示例#1
0
文件: ptc.py 项目: nhaddad/pydtk
def ImageIter(imagelist, **kargs):
    """
    This is an iterator:
    giving a list containing the image names, it will
    return images one by one.
    Useful to process all the images, one at a time without
    needing to load them all in memory at the same time.

    EX:
    ilist = ['image1.fits', 'image2.fits', ... 'imageN.fits']

    images = ImageIter(ilist)

    for image in images:
        some processing


    """

    #default extension is 0
    ext = kargs.get('ext', 0)

    #Make sure image list are strings
    if all([isinstance(i, str) for i in imagelist]):
        for i in imagelist:
            yield Image(i, ext)
    #Or Make sure image list are Path
    elif all([isinstance(i, Path) for i in imagelist]):
        for i in imagelist:
            yield Image(i, ext)
示例#2
0
文件: utils.py 项目: nhaddad/pydtk
def extractchannel(filelist, channel):
    """
    extractchannel is a utility to read an extension from a multi
    extension fits file and save it as a fits file.

    It's usefull if we want to extract only one channel from,
    for example, a list of MUSE files.

    Usage:
    1)single case example
    extractchannel('MUSE_WFM_FLAT303_0031.fits','CHAN04')
    extract CHAN04 extension and create MUSE_WFM_FLAT303_0031_CHAN04.fits

    2)multi file example
    extractchannel('listing.txt','CHAN04')

    listing.txt is a text file with the listing of all files we want to
    extract the channel, it can be generated with the 'ls' command, like
    ls MUSE*WFM*fits > listing.txt

    3)filelist is python list with files names
    ex: flist=['OMEGACAM_100.fits', 'OMEGACAM_102.fits', 'OMEGACAM_103.fits']
    extractchannel(filelist, 'CCD_78')

    TODO: add OUTPATH which points to the directory where the extracted channels will be saved

    """

    #check if filelist is a fits file name
    if isinstance(filelist,str) and filelist.upper().endswith('.FITS'):
        try:
            im = Image(filelist, channel)
            im.save(filelist[:-5]+'_'+channel+'.fits')
        except:
            print('Bad channel designator')

    #check if filelist is a file
    elif os.path.isfile(filelist):
        files = open(filelist, 'r').readlines()
        for lines in files:
            try:
                #need to remove /n and split() generate a list, so
                #take first element
                im = Image(lines.split()[0], channel)
                im.save(lines[:-5]+'_'+channel+'.fits')
            except:
                print('Bad channel designator')

    #check if filelist is a python list of strings finished in fits
    elif isinstance(filelist,list) and all([isinstance(x, int) for x in filelist]):
        for files in filelist:
            try:
                im = Image(files, channel)
                im.save(lines[:-5]+'_'+channel+'.fits')
            except:
                print('Bad channel designator')

    else:
        print("Not valid name or file name list")
示例#3
0
def medianstack(filelist, ext=0, **options):
    """
    Compute the median for a list of images.
    Usefull to elliminate cosmic rays from dark images
    Syntax:
        medianstack(filelist)
        return an image which is the median stack form the files in the current directory

    example:
    med = medianstack([dk1, dk2, dk3], 0)
    compute median for images dk1, dk2 and dk3 using extension 0

    TODO:
    Check if filelist is a list of images o list of strings and then perform
    the computation accordingly
    """

    #check if filelist is a list, if not raise error
    try:
        if (isinstance(filelist, list) and len(filelist) > 1):
            pass
        else:
            raise Exception

    except:
        print("Not a list or len < 2")
        return None

    #check if elements in filelist is Image or string

    if all([isinstance(i, Image) for i in filelist]):
        imagesdata = [i.get_data() for i in filelist]
        im = filelist[0].copy()
        im.filename = 'medianstack'
        im.data = np.median(imagesdata, axis=0)
        return im

    if all([isinstance(i, str) for i in filelist]):
        #copy first image on list to get same dim
        imagesdata = [Image(i, ext).get_data() for i in filelist]
        im = Image(filelist[0], ext)
        im.filename = 'medianstack'
        im.data = np.median(imagesdata, axis=0)
        return im
    elif all([isinstance(i, Path) for i in filelist]):
        #copy first image on list to get same dim
        imagesdata = [Image(i, ext).get_data() for i in filelist]
        im = Image(filelist[0], ext)
        im.filename = 'medianstack'
        im.data = np.median(imagesdata, axis=0)
        return im

    return None
示例#4
0
def stdstack(filelist, ext=0, **options):
    """
    Compute the standard deviation in z direction for a list of images.
    Syntax:
        stdstack(filelist)
        return an image which is the std pixel by pixel for the files in the list

    example:
    stdmap = stdstack([dk1, dk2, dk3,..,dkn], 0)
    compute median for images dk1, dk2, dk3 to dkn using extension 0


    """

    #check if filelist is a list, if not raise error
    try:
        if (isinstance(filelist, list) and len(filelist) > 1):
            pass
        else:
            raise Exception

    except:
        print("Not a list or len < 2")
        return None

    #check if elements in filelist are Images or string

    if all([isinstance(i, Image) for i in filelist]):
        imagesdata = [i.get_data() for i in filelist]
        im = filelist[0].copy()
        im.filename = 'stdstack'
        im.data = np.std(imagesdata, axis=0)
        return im
    #check if filelist are files names

    if all([isinstance(i, str) for i in filelist]):
        #copy first image on list to get same dim
        imagesdata = [Image(i, ext).get_data() for i in filelist]
        im = Image(filelist[0], ext)
        im.filename = 'stdstack'
        im.data = np.std(imagesdata, axis=0)
        return im
    elif all([isinstance(i, Path) for i in filelist]):
        #copy first image on list to get same dim
        imagesdata = [Image(i, ext).get_data() for i in filelist]
        im = Image(filelist[0], ext)
        im.filename = 'stdstack'
        im.data = np.std(imagesdata, axis=0)
        return im

    return None
示例#5
0
文件: utils.py 项目: nhaddad/pydtk
def meanstack(filelist, ext=0, **options):
    """
    Compute the mean for a list of images.
    Syntax:
        medianstack(filelist)
        return an image which is the median stack form the files in the current directory

    example:
    med = meanstack([dk1, dk2, dk3], 0)
    compute median for images dk1, dk2 and dk3 using extension 0
    TODO:
    Check if filelist is a list of images o list of strings and then perform
    the computation accordingly

    """

    #check if filelist is a list, if not raise error
    try:
        if (isinstance(filelist,list) and len(filelist)>1):
            pass
        else:
            raise Exception

    except:
        print("Not a list or len < 2")
        return None


    #check if elements in filelist is Image or string
    allimages = [isinstance(i,Image) for i in filelist]
    if all(allimages):
        imagesdata = [i.get_data() for i in filelist]
        im = filelist[0].copy()
        im.filename = 'meanstack'
        im.data=np.mean(imagesdata, axis = 0)
        return im
    #check if filelist are files names
    allfiles = [isinstance(i,str) for i in filelist]
    if all(allfiles):
        #copy first image on list to get same dim
        imagesdata = [Image(i,ext).get_data() for i in filelist]
        im = Image(filelist[0],ext)
        im.filename = 'meanstack'
        im.data=np.mean(imagesdata, axis = 0)
        return im


    return None
示例#6
0
文件: utils.py 项目: nhaddad/pydtk
def stdstack(filelist, ext=0, **options):
    """
    Compute the standard deviation in z direction for a list of images.
    Syntax:
        stdstack(filelist)
        return an image which is the std pixel by pixel for the files in the list

    example:
    stdmap = stdstack([dk1, dk2, dk3,..,dkn], 0)
    compute median for images dk1, dk2, dk3 to dkn using extension 0


    """

    #check if filelist is a list, if not raise error
    try:
        if (isinstance(filelist,list) and len(filelist)>1):
            pass
        else:
            raise Exception

    except:
        print("Not a list or len < 2")
        return None


    #check if elements in filelist are Images or string
    allimages = [isinstance(i,Image) for i in filelist]
    if all(allimages):
        imagesdata = [i.get_data() for i in filelist]
        im = filelist[0].copy()
        im.filename = 'stdstack'
        im.data=np.std(imagesdata, axis = 0)
        return im
    #check if filelist are files names
    allfiles = [isinstance(i,str) for i in filelist]
    if all(allfiles):
        #copy first image on list to get same dim
        imagesdata = [Image(i,ext).get_data() for i in filelist]
        im = Image(filelist[0],ext)
        im.filename = 'stdstack'
        im.data=np.std(imagesdata, axis = 0)
        return im

    return None
示例#7
0
文件: ptc.py 项目: nhaddad/pydtk
def linearity_residual(imagelist, *coor, **kargs):
    """
    Compute linearity residual using an image list starting
    with 2 bias and then pairs of FF at diferent levels
    LR = 100*(1 -(Sm/Tm)/(S/t))

    TODO: need to complete!!
    """
    MAXSIGNAL = kargs.get('MAXSIGNAL', 65535.0)
    VERBOSE = kargs.get('VERBOSE', False)

    # read coordinates of first image
    x1, x2, y1, y2 = Image(imagelist[0], ext).get_windowcoor(*coor)
示例#8
0
文件: ptc.py 项目: nhaddad/pydtk
def ptc_2ff2bias(bias1, bias2, ff1, ff2, *coor, **kargs):
    """
    Perform ptc plot with two bias and 2 ff images which have many .
    ex:
    ptc_2tdi(b1,tdi1,tdi2,50, 2000, 100, 170)
    compute CF using 2 bias and 2 FF in an area defined by [50:2000,100:170] plot the ptc curve and compute the CF using
    a first order polynomia

    ptc_2tdi(b1,tdi1,tdi2,50, 2000, 100, 170, RETURN=True)
    compute CF using 2 bias and 2 FF in an area defined by [50:2000,100:170] return the vectors and the CF, using
    a first order polynomia

    ptc_2tdi(b1,tdi1,tdi2,50, 2000, 100, 170, ORDER=2)
    compute CF using 2 bias and 2 FF in an area defined by [50:2000,100:170] plot the ptc curve, and use a
    polynomia of order 2


    The 2 tdi images should have a slope in flux to compute the ptc.
    To eliminate the FPN, the 'shotnoise' image is computed as the subtraction
    of two debiased flat field images
    optional kargs arguments:
    NSTD (default = 3) Default number of std deviation to elliminate outlayers
    VERBOSE (default=False)

    This method can be used on the TestBench
    """

    nstd = kargs.get('SIGMA', 3)  # factor to elliminate outlayers
    order = kargs.get('ORDER', 2)
    axis = kargs.get('AXIS', 1)  # make computation along columns
    ext = kargs.get('ext', 0)

    x1 = coor[0]
    x2 = coor[1]
    y1 = coor[2]
    y2 = coor[3]

    ff1w = Image(ff1, ext=ext).crop(x1, x2, y1, y2).astype(float)
    ff2w = Image(ff2, ext=ext).crop(x1, x2, y1, y2).astype(float)
    bias1w = Image(bias1, ext=ext).crop(x1, x2, y1, y2).astype(float)
    bias2w = Image(bias2, ext=ext).crop(x1, x2, y1, y2).astype(float)

    bias_mean = sigma_clip(bias1w + bias2w, axis=axis).mean(axis=axis) / 2.0
    bias_var = 0.5 * sigma_clip(bias1w - bias2w, axis=axis).std(axis=axis)**2
    signal_mean = sigma_clip(ff1w + ff2w,
                             axis=axis).mean(axis=axis) / 2.0 - bias_mean
    ratioffs = sigma_clip(ff1w, axis=axis).mean(axis=axis) / sigma_clip(
        ff2w, axis=axis).mean(axis=axis)
    total_var = sigma_clip(ff1w - ratioffs * ff2w, axis=axis).std(axis=axis)**2
    signal_var = (total_var - 2 * bias_var) / 2.0

    coefts = np.polyfit(signal_mean, signal_var, order)
    polycoef = np.poly1d(coefts)
    var_fitted = np.polyval(polycoef, signal_mean[:])

    # if RETURN equal True, return signal_masked, variance masked, fitted variance and CF
    if kargs.get('RETURN', False):
        if order == 1:
            return signal_mean, signal_var, var_fitted, coefts
        else:
            return signal_mean, signal_var, var_fitted, coefts

    else:
        fig = plt.figure()  # create a figure object
        ax = fig.add_subplot(1, 1, 1)  # create an axes object in the figure

        ax.plot(signal_mean, signal_var, '.b', signal_mean, var_fitted, 'r')
        ax.grid()
        title = 'PTC  CF=%f'
        if order == 2:
            title = title % (1 / coefts[1])
        else:
            title = title % (1 / coefts[0])
        ax.set_title(title)
        ax.set_ylabel('Variance [ADU]**2')
        ax.set_xlabel('Signal [ADU]')
示例#9
0
文件: ptc.py 项目: nhaddad/pydtk
def ptc_ffpairs_mw(imagelist, *coor, **kargs):
    """
    Perform ptc plot for pairs of ff at same level in multiple windows.
    The pairs of ff should have the same light level.
    The first 2 images in the list must be bias
    To eliminate the FPN, the 'shotnoise' image is computed as the subtraction
    of two debiased flat field images
    optional kargs arguments:
    FACTOR (default = 2.0)
    MAXSIGNAL (default 65535)  => compute PTC only for signal values less than MAXSIGNAL
    VERBOSE (default=False)  ==> print out table with signal and variance
    CLIP (default=True) ==> Use clipped statistic to on images before computing CF

    """

    order = kargs.get('ORDER', 2)  # order of polynomial regression
    if order > 2:
        order = 2

    MAXSIGNAL = kargs.get('MAXSIGNAL', 65535.0)
    sigma = kargs.get('SIGMA', 3)
    ext = kargs.get('ext', 0)

    x1 = coor[0]
    x2 = coor[1]
    y1 = coor[2]
    y2 = coor[3]

    oddimageindex = list(range(3, len(imagelist), 2))
    evenimageindex = list(range(2, len(imagelist), 2))

    # Read in bias1 and bias2
    b1 = Image(imagelist[0], ext).crop(x1, x2, y1, y2).get_data()
    b2 = Image(imagelist[1], ext).crop(x1, x2, y1, y2).get_data()

    biasRON = sigma_clip(b1 - b2).std() / np.sqrt(2.0)

    # Separate images in even and odd (crop the images..)
    ff1list = [
        Image(imagelist[i], ext).crop(x1, x2, y1, y2).get_data()
        for i in oddimageindex
    ]
    ff2list = [
        Image(imagelist[i], ext).crop(x1, x2, y1, y2).get_data()
        for i in evenimageindex
    ]

    # NHA new implementation with multi windows START
    # generate auxiliary arrays of nwx * nwy elements and initialize to zero

    meanff = []
    signalvar = []

    for ff1, ff2 in zip(ff1list, ff2list):
        # windows is a generator of subwindows
        windows = subwindowcoor(0, ff1.shape[0], 0, ff2.shape[0], **kargs)
        for i, j, xi, xf, yi, yf in windows:
            win = slice(xi, xf), slice(yi, yf)
            # compute mean value on each window for normalized ff
            meanff.append(
                sigma_clip((ff1[win] + ff2[win]) / 2.0, sigma=sigma).mean() -
                sigma_clip((b1[win] + b2[win]) / 2.0, sigma=sigma).mean())
            # compute standard deviation on each window for normalized ff
            if kargs.get('NORMFF2', True):
                ff_diff = ff1[win] - ff2[win] * (
                    sigma_clip(ff1[win], sigma=sigma).mean() /
                    sigma_clip(ff2[win]).mean())
            else:
                ff_diff = ff1[win] - ff2[win]
            var_ff_diff = sigma_clip(ff_diff, sigma=sigma).std()**2
            # Measure RON from difference of two bias
            var_ron = (sigma_clip(b1[win] - b2[win], sigma=sigma).std()**
                       2) / 2.0
            signalvar.append(0.5 * (var_ff_diff - 2 * var_ron))

    # compute polynomial coeficients
    meanff = np.array(meanff)
    signalvar = np.array(signalvar)
    coefts = np.polyfit(meanff, signalvar, order)
    polyts = np.poly1d(coefts)
    variance_fitted = np.polyval(polyts, meanff)

    fig = plt.figure()  # create a figure object
    ax = fig.add_subplot(1, 1, 1)  # create an axes object in the figure

    ax.set_ylabel('Variance')
    ax.set_xlabel('Signal')
    ax.grid(True)
    ax.set_title('Photon Transfer Curve')

    # plot variance v/s signal
    # figure()
    ax.plot(meanff, signalvar, 'b.')
    ax.plot(meanff, variance_fitted, 'r-')
    plt.show()

    if order == 1:
        cf = 1 / coefts[0]
        print(
            f'Extension: {ext}   CF = {cf:2.3f} -e/ADU   RON = {cf * biasRON:2.3f}'
        )
    elif order == 2:
        cf = 1 / coefts[1]
        print(
            f'Extension: {ext}   CF = {cf:2.3f} -e/ADU   RON = {cf * biasRON:2.3f} -e'
        )

    if kargs.get('RETURN', True):
        return meanff, signalvar
示例#10
0
文件: ptc.py 项目: nhaddad/pydtk
def gain(imagelist, *coor, **kargs):
    """
    Compute the gain of the system using 2 Bias and 2 FF. The procedure divides the window
    in NWX*NWY subwindows and computes the Gain for each one of them and then computes the mean
    value and display an histogram. If the windows coordinates are not given, it will use the full
    CCD.

    Syntax:
    gain(imagelist[,xi,xf,yi,yf][,NWX=10][,NWY=10][,VERBOSE=True/False][,SAVE=True][,TITLE='Graph Title'][,RETURN=True/False][, MEDIAN=True/False])

    Note: the image list must contain 2 bias and 2 ff in that order!
    imagelist can be a list of names, a list of Paths or list of images
    b1,b2= bias images
    f1,f2= ff images
    *coor=[xi,xf,yi,yf] = coordinates of the window to analize (should be a flat region)
    kargs
    -------
    VERBOSE=True => print intermediate values
    TITLE='Graph Title' => put a title in the graph
    SAVE=True/False => if True, it saves the graph in pnp format
    RETURN=True/False => if True, return only ConFAc without plots
    MEDIAN=True/False => default True, computes median instead of mean
    NORMFF2=True/False => default False, normalize FF2 level to set its mean level equal to FF1
    RATIO=True/FALSE => defaul True. just change the way the FPN is elliminated. Both
    methods give almost the same rusults
    NWX= number of windows in X direction (default 10)
    NWY= number of windows in Y direction (default 10)
    EXT=image extension to load, default 0
    SIGMA = std deviation used by sigma_clip, default=3


    """
    ext = kargs.get('ext', 0)
    sigma = kargs.get('SIGMA', 3)

    if len(imagelist) != 4:
        print('imagelist len different from 4')
        return None

    #  if imagelist contains only image names, load them
    if all([isinstance(i, str) for i in imagelist]):
        images = [Image(i, ext) for i in imagelist]
        print(f'Extension={ext}')
        b1 = images[0]
        b2 = images[1]
        ff1 = images[2]
        ff2 = images[3]
    # elif all are images, just assign them
    elif all([isinstance(i, Path) for i in imagelist]):
        images = [Image(i, ext) for i in imagelist]
        b1 = images[0]
        b2 = images[1]
        ff1 = images[2]
        ff2 = images[3]
    # elif all are images, just assign them
    elif all([isinstance(i, Image) for i in imagelist]):
        b1 = imagelist[0]
        b2 = imagelist[1]
        ff1 = imagelist[2]
        ff2 = imagelist[3]
    else:
        print("Not all objects in image list are Images or filenames")
        return None

    x1 = coor[0]
    x2 = coor[1]
    y1 = coor[2]
    y2 = coor[3]

    b1 = b1.get_data()
    b2 = b2.get_data()
    ff1 = ff1.get_data()
    ff2 = ff2.get_data()

    nwx = kargs.get('NWX', 10)  # set number of windows in x direction
    nwy = kargs.get('NWY', 10)  # set number of windows in y direction

    if kargs.get('VERBOSE', False):
        print(f'format images X={b1.shape[0]} pix Y={b1.shape[1]} pix')
        print(
            f'Nx:{nwx} Ny:{nwy} X1:{x1} X2:{x2} Y1:{y1} Y2:{y2} WX:{(x2-x1)//nwx} WY:{(y2-y1)//nwy}'
        )
        print('')

    # generate auxiliary arrays of nwx * nwy elements and initialize to zero
    meansig = np.zeros((nwx, nwy))

    stdbias = np.zeros((nwx, nwy))
    cf = np.zeros((nwx, nwy))

    stdsig = np.zeros((nwx, nwy))

    # windows is a generator of subwindows
    windows = subwindowcoor(x1, x2, y1, y2, **kargs)
    for i, j, xi, xf, yi, yf in windows:
        win = slice(xi, xf), slice(yi, yf)
        # compute mean value on each window for normalized ff
        meansig[i, j] = sigma_clip(
            (ff1[win] + ff2[win]) / 2.0).mean() - sigma_clip(
                (b1[win] + b2[win]) / 2.0).mean()

        # compute standard deviation on each window for normalized ff
        if kargs.get('NORMFF2', False):
            ff_diff = ff1[win] - ff2[win] * (sigma_clip(ff1[win]).mean() /
                                             sigma_clip(ff2[win]).mean())
        else:
            ff_diff = ff1[win] - ff2[win]
        var_ff_diff = sigma_clip(ff_diff).std()**2
        # Measure RON from difference of two bias
        var_ron = (sigma_clip(b1[win] - b2[win]).std()**2) / 2.0
        stdsig[i, j] = (var_ff_diff - 2 * var_ron)
        cf[i,
           j] = 2 * meansig[i, j] / stdsig[i, j]  # compute CF for each window
        # compute standard deviation for each window of bias difference
        stdbias[i, j] = np.sqrt(var_ron)

        if kargs.get('VERBOSE', False):
            print(
                f"X({xi+x1},{xf+x1}) Y({yi+y1},{yf+y2}) Mean:{meansig[i, j]:.2f} stdff:{stdsig[i, j]:.2f}  CF:{cf[i, j]:.2f}"
            )

    if kargs.get('MEDIAN', False):
        ConFac = np.median(cf, axis=None)
        RON = np.median(stdbias, axis=None)

    else:
        ConFac = sigma_clip(cf, sigma=sigma).mean()
        RON = sigma_clip(stdbias, sigma=sigma).mean()

    # RON =  RMS / sqrt(2)    #RON in ADUs
    RONe = RON * ConFac  # RON in electrons

    # Error in CF estimation is the std/sqrt(number of windows)
    #CFstd = np.std(cf, axis=None)/np.sqrt(nwx*nwy)
    CFstd = sigma_clip(cf).std()  #np.std(cf, axis=None)/np.sqrt(nwx*nwy)

    # Check if run as ROUTINE, in that case return only the Conversion Factor and don't continue with plotting
    if kargs.get('RETURN', False):
        return ConFac, RONe, np.mean(meansig, axis=None),np.median(meansig, axis=None), \
            np.mean(stdsig, axis=None)**2,np.median(stdsig, axis=None)**2,x1, x2, y1, y2
    else:
        plt.figure()

    print("*******************************************")
    print(f"*CF  ={ConFac:.2f} +/-{CFstd:.2f} e/ADU")
    print(f"*RON ={RONe:.3f} -e")
    print(f"*RON ={RON:.3f} ADUs")
    print("*******************************************")

    # change shape of cf array to later compute the standard deviation and also make the histogram

    cf.shape = (nwx * nwy, )
    cfstd = np.std(cf, axis=None)
    plt.clf()
    plt.hist(cf, range=(ConFac - 3 * cfstd, ConFac + 3 * cfstd), bins=20)
    plt.figtext(0.15,
                0.8, ("CF mean=%5.3f +/-%5.3f e/ADU") % (ConFac, CFstd),
                fontsize=11,
                bbox=dict(facecolor='yellow', alpha=0.5))
    plt.figtext(0.15,
                0.75, ("RON =%6.3f -e") % (RONe),
                fontsize=11,
                bbox=dict(facecolor='yellow', alpha=0.5))
    plt.figtext(0.15,
                0.70, ("Computed @ %6.3f ADUs") % (np.mean(meansig)),
                fontsize=11,
                bbox=dict(facecolor='yellow', alpha=0.5))

    Title = kargs.get('TITLE', '')
    plt.title(Title)
    filetitle = Title.replace(' ', '_')
    plt.show()

    if kargs.get('SAVE', False):
        plt.savefig('ConFac_' + filetitle + '.png')
示例#11
0
文件: ptc.py 项目: nhaddad/pydtk
def ptc_ffpairs(imagelist, *coor, **kargs):
    """
    TODO: Need to be finished !!
    NHA

    Perform ptc plot for pairs of ff at same level.
    The pairs of ff should have the same light level.
    The first 2 images in the list must be bias
    To eliminate the FPN, the 'shotnoise' image is computed as the subtraction
    of two debiased flat field images
    optional kargs arguments:
    FACTOR (default = 2.0)
    MAXSIGNAL (default 65535)  => compute PTC only for signal values less than MAXSIGNAL
    VERBOSE (default=False)  ==> print out table with signal and variance
    CLIP (default=True) ==> Use clipped statistic to on images before computing CF

    """

    order = kargs.get('ORDER', 1)  # order of polynomial regression
    if order > 2:
        order = 2

    MAXSIGNAL = kargs.get('MAXSIGNAL', 65535.0)
    sigma = kargs.get('SIGMA', 3)
    ext = kargs.get('ext', 0)

    x1 = coor[0]
    x2 = coor[1]
    y1 = coor[2]
    y2 = coor[3]

    oddimageindex = list(range(3, len(imagelist), 2))
    evenimageindex = list(range(2, len(imagelist), 2))

    # Read in bias1 and bias2
    bias1 = Image(imagelist[0], ext).crop(x1, x2, y1, y2).get_data()
    bias2 = Image(imagelist[1], ext).crop(x1, x2, y1, y2).get_data()

    biasRON = (sigma_clip(bias2 - bias1).std()) / np.sqrt(2)
    if kargs.get('DEBUG', False):
        print(f'biasRON {biasRON}')
    bias_mean = sigma_clip((bias1 + bias2) / 2.0).mean()
    if kargs.get('DEBUG', False):
        print(f'Bias mean: {bias_mean}')

    # Separate images in even and odd (crop the images..)
    ff1 = [
        Image(imagelist[i], ext).crop(x1, x2, y1, y2).get_data()
        for i in oddimageindex
    ]
    ff2 = [
        Image(imagelist[i], ext).crop(x1, x2, y1, y2).get_data()
        for i in evenimageindex
    ]

    factor = [
        sigma_clip(image1 / image2).mean() for image1, image2 in zip(ff1, ff2)
    ]
    if kargs.get('DEBUG', False):
        print(f'Factors: {factor}')
    ff2 = [image2 * factor for factor, image2 in zip(factor, ff2)]

    signal_mean = [
        sigma_clip((image1 + image2) / 2.0).mean() - bias_mean
        for image1, image2 in zip(ff1, ff2)
    ]

    variance = [
        sigma_clip(image1 - image2, sigma=sigma).std()**2
        for image1, image2 in zip(ff1, ff2)
    ]
    Truevariance = [0.5 * (var - 2 * biasRON**2) for var in variance]

    # Need to sort both signal and variance according to list containing mean signal
    zipped = zip(signal_mean, Truevariance)
    zipped_sorted = sorted(zipped)

    # remove signal,variance pairs where signal is above MAXSIGNAL
    zipped_sorted = [x for x in zipped_sorted if x[0] <= MAXSIGNAL]

    # Now we unpack to get back signal and variance sorted
    signal, variance = zip(*zipped_sorted)

    if kargs.get('VERBOSE', False):
        print('Mean signal\tVariance\tCF')
        for s, v in zip(signal, variance):
            print(f'{s:6.1f}\t\t{v:6.1f}\t\t{s/v:2.3f}')

    # compute polynomial coeficients
    coefts = np.polyfit(signal, variance, order)
    polyts = np.poly1d(coefts)
    # compute the fitted values for variance
    variance_fitted = np.polyval(polyts, signal)

    # print('Intercept = {}'.format(polyts(0)))

    fig = plt.figure()  # create a figure object
    ax = fig.add_subplot(1, 1, 1)  # create an axes object in the figure

    ax.set_ylabel('Variance')
    ax.set_xlabel('Signal')
    ax.grid(True)
    ax.set_title('Photon Transfer Curve')

    # plot variance v/s signal
    # figure()
    ax.plot(signal, variance, 'b.')
    ax.plot(signal, variance_fitted, 'r-')
    plt.show()

    cf = 1 / coefts[0]

    if order == 1:
        cf = 1 / coefts[0]
        print(
            f'Extension: {ext}   CF = {cf:2.3f} -e/ADU   RON = {cf * biasRON:2.3f}'
        )
    elif order == 2:
        cf = 1 / coefts[1]
        print(
            f'Extension: {ext}   CF = {cf:2.3f} -e/ADU   RON = {cf * biasRON:2.3f} -e'
        )

    if kargs.get('RETURN', True):
        return cf, cf * biasRON, coefts
示例#12
0
文件: ptc.py 项目: nhaddad/pydtk
def gain2(imagelist, *coor, **kargs):
    """
    Variation of CCD gain computation
    Compute the gain of the system using 2 Bias and 2 FF. The procedure devides the window
    in NWX*NWY subwindows and computes the Gain for each one of them and then computes the mean
    value and display an histogram. If the windows coordinates are not given, it will use the full
    CCD.

    Syntax:
    gain(imagelist[,xi,xf,yi,yf][,NWX=10][,NWY=10][,VERBOSE=True/False][,SAVE=True][,TITLE='Graph Title'][,RETURN=True/False][, MEDIAN=True/False])

    Note: the image list must contain 2 bias and 2 ff in that order!
    imagelist can be a list of names, a list of Path or list of images
    b1,b2= bias images
    f1,f2= ff images
    *coor=[xi,xf,yi,yf] = coordinates of the window to analize (should be a flat region)
    kargs
    -------
    VERBOSE=True => print intermediate values
    TITLE='Graph Title' => put a title in the graph
    SAVE=True/False => if True, it saves the graph in pnp format
    RETURN=True/False => if True, return only ConFAc without plots
    MEDIAN=True/False => default True, computes median instead of mean
    RATIO=True/FALSE => defaul True. just change the way the FPN is elliminated. Both
    methods give almost the same rusults
    NWX= number of windows in X direction (default 10)
    NWY= number of windows in Y direction (default 10)
    EXT=image extension to load, default 0


    """
    ext = kargs.get('ext', 0)

    if len(imagelist) != 4:
        print('imagelist len different from 4')
        return None

    #  if imagelist contains only image names, load them
    if all([isinstance(i, str) for i in imagelist]):
        images = [Image(i, ext) for i in imagelist]
        print(f'Extension={ext}')
        b1 = images[0]
        b2 = images[1]
        ff1 = images[2]
        ff2 = images[3]
    elif all([isinstance(i, Path) for i in imagelist]):
        images = [Image(i, ext) for i in imagelist]
        print(f'Extension={ext}')
        b1 = images[0]
        b2 = images[1]
        ff1 = images[2]
        ff2 = images[3]
    # elif all are images, just assign them
    elif all([isinstance(i, Image) for i in imagelist]):
        b1 = imagelist[0]
        b2 = imagelist[1]
        ff1 = imagelist[2]
        ff2 = imagelist[3]
    else:
        print("Not all objects in image list are Images or filenames")
        return None

    #Check if bias have EXPTIME = 0.0 and FF EXPTIME > 0
    testlist = []
    testlist.append(b1.header['EXPTIME'] == 0.0)
    testlist.append(b2.header['EXPTIME'] == 0.0)
    testlist.append(ff1.header['EXPTIME'] > 0.0)
    testlist.append(ff2.header['EXPTIME'] > 0.0)
    print(testlist)

    if not all(testlist):
        print('Exposure times for at least one file are not correct')
        return None

    nwx = kargs.get('NWX', 10)  # set number of windows in x direction
    nwy = kargs.get('NWY', 10)  # set number of windows in y direction

    x1, x2, y1, y2 = b1.get_windowcoor(*coor)
    # print(x1,x2,y1,y2)

    # now work with cropped images, where the signal is more or less flat....
    b1 = b1.crop(x1, x2, y1, y2)
    b2 = b2.crop(x1, x2, y1, y2)
    ff1 = ff1.crop(x1, x2, y1, y2)
    ff2 = ff2.crop(x1, x2, y1, y2)

    dbiasff1 = ff1 - b1  # debiased FF1
    dbiasff2 = ff2 - b2  # debiased FF2
    meanff2 = dbiasff2.mean()  # mean signal on FF2 debiased
    meanff1 = dbiasff1.mean()  # mean signal on FF1 debiased
    #ratio = meanff1/meanff2
    # print(ratio)

    if kargs.get('VERBOSE', False):
        print(f'format images X={b1.shape[0]} pix Y={b1.shape[1]} pix')
        print(
            f'Nx:{nwx} Ny:{nwy} X1:{x1} X2:{x2} Y1:{y1} Y2:{y2} WX:{(x2-x1)//nwx} WY:{(y2-y1)//nwy}'
        )
        print('')
        print(f'meanff2 ={meanff2}')

    #dbiasff2 = dbiasff2*ratio
    #dbias_ff_diff = dbiasff1 - dbiasff2
    #dbias_ff_sig = (dbiasff1 + dbiasff2)/2.0

    # from Fabrice Chisthen
    dbias_ff_sig = (dbiasff1 / dbiasff2) * meanff2

    # compute difference of 2 bias to get the RON
    dbias = b1 - b2

    # generate auxiliary arrays of nwx * nwy elements and initialize to zero
    meansig = np.zeros((nwx, nwy))
    stdff = np.zeros((nwx, nwy))
    stdbias = np.zeros((nwx, nwy))
    cf = np.zeros((nwx, nwy))
    signal = (dbiasff1 / dbiasff2)
    stdsig = np.zeros((nwx, nwy))

    # windows is a generator of subwindows
    windows = subwindowcoor(0, b1.shape[0], 0, b1.shape[1], **kargs)
    for i, j, xi, xf, yi, yf in windows:
        # compute mean value on each window for normalized ff
        meansig[i, j] = np.mean(dbias_ff_sig[xi:xf, yi:yf])
        # compute standard deviation on each window for normalized ff
        stdsig[i, j] = np.std(dbias_ff_sig[xi:xf, yi:yf]) / np.sqrt(2.0)
        cf[i,
           j] = meansig[i, j] / (stdsig[i, j]**2)  # compute CF for each window
        # compute standard deviation for each window of bias difference
        stdbias[i, j] = np.std(dbias[xi:xf, yi:yf]) / np.sqrt(2.0)

        if kargs.get('VERBOSE', False):
            print(
                f"X({xi+x1},{xf+x1}) Y({yi+y1},{yf+y2}) Mean:{meansig[i, j]:.2f} stdff:{stdsig[i, j]:.2f}  CF:{cf[i, j]:.2f}"
            )

    if kargs.get('MEDIAN', True):
        ConFac = np.median(cf, axis=None)
        RON = np.median(stdbias, axis=None)

    else:
        ConFac = np.mean(cf, axis=None)
        RON = np.mean(stdbias, axis=None)  # RON in ADUs

    # RON =  RMS / sqrt(2)    #RON in ADUs
    RONe = RON * ConFac  # RON in electrons

    # Error in CF estimation is the std/sqrt(number of windows)
    CFstd = np.std(cf, axis=None) / np.sqrt(nwx * nwy)

    # Check if run as ROUTINE, in that case return only the Conversion Factor and don't continue with plotting
    if kargs.get('RETURN', False):
        return x1, x2, y1, y2, ConFac, RONe, meanff2
    else:
        plt.figure()

    print("*******************************************")
    print(f"*CF  ={ConFac:.2f} +/-{CFstd:.2f} e/ADU")
    print(f"*RON ={RONe:.3f} -e")
    print(f"*RON ={RON:.3f} ADUs")
    print("*******************************************")

    # change shape of cf array to later compute the standard deviation and also make the histogram

    cf.shape = (nwx * nwy, )
    cfstd = np.std(cf, axis=None)
    plt.clf()
    plt.hist(cf, range=(ConFac - 3 * cfstd, ConFac + 3 * cfstd), bins=20)
    plt.figtext(0.15,
                0.8, ("CF mean=%5.3f +/-%5.3f e/ADU") % (ConFac, CFstd),
                fontsize=11,
                bbox=dict(facecolor='yellow', alpha=0.5))
    plt.figtext(0.15,
                0.75, ("RON =%6.3f -e") % (RONe),
                fontsize=11,
                bbox=dict(facecolor='yellow', alpha=0.5))
    plt.figtext(0.15,
                0.70, ("Computed @ %6.3f ADUs") % (np.mean(meansig)),
                fontsize=11,
                bbox=dict(facecolor='yellow', alpha=0.5))

    Title = kargs.get('TITLE', '')
    plt.title(Title)
    filetitle = Title.replace(' ', '_')
    plt.show()

    if kargs.get('SAVE', False):
        plt.savefig('ConFac_' + filetitle + '.png')
示例#13
0
文件: ptc.py 项目: nhaddad/pydtk
def ptc_pixels(biaslist, fflist, ext=0, *coor, **kargs):
    """
    Perform ptc computation to get gain and RON from a list of bias names and a
    list of ff images names.
    The ff images should be the same scene with all possible light levels.
    An example would be a grism ff on FORS or MUSE
    To eliminate the FPN, the analysis is done pixel by pixel.

    optional kargs:
    LOW: low level in ADUs to compute ptc
    HIGH: high level in ADU to compute ptc
    STEP: step in ADUs to compute variance (small steps will slow down the computation)
    ORDER (default = 1) polynomial order to fit the ptc
    RETURN (default=FALSE) returns CF and RON

    Ex:
    ptc_pixels(biaslist, fflst, 0,2000,300,600, LOW=100, HIGH=50000, STEP=10)

    signal, var, var_fitted, cf = ptc_pixels(
        b1, ff1, ff2, 100,200,10, 2000, LOW=100, HIGH=50000, STEP=100, OLAYERS=0.4, RETURN=True)
    Compute the PTC in the window [100:200,10:2000] from 100ADUs up to 50000 ADUs each 100 ADUs,

    """

    low = kargs.get('LOW', 0)  # minimum signal level to explore
    high = kargs.get('HIGH', 60000)  # maximum signal level to explore
    step = kargs.get('STEP', 100)  # step size, minimum is 1
    nwx = kargs.get('NWX', 10)  # size of windows in X to compute RON
    nwy = kargs.get('NWY', 10)  # size of windows in Y to compute RON

    # print("Low = {}".format(low))
    # print("High = {}".format(high))
    # print("Step = {}".format(step))

    order = kargs.get('ORDER', 1)  # order of polynomial regression
    if order > 2:
        order = 2

    # print("Order = {}".format(order))

    # read biaslist
    biasimages = [Image(i, ext) for i in biaslist]

    # read fflist
    ffimages = [Image(i, ext) for i in fflist]

    x1, x2, y1, y2 = biasimages[0].get_windowcoor(*coor)

    # print("{},{},{},{}".format(x1,x2,y1,y2))

    # crop bias images
    biascroped = [i.crop(*coor) for i in biasimages]

    # compute bias mean
    biasmean = meanstack(biascroped)
    # print(biasmean.shape)

    # compute
    stdsig = np.zeros((nwx, nwy))
    windows = subwindowcoor((x2 - x1) // 2 - 5 * nwx, (x2 - x1) // 2 + 5 * nwx,
                            (y2 - y1) // 2 - 5 * nwy, (y2 - y1) // 2 + 5 * nwy,
                            **kargs)
    for i, j, xi, xf, yi, yf in windows:
        stdsig[i, j] = biasmean[xi:xf, yi:yf].std() * np.sqrt(len(biascroped))

    # crop ff images
    ffcroped = [i.crop(*coor) for i in ffimages]
    # print(ffcroped[0].shape)

    # debiased ff
    ffcropdb = [(i - biasmean) for i in ffcroped]

    ffcropdb_data = [i.get_data() for i in ffcropdb]

    # compute signal
    ffsignal = meanstack(ffcropdb)

    # use only data from images
    ffsignal_data = ffsignal.get_data()

    # compute variance of all ffcropdb images along axis 0
    ffcropdb_stacked = np.stack(ffcropdb_data)
    ffvar = ffcropdb_stacked.var(ddof=1, axis=0)

    # flatten resulting arrays
    ffsignal_flatten = ffsignal_data.flatten()
    ffvar_flatten = ffvar.flatten()
    # print("ffsignal_flatten, ffvar_flatten : {}, {}".format(len(ffsignal_flatten), len(ffvar_flatten)))

    # convert ffsignal_flatten in integer
    ffsignal_flatten = ffsignal_flatten.astype(
        int)  # [int(i) for i in ffsignal_flatten]
    ffvar_flatten = ffvar_flatten.astype(int)

    # sort ffsignal_flatten and  ffvar_flatten
    # indx = np.argsort(ffsignal_flatten)
    # ffsignal_flatten = ffsignal_flatten[indx]
    # ffvar_flatten =ffvar_flatten[indx]

    # get unique values in ff
    ffsignal_unique = np.unique(ffsignal_flatten)
    # print("ffsignal_unique : {}".format(len(ffsignal_unique)))

    # filter out  values lower than LOW and higher than HIGH
    ffsig_unique = [i for i in ffsignal_unique if i >= low and i <= high]
    # print("ffsig_unique: {}".format(len(ffsig_unique)))

    # generate sampling values
    sampling = list(range(low, len(ffsig_unique), step))
    # print("sampling ={}".format(len(sampling)))

    # create subset of unique values using sampling
    ffsampled = [ffsig_unique[i] for i in sampling]
    # print("ffsampled : {}".format(len(ffsampled)))

    # by default use mean computation for variance
    if kargs.get('MEDIAN', False):
        # Compute variance mean for values in ffsignalflatten that are in ffsampled
        variance = [
            np.median(ffvar_flatten[ffsignal_flatten == i]) for i in ffsampled
        ]
    else:
        variance = [
            np.mean(ffvar_flatten[ffsignal_flatten == i]) for i in ffsampled
        ]


# filter out the pixels with variance==0 or greater than 200000
    variance = np.array(variance)
    ffsampled = np.array(ffsampled)
    vfiltered_index = np.where((variance > 0) & (variance < 200000))
    ffsampled = ffsampled[vfiltered_index]
    variance = variance[vfiltered_index]

    # print(len(ffsignal_unique), len(variance))

    plt.scatter(ffsampled[::], variance[::])
    plt.grid()
    plt.show()

    # compute polynomial without filtering outlayers
    coefts_nf = np.polyfit(ffsampled, variance, order)
    polyts_nf = np.poly1d(coefts_nf)
    # var_fitted = polyts_nf(ffsampled)

    if order == 2:
        gain = 1 / coefts_nf[1]
        print(
            f"GAIN = {1/coefts_nf[1]} -e/ADU  RON = {gain*np.median(stdsig)} -e"
        )
    else:
        gain = 1 / coefts_nf[0]
        print(
            f"GAIN = {1/coefts_nf[0]} -e/ADU  RON = {gain*np.median(stdsig)} -e"
        )
示例#14
0
def extractchannel(filelist, channel):
    """
    extractchannel is a utility to read an extension from a multi
    extension fits file and save it as a fits file.

    It's usefull if we want to extract only one channel from,
    for example, a list of MUSE files.

    Usage:
    1)single case example
    extractchannel('MUSE_WFM_FLAT303_0031.fits','CHAN04')
    extract CHAN04 extension and create MUSE_WFM_FLAT303_0031_CHAN04.fits

    2)multi file example
    extractchannel('listing.txt','CHAN04')

    listing.txt is a text file with the listing of all files we want to
    extract the channel, it can be generated with the 'ls' command, like
    ls MUSE*WFM*fits > listing.txt

    3)filelist is python list with files names
    ex: flist=['OMEGACAM_100.fits', 'OMEGACAM_102.fits', 'OMEGACAM_103.fits']
    extractchannel(filelist, 'CCD_78')

    TODO: add OUTPATH which points to the directory where the extracted channels will be saved

    """

    #check if filelist is a fits file name
    if isinstance(filelist, str) and filelist.upper().endswith('.FITS'):
        try:
            im = Image(filelist, channel)
            im.save(filelist[:-5] + '_' + channel + '.fits')
        except:
            print('Bad channel designator')

    #check if filelist is a file
    elif os.path.isfile(filelist):
        files = open(filelist, 'r').readlines()
        for lines in files:
            try:
                #need to remove /n and split() generate a list, so
                #take first element
                im = Image(lines.split()[0], channel)
                im.save(lines[:-5] + '_' + channel + '.fits')
            except:
                print('Bad channel designator')

    #check if filelist is a python list of strings finished in fits
    elif isinstance(filelist, list) and all(
        [isinstance(x, int) for x in filelist]):
        for files in filelist:
            try:
                im = Image(files, channel)
                im.save(lines[:-5] + '_' + channel + '.fits')
            except:
                print('Bad channel designator')

    else:
        print("Not valid name or file name list")
示例#15
0
def ptc_ffpairs(imagelist, *coor, **kargs):
    """
    TODO: Need to be finished !!
    NHA

    Perform ptc plot for pairs of ff at same level.
    The pairs of ff should have the same light level.
    The first 2 images in the list must be bias
    To eliminate the FPN, the 'shotnoise' image is computed as the subtraction
    of two debiased flat field images
    optional kargs arguments:
    FACTOR (default = 2.0)
    MAXSIGNAL (default 65535)  => compute PTC only for signal values less than MAXSIGNAL
    VERBOSE (default=False)  ==> print out table with signal and variance

    """

    order = kargs.get('ORDER', 1)  # order of polynomial regression
    if order > 2:
        order = 2

    MAXSIGNAL = kargs.get('MAXSIGNAL', 65535.0)
    VERBOSE = kargs.get('VERBOSE', False)
    ext = kargs.get('EXT', 0)

    # read coordinates of first image
    x1, x2, y1, y2 = Image(imagelist[0], ext).get_windowcoor(*coor)

    oddimageindex = list(range(3, len(imagelist), 2))
    evenimageindex = list(range(2, len(imagelist), 2))

    # Read in bias1 and bias2
    bias1 = Image(imagelist[0], ext).crop(x1, x2, y1, y2)
    bias2 = Image(imagelist[1], ext).crop(x1, x2, y1, y2)

    bias_dif = bias2 - bias1
    # mask out all pixels with value greater or lower than  3*std
    bias_dif.mask()

    # Separate images in even and odd (crop the images..)
    ff1 = [Image(imagelist[i], ext).crop(x1, x2, y1, y2) for i in oddimageindex]
    ff2 = [Image(imagelist[i], ext).crop(x1, x2, y1, y2) for i in evenimageindex]

    # remove bias from both ff images
    ff1d = [(image - bias1) for image in ff1]
    ff2d = [(image - bias2) for image in ff2]

    if kargs.get('USE_FFMEAN', False):
        ffmean = [(image1/image2)*image2.mean() for image1, image2 in zip(ff1d, ff2d)]
    else:
        ffmean = [(image1+image2)/2.0 for image1, image2 in zip(ff1d, ff2d)]

    shotnoise = [(image1 - image2) for image1, image2 in zip(ff1d, ff2d)]

    signal = [image.mean() for image in ff1d]  # ffmean]
    variance = [image.var()/2.0 for image in shotnoise]

    # Need to sort both signal and variance according to list containing mean signal
    zipped = zip(signal, variance)
    zipped_sorted = sorted(zipped)

    # remove signal,variance pairs where signal is above MAXSIGNAL
    zipped_sorted = [x for x in zipped_sorted if x[0] <= MAXSIGNAL]

    # Now we unpack to get back signal and variance sorted
    signal, variance = zip(*zipped_sorted)

    if kargs.get('VERBOSE', False):
        print('Mean signal    Variance')
        for s, v in zip(signal, variance):
            print(' {:6.1f}   {:6.1f}'.format(s, v))

    # compute polynomial coeficients
    coefts = np.polyfit(signal, variance, order)
    polyts = np.poly1d(coefts)
    # compute the fitted values for variance
    variance_fitted = np.polyval(polyts, signal)

    # print('Intercept = {}'.format(polyts(0)))

    fig = plt.figure()  # create a figure object
    ax = fig.add_subplot(1, 1, 1)  # create an axes object in the figure

    ax.set_ylabel('Variance')
    ax.set_xlabel('Signal')
    ax.grid(True)
    ax.set_title('Photon Transfer Curve')

    # plot variance v/s signal
    # figure()
    ax.plot(signal, variance, 'b.')
    ax.plot(signal, variance_fitted, 'r-')

    cf = 1/coefts[0]

    if order == 1:
        cf = 1/coefts[0]
        print(
            'Extension: {}   CF = {:2.3f} -e/ADU   RON = {:2.3f}'.format(ext, cf, cf * bias_dif.std()/np.sqrt(2.0)))
    elif order == 2:
        cf = 1/coefts[1]
        print(
            'Extension: {}   CF = {:2.3f} -e/ADU   RON = {:2.3f} -e'.format(ext, cf, cf * bias_dif.std()/np.sqrt(2.0)))