousVariables(rows=self.T + 1, cols=self.nq, name='q') v = prog.NewContinuousVariables(rows=self.T + 1, cols=self.nq, name='v') u = prog.NewContinuousVariables(rows=self.T, cols=self.nu, name='u') contact = prog.NewContinuousVariables(rows=self.T, cols=self.nf, name='lambda') # alpha = prog.NewContinuousVariables(rows=self.T, cols=2, name='alpha') beta = prog.NewContinuousVariables(rows=self.T, cols=2, name='beta') # Add Initial Condition Constraint prog.AddConstraint(eq(q[0], np.array(x[0:3]))) prog.AddConstraint(eq(v[0], np.array(x[3:6]))) # Add Final Condition Constraint prog.AddConstraint(eq(q[self.T], np.array(xd[0:3]))) prog.AddConstraint(eq(v[self.T], np.array(xd[3:6]))) # Add Dynamics Constraints for t in range(self.T): # Add Dynamics Constraints prog.AddConstraint( eq(q[t + 1], (q[t] + self.sim.params['h'] * v[t + 1]))) prog.AddConstraint(v[t + 1, 0] == ( v[t, 0] + self.sim.params['h'] * (-self.sim.params['c'] * v[t, 0] - contact[t, 0] + u[t, 0]))) prog.AddConstraint(v[t + 1, 1] == (v[t, 1] + self.sim.params['h'] * (-self.sim.params['c'] * v[t, 1] + contact[t, 0] - contact[t, 1]))) prog.AddConstraint(v[t + 1, 2] == ( v[t, 2] + self.sim.params['h'] * (-self.sim.params['c'] * v[t, 2] + contact[t, 1] + u[t, 1]))) # Add Contact Constraints prog.AddConstraint(ge(alpha[t], 0)) prog.AddConstraint(ge(beta[t], 0)) prog.AddConstraint(alpha[t, 0] == contact[t, 0]) prog.AddConstraint(alpha[t, 1] == contact[t, 1]) prog.AddConstraint( beta[t, 0] == (contact[t, 0] + self.sim.params['k'] * (q[t, 1] - q[t, 0] - self.sim.params['d']))) prog.AddConstraint( beta[t, 1] == (contact[t, 1] + self.sim.params['k'] * (q[t, 2] - q[t, 1] - self.sim.params['d']))) # Complementarity constraints. Start with relaxed version and start constraining. prog.AddConstraint(alpha[t, 0] * beta[t, 0] <= tol) prog.AddConstraint(alpha[t, 1] * beta[t, 1] <= tol) # Add Input Constraints and Contact Constraints prog.AddConstraint(le(contact[t], self.contact_max)) prog.AddConstraint(ge(contact[t], -self.contact_max)) prog.AddConstraint(le(u[t], self.input_max)) prog.AddConstraint(ge(u[t], -self.input_max)) # Add Costs prog.AddCost(u[t].dot(u[t])) # Set Initial Guess as empty. Otherwise, start from last solver iteration. if (type(initial_guess) == type(None)): initial_guess = np.empty(prog.num_vars()) # Populate initial guess by linearly interpolating between initial # and final states #qinit = np.linspace(x[0:3], xd[0:3], self.T + 1) qinit = np.tile(np.array(x[0:3]), (self.T + 1, 1)) vinit = np.tile(np.array(x[3:6]), (self.T + 1, 1)) uinit = np.tile(np.array([0, 0]), (self.T, 1)) finit = np.tile(np.array([0, 0]), (self.T, 1)) prog.SetDecisionVariableValueInVector(q, qinit, initial_guess) prog.SetDecisionVariableValueInVector(v, vinit, initial_guess) prog.SetDecisionVariableValueInVector(u, uinit, initial_guess) prog.SetDecisionVariableValueInVector(contact, finit, initial_guess) # Solve the program if (self.solver == "ipopt"): solver = IpoptSolver() elif (self.solver == "snopt"): solver = SnoptSolver() result = solver.Solve(prog, initial_guess) if (self.solver == "ipopt"): print("Ipopt Solver Status: ", result.get_solver_details().status, ", meaning ", result.get_solver_details().ConvertStatusToString()) elif (self.solver == "snopt"): val = result.get_solver_details().info status = self.snopt_status(val) print("Snopt Solver Status: ", result.get_solver_details().info, ", meaning ", status) sol = result.GetSolution() q_opt = result.GetSolution(q) v_opt = result.GetSolution(v) u_opt = result.GetSolution(u) f_opt = result.GetSolution(contact) return sol, q_opt, v_opt, u_opt, f_opt