def test_ntf_butt_bp8_vs_legacy(self):
     # Compute q0 in two ways
     ir = impulse_response(self.hz, db=80)
     ntf1 = ntf_fir_weighting(self.order, self.hz, show_progress=False)
     q0 = q0_from_filter_ir(self.order, ir)
     ntf2 = ntf_fir_from_q0(q0, show_progress=False)
     mf1 = quantization_noise_gain(ntf1, self.hz)
     mf2 = quantization_noise_gain(ntf2, self.hz)
     np.testing.assert_allclose(mf2, mf1, rtol=1e-7)
     mf3 = quantization_noise_gain_by_conv(ntf1, self.hz)
     np.testing.assert_allclose(mf3, mf1, rtol=5e-6)
 def test_ntf_butt_bp8_vs_legacy(self):
     # Compute q0 in two ways
     ir = impulse_response(self.hz, db=80)
     ntf1 = ntf_fir_weighting(self.order, self.hz, show_progress=False)
     q0 = q0_from_filter_ir(self.order, ir)
     ntf2 = ntf_fir_from_q0(q0, show_progress=False)
     mf1 = quantization_noise_gain(ntf1, self.hz)
     mf2 = quantization_noise_gain(ntf2, self.hz)
     np.testing.assert_allclose(mf2, mf1, rtol=1e-7)
     mf3 = quantization_noise_gain_by_conv(ntf1, self.hz)
     np.testing.assert_allclose(mf3, mf1, rtol=5e-6)
示例#3
0
plt.xlim(xmax=10**fmax_log10)
plt.ylim(ymin=-50)
plt.xlabel('$f$ [Hz]')
plt.ylabel('[dB]')
plt.suptitle("Magnitude response of motor linearized model")
plt.legend()
plt.ion()
plt.show()
plt.ioff()

# Compute optimal and benchmark NTFs
hz0043_ir = impulse_response(hz0043)
hz02_ir = impulse_response(hz02)
hz06_ir = impulse_response(hz06)
q0_0043 = q0_from_filter_ir(P, hz0043_ir)
ntf0043 = ntf_fir_from_q0(q0_0043)
q0_02 = q0_from_filter_ir(P, hz02_ir)
ntf02 = ntf_fir_from_q0(q0_02)
q0_06 = q0_from_filter_ir(P, hz06_ir)
ntf06 = ntf_fir_from_q0(q0_06)
delsig_ntf = synthesizeNTF(DELSIG_P, OSR, 3, 1.5, 0)

# Plot the NTFs
nyz0043 = evalTF(ntf0043, np.exp(2j * np.pi * ff / fphi))
nyz02 = evalTF(ntf02, np.exp(2j * np.pi * ff / fphi))
nyz06 = evalTF(ntf06, np.exp(2j * np.pi * ff / fphi))
delsig_ny = evalTF(delsig_ntf, np.exp(2j * np.pi * ff / fphi))

plt.figure()
plt.semilogx(ff, dbv(np.abs(nyz0043)), 'b', label='opt @ $\sigma=0.043$')
plt.semilogx(ff, dbv(np.abs(nyz02)), 'r', label='opt @ $\sigma=0.2$')
示例#4
0
hz1_ab = sp.signal.zpk2tf(*hz1)
hz2_ab = sp.signal.zpk2tf(*hz2)
hz_ab_d = np.polymul(hz1_ab[1], hz2_ab[1])
hz_ab_n1 = np.polymul(hz1_ab[0], hz2_ab[1])
hz_ab_n2 = np.polymul(hz2_ab[0], hz1_ab[1])
hz_ab_n = np.polyadd(hz_ab_n1, hz_ab_n2)
hz = sp.signal.tf2zpk(hz_ab_n, hz_ab_d)

# Compute impulse response
print("...computing impulse response of filter")
hz_ir = impulse_response(hz, db=60)

# Compute the optimal NTF
print("... computing optimal NTF")
q0 = q0_from_filter_ir(order, hz_ir)
ntf_opti = ntf_fir_from_q0(q0, H_inf=H_inf)

# Determine freq values for which plots are created
fmin = 10**np.ceil(np.log10(10))
fmax = 10**np.floor(np.log10(fphi/2))
ff = np.logspace(np.log10(fmin), np.log10(fmax), 1000)

# Compute frequency response data
resp_filt = np.abs(evalTF(hz, np.exp(1j*2*np.pi*ff/fphi)))
resp_opti = np.abs(evalTF(ntf_opti, np.exp(1j*2*np.pi*ff/fphi)))

# Plot frequency response
plt.figure()
plt.semilogx(ff, dbv(resp_filt), 'b', label="Output filter")
plt.semilogx(ff, dbv(resp_opti), 'r', label="Optimal NTF")
plt.legend(loc="lower right")
示例#5
0
# Generate filter. Transfer function is normalized to be 0dB in pass band
# As an example, take cutoff freq at twice the top of the signal band to avoid
# attenuation when the input signal is close to it.
print("...generating filter")
# Care: in butter the cut of frequency is specified as a number from 0 to 1
# where 1 is fphi/2, not fphi
hz = sp.signal.butter(1, 2 * (2 * B) / fphi, btype='low')

# Compute impulse response
print("...computing impulse response of filter")
hz_ir = impulse_response(hz, db=60)

# Compute the optimal NTF
print("... computing optimal NTF")
q0 = q0_from_filter_ir(order, hz_ir)
ntf_opti = ntf_fir_from_q0(q0, H_inf=H_inf)

# Compute an NTF with DELSIG, for comparison
print("... computing delsig NTF")
ntf_delsig = synthesizeNTF(4, OSR, 3, H_inf, 0)

# Determine freq values for which plots are created
fmin = 10**np.ceil(np.log10(2 * B / OSR))
fmax = 10**np.floor(np.log10(fphi / 2))
ff = np.logspace(np.log10(fmin), np.log10(fmax), 1000)

# Compute frequency response data
resp_filt = np.abs(evalTF(hz, np.exp(1j * 2 * np.pi * ff / fphi)))
resp_opti = np.abs(evalTF(ntf_opti, np.exp(1j * 2 * np.pi * ff / fphi)))
resp_delsig = np.abs(evalTF(ntf_delsig, np.exp(1j * 2 * np.pi * ff / fphi)))
示例#6
0
plt.xlim(xmax=10**fmax_log10)
plt.ylim(ymin=-50)
plt.xlabel('$f$ [Hz]')
plt.ylabel('[dB]')
plt.suptitle("Magnitude response of motor linearized model")
plt.legend()
plt.ion()
plt.show()
plt.ioff()

# Compute optimal and benchmark NTFs
hz0043_ir = impulse_response(hz0043)
hz02_ir = impulse_response(hz02)
hz06_ir = impulse_response(hz06)
q0_0043 = q0_from_filter_ir(P, hz0043_ir)
ntf0043 = ntf_fir_from_q0(q0_0043)
q0_02 = q0_from_filter_ir(P, hz02_ir)
ntf02 = ntf_fir_from_q0(q0_02)
q0_06 = q0_from_filter_ir(P, hz06_ir)
ntf06 = ntf_fir_from_q0(q0_06)
delsig_ntf = synthesizeNTF(DELSIG_P, OSR, 3, 1.5, 0)

# Plot the NTFs
nyz0043 = evalTF(ntf0043, np.exp(2j*np.pi*ff/fphi))
nyz02 = evalTF(ntf02, np.exp(2j*np.pi*ff/fphi))
nyz06 = evalTF(ntf06, np.exp(2j*np.pi*ff/fphi))
delsig_ny = evalTF(delsig_ntf, np.exp(2j*np.pi*ff/fphi))

plt.figure()
plt.semilogx(ff, dbv(np.abs(nyz0043)), 'b',
             label='opt @ $\sigma=0.043$')