示例#1
0

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--base_dir', type=str, default='.', required=False)
    parser.add_argument('--discretization',
                        type=float,
                        required=False,
                        default=0.01)
    parser.add_argument('--slice_width',
                        type=float,
                        required=False,
                        default=0.05)

    args = parser.parse_args()
    print(pydvs.okb("Opening"), args.base_dir)

    for background_folder in os.listdir(args.base_dir):
        background_folder = os.path.join(args.base_dir, background_folder,
                                         'txt')
        if not os.path.isdir(background_folder):
            continue

        ex = futures.ProcessPoolExecutor(max_workers=2)

        sequences = [
            os.path.join(background_folder, s)
            for s in os.listdir(background_folder)
            if os.path.isdir(os.path.join(background_folder, s))
        ]
        #for s in sequences:
示例#2
0
def data_creator(sequence: str):

    print(f"{pydvs.okb('STARTING DATASET CREATION')} for sequence: {sequence}")
    dataset_txt = eval(open(os.path.join(sequence, 'meta.txt')).read())

    K = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]])
    D = np.array([0.0, 0.0, 0.0, 0.0])

    K[0][0] = dataset_txt['meta']['fx']
    K[1][1] = dataset_txt['meta']['fy']
    K[0][2] = dataset_txt['meta']['cx']
    K[1][2] = dataset_txt['meta']['cy']
    D[0] = dataset_txt['meta']['k1']
    D[1] = dataset_txt['meta']['k2']
    D[2] = dataset_txt['meta']['k3']
    D[3] = dataset_txt['meta']['k4']
    RES_X = dataset_txt['meta']['res_x']
    RES_Y = dataset_txt['meta']['res_y']
    NUM_FRAMES = len(dataset_txt['frames'])
    frames_meta = dataset_txt['frames']

    oids = []
    for key in frames_meta[0]:
        if (key == 'cam'): continue
        if (type(frames_meta[0][key]) == type(dict())
                and 'pos' in frames_meta[0][key]):
            oids.append(key)

    print(pydvs.okb("Resolution:"), RES_X, 'x', RES_Y)
    print(pydvs.okb("Frames:"), NUM_FRAMES)
    print(pydvs.okb("Object ids:"), oids)
    print(pydvs.okb("Calibration:"))
    print(K)
    print(D)

    # Create a plot
    #save_plot(frames_meta, oids, os.path.join(args.base_dir, 'position_plots.pdf'), tp='pos')
    #save_plot(dataset_txt['full_trajectory'], oids, os.path.join(args.base_dir, 'position_plots.pdf'), tp='pos')

    # Read depth / masks
    print(pydvs.bld("Reading the depth and masks:"))
    depths = np.zeros((NUM_FRAMES, ) + (RES_X, RES_Y), dtype=np.uint16)
    masks = np.zeros((NUM_FRAMES, ) + (RES_X, RES_Y), dtype=np.uint16)
    classical = np.zeros((NUM_FRAMES, ) + (RES_X, RES_Y, 3), dtype=np.uint8)
    classical_read = 0
    for i, frame in enumerate(frames_meta):
        print("frame\t", i + 1, "/", NUM_FRAMES, "\t", end='\r')

        gt_frame_name = os.path.join(sequence, f"img/{frame['gt_frame']}")
        gt_img = cv2.imread(gt_frame_name, cv2.IMREAD_UNCHANGED)

        if (gt_img.dtype != depths.dtype or gt_img.dtype != masks.dtype):
            print("\tType mismatch! Expected", depths.dtype, " but have",
                  gt_img.dtype)
            sys.exit(-1)

        depths[i, :, :] = gt_img[:, :, 0]  # depth is in mm
        masks[i, :, :] = gt_img[:, :, 2]  # mask is object ids * 1000

        if ('classical_frame' in frame.keys()):
            classical_frame_name = os.path.join(
                sequence, f"img/{frame['classical_frame']}")
            classical_img = cv2.imread(classical_frame_name,
                                       cv2.IMREAD_UNCHANGED)
            classical[i, :, :, :] = classical_img
            if (gt_img.dtype != depths.dtype or gt_img.dtype != masks.dtype):
                print("\tType mismatch! Expected", classical.dtype,
                      " but have", classical_img.dtype)
                sys.exit(-1)
            classical_read += 1
    print("\n")

    if (classical_read > 0):
        print(pydvs.okb("Read "), classical_read, "/", NUM_FRAMES,
              pydvs.okb(" classical frames"))
    else:
        classical = None

    # Read event cloud
    cloud, idx = pydvs.read_event_file_txt(
        os.path.join(sequence, 'events.txt'), args.discretization)
    tmin = frames_meta[0]['ts']
    tmax = frames_meta[-1]['ts']
    if (cloud.shape[0] > 0):
        tmin = cloud[0][0]
        tmax = cloud[-1][0]
    print(pydvs.okb("The recording range:"), tmin, "-", tmax)
    print(pydvs.okb("The gt range:"), frames_meta[0]['ts'], "-",
          frames_meta[-1]['ts'])
    print(pydvs.okb("Discretization resolution:"), args.discretization)
    """
    # Save .npz file
    print (pydvs.bld("Saving..."))
    np.savez_compressed(os.path.join(args.base_dir, 'dataset.npz'), events=cloud, index=idx, classical=classical,
        discretization=args.discretization, K=K, D=D, depth=depths, mask=masks, meta=dataset_txt)
    print ("\n")
    """

    # Generate images:
    slice_dir = os.path.join(sequence, 'slices')
    #vis_dir   = os.path.join(args.base_dir, 'vis')

    pydvs.replace_dir(slice_dir)
    #pydvs.replace_dir(vis_dir)
    for i, frame in enumerate(frames_meta):
        print("Saving sanity check frames\t",
              i + 1,
              "/",
              NUM_FRAMES,
              "\t",
              end='\r')
        time = frame['ts']
        if (time > tmax or time < tmin):
            continue

        cv2.imwrite(
            os.path.join(slice_dir, 'mask_' + str(i).rjust(10, '0') + '.png'),
            masks[i].astype(np.uint16))

        if (cloud.shape[0] > 0):
            sl, _ = pydvs.get_slice(cloud, idx, time, args.slice_width, 1,
                                    args.discretization)
            eimg = dvs_img(sl, (RES_X, RES_Y),
                           None,
                           None,
                           args.slice_width,
                           mode=1)
            cv2.imwrite(
                os.path.join(slice_dir,
                             'frame_' + str(i).rjust(10, '0') + '.png'), eimg)

        depth = depths[i].astype(np.float)
        mask = masks[i].astype(np.float)
        col_mask = mask_to_color(mask)
        """
        # normalize for visualization
        mask = (255 * (mask.astype(np.float) - np.nanmin(mask)) / (np.nanmax(mask) - np.nanmin(mask))).astype(np.uint8)
        depth = (255 * (depth.astype(np.float) - np.nanmin(depth)) / (np.nanmax(depth) - np.nanmin(depth))).astype(np.uint8)

        if ((classical_read > 0) and (classical is not None)):
            grayscale_img = cv2.cvtColor(classical[i], cv2.COLOR_BGR2GRAY).astype(np.float)
            rgb_img = np.dstack((grayscale_img, grayscale_img, grayscale_img))
            rgb_img[mask > 0] = rgb_img[mask > 0] * 0.2 + col_mask[mask > 0] * 0.8
            #rgb_img = np.rot90(rgb_img, k=2)
            #depth = np.rot90(depth, k=2)
            eimg = np.hstack((rgb_img.astype(np.uint8), np.dstack((depth,depth,depth))))
        else:
            eimg = dvs_img(sl, (RES_X, RES_Y), None, None, args.slice_width, mode=0)
            eimg[mask > 0] = eimg[mask > 0] * 0.5 + col_mask[mask > 0] * 0.5
            eimg = np.hstack((eimg.astype(np.uint8), np.dstack((depth,depth,depth))))

        #footer = gen_text_stub(eimg.shape[1], frame)
        #eimg = np.vstack((eimg, footer))

        cv2.imwrite(os.path.join(vis_dir, 'frame_' + str(i).rjust(10, '0') + '.png'), eimg)
        """
    print(F"{pydvs.okg('FINISHED DATASET CREATION')} for sequence {sequence}")
示例#3
0

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--base_dir', type=str, default='.', required=False)
    parser.add_argument('--discretization',
                        type=float,
                        required=False,
                        default=0.01)
    parser.add_argument('--slice_width',
                        type=float,
                        required=False,
                        default=0.05)

    args = parser.parse_args()
    print(pydvs.okb("Opening"), args.base_dir)

    dataset_txt = eval(open(os.path.join(args.base_dir, 'meta.txt')).read())

    K = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]])
    D = np.array([0.0, 0.0, 0.0, 0.0])

    K[0][0] = dataset_txt['meta']['fx']
    K[1][1] = dataset_txt['meta']['fy']
    K[0][2] = dataset_txt['meta']['cx']
    K[1][2] = dataset_txt['meta']['cy']
    D[0] = dataset_txt['meta']['k1']
    D[1] = dataset_txt['meta']['k2']
    D[2] = dataset_txt['meta']['k3']
    D[3] = dataset_txt['meta']['k4']
    RES_X = dataset_txt['meta']['res_x']