示例#1
0
def Genetic_al(model, data, i, stud1):
    ga = GeneticAlgorithm(data,
                          population_size=100,
                          generations=100,
                          crossover_probability=0.01,
                          mutation_probability=0.01,
                          elitism=False,
                          maximise_fitness=False)

    def create_individual(data):
        return [
            float(1.0 + 5.0 * random.uniform(0, 1)),  # Drop time actual
            float(1.0 + 15.0 * random.uniform(0, 1)),  # Drop time actual_EWMA
            float(1.0 + 15.0 * random.uniform(0, 1)),  # Drop time difference
            float(1.0 +
                  15.0 * random.uniform(0, 1)),  # Drop time difference_EWMA
            # float((random.randint(300, 4000) + random.uniform(0, 1))),# Energy
            # float((random.randint(300, 4000) + random.uniform(0, 1))),  # Energy_EWMA
            float(1.0 + 2.0 * random.uniform(0, 1)),  # Lift Height actual
            float(1.0 + 2.0 * random.uniform(0, 1)),  # Lift Height actual_EWMA
            # float((random.randint(0, 2) + random.uniform(0, 1))), # lift height ref
            # float((random.randint(0, 2) + random.uniform(0, 1))),  # lift height ref_EWMA
            float(15.0 + 40.0 *
                  random.uniform(0, 1)),  # Main Weldcurrent voltage actual
            float(15.0 + 4.0 * random.uniform(0, 1)
                  ),  # Main Weldcurrent voltage actual_EWMA
            # ((random.randint(25, 50) + random.uniform(0, 1))),# Main Weldcurrent voltage Max
            # ((random.randint(25, 50) + random.uniform(0, 1))),  # Main Weldcurrent voltage Max_EWMA
            # ((random.randint(8, 28) + random.uniform(0, 1))), # Main Weldcurrent voltage Min
            # ((random.randint(8, 28) + random.uniform(0, 1))),  # Main Weldcurrent voltage Min_EWMA
            # (-(random.randint(1, 3) + random.uniform(0, 1))), # Penetration Max
            # (-(random.randint(1, 3) + random.uniform(0, 1))),  # Penetration Max_EWMA
            # (-(random.randint(0, 3) + random.uniform(0, 1))), # Penetration Min
            # (-(random.randint(0, 3) + random.uniform(0, 1))),  # Penetration Min_EWMA
            # (-(random.randint(0, 3) + random.uniform(0, 1))),# Penetratiom Ref
            # (-(random.randint(0, 3) + random.uniform(0, 1))),  # Penetratiom Ref_EWMA
            float(8.0 + 35.0 *
                  random.uniform(0, 1)),  # Pilot Weldcurrent Arc Voltage Act
            float(8.0 + 35.0 * random.uniform(0, 1)
                  ),  # Pilot Weldcurrent Arc Voltage Act_EWMA
            # ((random.randint(20, 50) + random.uniform(0, 1))),# Pilot Weldcurrent Arc Voltage Max
            # ((random.randint(20, 50) + random.uniform(0, 1))),  # Pilot Weldcurrent Arc Voltage Max_EWMA
            # ((random.randint(5, 20) + random.uniform(0, 1))),# Pilot Weldcurrent Arc Voltage Min
            # ((random.randint(5, 20) + random.uniform(0, 1))),  # Pilot Weldcurrent Arc Voltage Min_EWMA
            float(1.5 + 8.0 * random.uniform(0, 1)),  # Stickout
            float(1.5 + 8.0 * random.uniform(0, 1)),  # Stickout_EWMA
            float(500.0 + 1000.0 *
                  random.uniform(0, 1)),  # Weldcurrent actual Positive
            float(500.0 + 1000.0 *
                  random.uniform(0, 1)),  # Weldcurrent actual Positive_EWMA
            float(-1500.0 + 1500.0 *
                  random.uniform(0, 1)),  # Weldcurrent actual Negative
            float(-1500.0 + 1500.0 *
                  random.uniform(0, 1)),  # Weldcurrent actual Negative_EWMA
            float(10.0 + 100.0 * random.uniform(0, 1)),  # Weld time actual
            float(10.0 + 100.0 * random.uniform(0, 1))
        ]  # Weld time actual_EWMA
        # ((random.randint(10, 100) + random.uniform(0, 1))), # Weldtime ref
        # ((random.randint(10, 100) + random.uniform(0, 1)))]  # Weldtime ref_EWMA

    ga.create_individual = create_individual

    def eval_fitness(individual, data):
        array = np.array(individual)[np.newaxis]
        error_array = []
        error = (model.predict(array, batch_size=1) + 2)**2
        error_array.append(individual)
        print('Evaluating... error: ' + str(error))
        return error

    ga.fitness_function = eval_fitness
    ga.run()
    Gen1 = pd.DataFrame(ga.last_generation())
    filepath = "C:\\Users\PHLEGRA\Desktop\MASTER\Data_intersection\Prescribed_parameters\\new"
    filename = str(stud1) + "_" + str(i) + '_predictions.csv'
    Gen1.to_csv(filepath + '\\' + filename, index=False)
    print('Please see file. Process Complete')
    parser.add_argument('--turbines', default=2, type=int, help='enter an integer number of turbines to start with')
    parser.add_argument('--grid_size', default=36, type=int, help='enter an perfect square integer representing grid size (e.g. 6x6 is 36)')


    args = parser.parse_args()
    given_crossover_probability = args.crossover_probability
    given_mutation_probability = args.starting_mutation_probability
    given_adaptive_mutation_factor = args.adaptive_mutation_factor
    given_clipping_threshold = args.clipping_threshold
    given_turbines = args.turbines
    grid_size=  args.grid_size
    
	input_data = [0]*grid_size # length of this list is the # of grid cells in layout
	easyga = GeneticAlgorithm(input_data, crossover_probability =given_crossover_probability , mutation_probability=given_mutation_probability, adaptive_mutation_factor = given_adaptive_mutation_factor, clipping_threshold = given_clipping_threshold, num_turbines = given_turbines)
	easyga.fitness_function = fitness
	easyga.run()
	print(easyga.best_individual())


def fitness (individual, data):

	freestream_velocity = 15
	individual_2D_list = [[individual[0], individual[1]],[individual[2], individual[3]]]

	individual_np = np.asarray(individual_2D_list)
	velocities = np.zeros(individual_np.shape)
	alpha = .9 # entrainment constant
	x = 150 # distance between perpendicular turbine centers
	r = 40 # radius of turbine

	for rowIndex in range(np.shape(individual_np)[0]):
示例#3
0
        mutate_index2], individual[mutate_index1]


ga.mutate_function = mutate


#Рулеточная селекция
def selection(population):
    return random.choice(population)


ga.selection_function = selection


#Реализация функции приспособленности
#Ищет такой х, при котором значение функции максимально
def fitness(individual, data):
    fitness = -float("inf")
    x = -4
    for item in individual:
        if item != 1:
            x += 0.01
        else:
            fitness = 1 / x
            break
    return fitness


ga.fitness_function = fitness
ga.run()
print(ga.best_individual())  #Выводит самую приспособленную особь
示例#4
0
    rnd = np.random.normal(0, 0.5)
    if rnd < -0.5:
        rnd = -0.5
    elif rnd > 0.5:
        rnd = 0.5
    individual[0] = individual[0] + rnd

ga.mutate_function = mutate

def selection(population): #Функция селекции (турнирный отбор)
    ind1 = random.choice(population)
    ind2 = random.choice(population)
    if ind1.fitness > ind2.fitness:
        return ind1
    else:
        return ind2

ga.selection_function = selection

def fitness (individual, data): #Целевая функция
    if individual[0] < -4.0: #Ограничения переменных ЦФ
        individual[0] = -4.0
    if individual[0] >= 0:
        individual[0] = 1e-10
    return 1 / individual[0] #Значение целевой функции 
    
ga.fitness_function = fitness
ga.run() #Запуск ГА
print("\nBest individual: ", ga.best_individual(), "\n") #Вывод лучшей особи популяции (Решение)
for individual in ga.last_generation(): #Вывод всех особей популяции в последнем поколении
  print(individual)