def load(h): h.add(_.Constant('dataRepresentationType', 90)) h.add( _.Codetable('parameterCategory', 1, "4.1.[discipline:l].table", _.Get('masterDir'), _.Get('localDir'))) h.add( _.Codetable('parameterNumber', 1, "4.2.[discipline:l].[parameterCategory:l].table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Codetable_units('parameterUnits', _.Get('parameterNumber'))) h.add(_.Codetable_title('parameterName', _.Get('parameterNumber'))) h.add( _.Codetable('typeOfGeneratingProcess', 1, "4.3.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Unsigned('backgroundProcess', 1)) h.alias('backgroundGeneratingProcessIdentifier', 'backgroundProcess') h.add(_.Unsigned('generatingProcessIdentifier', 1)) h.add(_.Unsigned('hoursAfterDataCutoff', 2)) h.alias('hoursAfterReferenceTimeOfDataCutoff', 'hoursAfterDataCutoff') h.add(_.Unsigned('minutesAfterDataCutoff', 1)) h.alias('minutesAfterReferenceTimeOfDataCutoff', 'minutesAfterDataCutoff') h.add( _.Codetable('indicatorOfUnitOfTimeRange', 1, "4.4.table", _.Get('masterDir'), _.Get('localDir'))) h.alias('defaultStepUnits', 'one') _.Template('grib2/localConcepts/[centre:s]/default_step_units.def', True).load(h) h.add(_.TransientCodetable('stepUnits', 1, "stepUnits.table")) h.add(_.Signed('forecastTime', 4)) h.add( _.Step_in_units('startStep', _.Get('forecastTime'), _.Get('indicatorOfUnitOfTimeRange'), _.Get('stepUnits'))) h.add(_.G2end_step('endStep', _.Get('startStep'), _.Get('stepUnits'))) h.alias('step', 'startStep') h.alias('marsStep', 'startStep') h.alias('mars.step', 'startStep') h.alias('marsStartStep', 'startStep') h.alias('marsEndStep', 'endStep') h.add(_.G2step_range('stepRange', _.Get('startStep'))) h.alias('ls.stepRange', 'stepRange') def stepTypeInternal_inline_concept(h): def wrapped(h): dummy = h.get_l('dummy') if dummy == 1: return 'instant' return wrapped h.add( _.Concept('stepTypeInternal', None, concepts=stepTypeInternal_inline_concept(h))) h.alias('time.stepType', 'stepType') h.alias('time.stepRange', 'stepRange') h.alias('time.stepUnits', 'stepUnits') h.alias('time.dataDate', 'dataDate') h.alias('time.dataTime', 'dataTime') h.alias('time.startStep', 'startStep') h.alias('time.endStep', 'endStep') h.add( _.Validity_date('validityDate', _.Get('dataDate'), _.Get('dataTime'), _.Get('step'), _.Get('stepUnits'))) h.alias('time.validityDate', 'validityDate') h.add( _.Validity_time('validityTime', _.Get('dataDate'), _.Get('dataTime'), _.Get('step'), _.Get('stepUnits'))) h.alias('time.validityTime', 'validityTime') h.add(_.Constant('typeOfLevel', "surface")) h.add(_.Constant('levelType', "surface")) h.add(_.Constant('level', 0)) h.add(_.Unsigned('NB', 1)) h.alias('numberOfContributingSpectralBands', 'NB') with h.list('listOfContributingSpectralBands'): for i in range(0, h.get_l('numberOfContributingSpectralBands')): h.add(_.Unsigned('satelliteSeries', 2)) h.add(_.Unsigned('satelliteNumber', 2)) h.add(_.Unsigned('instrumentType', 2)) h.add(_.Unsigned('scaleFactorOfCentralWaveNumber', 1)) h.add(_.Unsigned('scaledValueOfCentralWaveNumber', 4)) h.add( _.Codetable('typeOfEnsembleForecast', 1, "4.6.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Unsigned('perturbationNumber', 1)) h.alias('number', 'perturbationNumber') h.add(_.Unsigned('numberOfForecastsInEnsemble', 1)) h.alias('totalNumber', 'numberOfForecastsInEnsemble') if ((((((((h.get_l('productionStatusOfProcessedData') == 4) or (h.get_l('productionStatusOfProcessedData') == 5)) or (h.get_l('productionStatusOfProcessedData') == 6)) or (h.get_l('productionStatusOfProcessedData') == 7)) or (h.get_l('productionStatusOfProcessedData') == 8)) or (h.get_l('productionStatusOfProcessedData') == 9)) or (h.get_l('productionStatusOfProcessedData') == 10)) or (h.get_l('productionStatusOfProcessedData') == 11)): h.alias('mars.number', 'perturbationNumber') h.add(_.Unsigned('yearOfEndOfOverallTimeInterval', 2)) h.add(_.Unsigned('monthOfEndOfOverallTimeInterval', 1)) h.add(_.Unsigned('dayOfEndOfOverallTimeInterval', 1)) h.add(_.Unsigned('hourOfEndOfOverallTimeInterval', 1)) h.add(_.Unsigned('minuteOfEndOfOverallTimeInterval', 1)) h.add(_.Unsigned('secondOfEndOfOverallTimeInterval', 1)) h.add(_.Unsigned('numberOfTimeRange', 1)) h.alias('n', 'numberOfTimeRange') h.add(_.Unsigned('numberOfMissingInStatisticalProcess', 4)) h.alias('totalNumberOfDataValuesMissingInStatisticalProcess', 'numberOfMissingInStatisticalProcess') with h.list('statisticalProcessesList'): for i in range(0, h.get_l('numberOfTimeRange')): h.add( _.Codetable('typeOfStatisticalProcessing', 1, "4.10.table", _.Get('masterDir'), _.Get('localDir'))) h.add( _.Codetable('typeOfTimeIncrement', 1, "4.11.table", _.Get('masterDir'), _.Get('localDir'))) h.alias( 'typeOfTimeIncrementBetweenSuccessiveFieldsUsedInTheStatisticalProcessing', 'typeOfTimeIncrement') h.add( _.Codetable('indicatorOfUnitForTimeRange', 1, "4.4.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Unsigned('lengthOfTimeRange', 4)) h.add( _.Codetable('indicatorOfUnitForTimeIncrement', 1, "4.4.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Unsigned('timeIncrement', 4)) h.alias('timeIncrementBetweenSuccessiveFields', 'timeIncrement') if ((h.get_l('numberOfTimeRange') == 1) or (h.get_l('numberOfTimeRange') == 2)): def stepTypeInternal_inline_concept(h): def wrapped(h): typeOfStatisticalProcessing = h.get_l( 'typeOfStatisticalProcessing') if typeOfStatisticalProcessing == 255: return 'instant' typeOfTimeIncrement = h.get_l('typeOfTimeIncrement') if typeOfStatisticalProcessing == 0 and typeOfTimeIncrement == 2: return 'avg' if typeOfStatisticalProcessing == 0 and typeOfTimeIncrement == 3: return 'avg' if typeOfStatisticalProcessing == 0 and typeOfTimeIncrement == 1: return 'avgd' if typeOfStatisticalProcessing == 1 and typeOfTimeIncrement == 2: return 'accum' if typeOfStatisticalProcessing == 2: return 'max' if typeOfStatisticalProcessing == 3: return 'min' if typeOfStatisticalProcessing == 4: return 'diff' if typeOfStatisticalProcessing == 5: return 'rms' if typeOfStatisticalProcessing == 6: return 'sd' if typeOfStatisticalProcessing == 7: return 'cov' if typeOfStatisticalProcessing == 8: return 'sdiff' if typeOfStatisticalProcessing == 9: return 'ratio' if typeOfStatisticalProcessing == 10: return 'stdanom' if typeOfStatisticalProcessing == 11: return 'sum' return wrapped h.add( _.Concept('stepTypeInternal', None, concepts=stepTypeInternal_inline_concept(h))) h.add( _.Step_in_units('startStep', _.Get('forecastTime'), _.Get('indicatorOfUnitOfTimeRange'), _.Get('stepUnits'), _.Get('indicatorOfUnitForTimeRange'), _.Get('lengthOfTimeRange'))) h.add( _.G2end_step('endStep', _.Get('startStep'), _.Get('stepUnits'), _.Get('year'), _.Get('month'), _.Get('day'), _.Get('hour'), _.Get('minute'), _.Get('second'), _.Get('yearOfEndOfOverallTimeInterval'), _.Get('monthOfEndOfOverallTimeInterval'), _.Get('dayOfEndOfOverallTimeInterval'), _.Get('hourOfEndOfOverallTimeInterval'), _.Get('minuteOfEndOfOverallTimeInterval'), _.Get('secondOfEndOfOverallTimeInterval'), _.Get('indicatorOfUnitForTimeRange'), _.Get('lengthOfTimeRange'), _.Get('typeOfTimeIncrement'), _.Get('numberOfTimeRange'))) h.add(_.G2step_range('stepRange', _.Get('startStep'), _.Get('endStep'))) else: h.add(_.Constant('stepType', "multiple steps")) h.add(_.Constant('stepTypeInternal', "multiple steps")) h.add(_.Constant('endStep', "unavailable")) h.add(_.Constant('startStep', "unavailable")) h.add(_.Constant('stepRange', "unavailable")) h.alias('ls.stepRange', 'stepRange') h.alias('mars.step', 'endStep') h.alias('time.stepType', 'stepType') h.alias('time.stepRange', 'stepRange') h.alias('time.stepUnits', 'stepUnits') h.alias('time.dataDate', 'dataDate') h.alias('time.dataTime', 'dataTime') h.alias('time.startStep', 'startStep') h.alias('time.endStep', 'endStep') h.add( _.Validity_date('validityDate', _.Get('date'), _.Get('dataTime'), _.Get('step'), _.Get('stepUnits'), _.Get('yearOfEndOfOverallTimeInterval'), _.Get('monthOfEndOfOverallTimeInterval'), _.Get('dayOfEndOfOverallTimeInterval'))) h.alias('time.validityDate', 'validityDate') h.add( _.Validity_time('validityTime', _.Get('date'), _.Get('dataTime'), _.Get('step'), _.Get('stepUnits'), _.Get('hourOfEndOfOverallTimeInterval'), _.Get('minuteOfEndOfOverallTimeInterval'))) h.alias('time.validityTime', 'validityTime') h.alias('instrument', 'instrumentType') h.alias('ident', 'satelliteNumber')
def load(h): h.add(_.Codetable('parameterCategory', 1, "4.1.[discipline:l].table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Codetable('parameterNumber', 1, "4.2.[discipline:l].[parameterCategory:l].table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Codetable_units('parameterUnits', _.Get('parameterNumber'))) h.add(_.Codetable_title('parameterName', _.Get('parameterNumber'))) h.add(_.Codetable('typeOfGeneratingProcess', 1, "4.3.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Unsigned('backgroundProcess', 1)) h.alias('backgroundGeneratingProcessIdentifier', 'backgroundProcess') h.add(_.Unsigned('generatingProcessIdentifier', 1)) h.add(_.Unsigned('hoursAfterDataCutoff', 2)) h.alias('hoursAfterReferenceTimeOfDataCutoff', 'hoursAfterDataCutoff') h.add(_.Unsigned('minutesAfterDataCutoff', 1)) h.alias('minutesAfterReferenceTimeOfDataCutoff', 'minutesAfterDataCutoff') h.add(_.Codetable('indicatorOfUnitOfTimeRange', 1, "4.4.table", _.Get('masterDir'), _.Get('localDir'))) h.alias('defaultStepUnits', 'one') _.Template('grib2/localConcepts/[centre:s]/default_step_units.def', True).load(h) h.add(_.TransientCodetable('stepUnits', 1, "stepUnits.table")) h.add(_.Signed('forecastTime', 4)) h.add(_.StringCodetable('typeOfFirstFixedSurface', 1, "4.5.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Codetable_units('unitsOfFirstFixedSurface', _.Get('typeOfFirstFixedSurface'))) h.add(_.Codetable_title('nameOfFirstFixedSurface', _.Get('typeOfFirstFixedSurface'))) h.add(_.Signed('scaleFactorOfFirstFixedSurface', 1)) h.add(_.Unsigned('scaledValueOfFirstFixedSurface', 4)) h.add(_.Codetable('typeOfSecondFixedSurface', 1, "4.5.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Codetable_units('unitsOfSecondFixedSurface', _.Get('typeOfSecondFixedSurface'))) h.add(_.Codetable_title('nameOfSecondFixedSurface', _.Get('typeOfSecondFixedSurface'))) h.add(_.Signed('scaleFactorOfSecondFixedSurface', 1)) h.add(_.Unsigned('scaledValueOfSecondFixedSurface', 4)) h.add(_.Transient('pressureUnits', "hPa")) def typeOfLevel_inline_concept(h): def wrapped(h): typeOfFirstFixedSurface = h.get_l('typeOfFirstFixedSurface') typeOfSecondFixedSurface = h.get_l('typeOfSecondFixedSurface') if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 255: return 'surface' if typeOfFirstFixedSurface == 2 and typeOfSecondFixedSurface == 255: return 'cloudBase' if typeOfFirstFixedSurface == 3 and typeOfSecondFixedSurface == 255: return 'cloudTop' if typeOfFirstFixedSurface == 4 and typeOfSecondFixedSurface == 255: return 'isothermZero' if typeOfFirstFixedSurface == 5 and typeOfSecondFixedSurface == 255: return 'adiabaticCondensation' if typeOfFirstFixedSurface == 6 and typeOfSecondFixedSurface == 255: return 'maxWind' if typeOfFirstFixedSurface == 7 and typeOfSecondFixedSurface == 255: return 'tropopause' if typeOfFirstFixedSurface == 8 and typeOfSecondFixedSurface == 255: return 'nominalTop' if typeOfFirstFixedSurface == 9 and typeOfSecondFixedSurface == 255: return 'seaBottom' if typeOfFirstFixedSurface == 10 and typeOfSecondFixedSurface == 255: return 'atmosphere' if typeOfFirstFixedSurface == 20 and typeOfSecondFixedSurface == 255: return 'isothermal' pressureUnits = h.get_s('pressureUnits') if typeOfFirstFixedSurface == 100 and typeOfSecondFixedSurface == 255 and pressureUnits == "Pa": return 'isobaricInPa' if typeOfFirstFixedSurface == 100 and pressureUnits == "hPa" and typeOfSecondFixedSurface == 255: return 'isobaricInhPa' if typeOfFirstFixedSurface == 100 and typeOfSecondFixedSurface == 100: return 'isobaricLayer' if typeOfFirstFixedSurface == 101 and typeOfSecondFixedSurface == 255: return 'meanSea' if typeOfFirstFixedSurface == 102 and typeOfSecondFixedSurface == 255: return 'heightAboveSea' if typeOfFirstFixedSurface == 102 and typeOfSecondFixedSurface == 102: return 'heightAboveSeaLayer' if typeOfFirstFixedSurface == 103 and typeOfSecondFixedSurface == 255: return 'heightAboveGround' if typeOfFirstFixedSurface == 103 and typeOfSecondFixedSurface == 103: return 'heightAboveGroundLayer' if typeOfFirstFixedSurface == 104 and typeOfSecondFixedSurface == 255: return 'sigma' if typeOfFirstFixedSurface == 104 and typeOfSecondFixedSurface == 104: return 'sigmaLayer' if typeOfFirstFixedSurface == 105 and typeOfSecondFixedSurface == 255: return 'hybrid' if typeOfFirstFixedSurface == 118 and typeOfSecondFixedSurface == 255: return 'hybridHeight' if typeOfFirstFixedSurface == 105 and typeOfSecondFixedSurface == 105: return 'hybridLayer' if typeOfFirstFixedSurface == 106 and typeOfSecondFixedSurface == 255: return 'depthBelowLand' if typeOfFirstFixedSurface == 106 and typeOfSecondFixedSurface == 106: return 'depthBelowLandLayer' if typeOfFirstFixedSurface == 107 and typeOfSecondFixedSurface == 255: return 'theta' if typeOfFirstFixedSurface == 107 and typeOfSecondFixedSurface == 107: return 'thetaLayer' if typeOfFirstFixedSurface == 108 and typeOfSecondFixedSurface == 255: return 'pressureFromGround' if typeOfFirstFixedSurface == 108 and typeOfSecondFixedSurface == 108: return 'pressureFromGroundLayer' if typeOfFirstFixedSurface == 109 and typeOfSecondFixedSurface == 255: return 'potentialVorticity' if typeOfFirstFixedSurface == 111 and typeOfSecondFixedSurface == 255: return 'eta' if typeOfFirstFixedSurface == 151 and typeOfSecondFixedSurface == 255: return 'soil' if typeOfFirstFixedSurface == 151 and typeOfSecondFixedSurface == 151: return 'soilLayer' genVertHeightCoords = h.get_l('genVertHeightCoords') NV = h.get_l('NV') if genVertHeightCoords == 1 and typeOfFirstFixedSurface == 150 and NV == 6: return 'generalVertical' if genVertHeightCoords == 1 and typeOfFirstFixedSurface == 150 and typeOfSecondFixedSurface == 150 and NV == 6: return 'generalVerticalLayer' if typeOfFirstFixedSurface == 160 and typeOfSecondFixedSurface == 255: return 'depthBelowSea' if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 8: return 'entireAtmosphere' if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 9: return 'entireOcean' if typeOfFirstFixedSurface == 114 and typeOfSecondFixedSurface == 255: return 'snow' if typeOfFirstFixedSurface == 114 and typeOfSecondFixedSurface == 114: return 'snowLayer' scaleFactorOfFirstFixedSurface = h.get_l('scaleFactorOfFirstFixedSurface') scaledValueOfFirstFixedSurface = h.get_l('scaledValueOfFirstFixedSurface') if typeOfFirstFixedSurface == 160 and scaleFactorOfFirstFixedSurface == 0 and scaledValueOfFirstFixedSurface == 0 and typeOfSecondFixedSurface == 255: return 'oceanSurface' if typeOfFirstFixedSurface == 160 and typeOfSecondFixedSurface == 160: return 'oceanLayer' if typeOfFirstFixedSurface == 169 and typeOfSecondFixedSurface == 255: return 'mixedLayerDepth' return wrapped h.add(_.Concept('typeOfLevel', 'unknown', concepts=typeOfLevel_inline_concept(h))) h.alias('vertical.typeOfLevel', 'typeOfLevel') h.alias('levelType', 'typeOfFirstFixedSurface') if (h.get_l('typeOfSecondFixedSurface') == 255): h.add(_.G2level('level', _.Get('typeOfFirstFixedSurface'), _.Get('scaleFactorOfFirstFixedSurface'), _.Get('scaledValueOfFirstFixedSurface'), _.Get('pressureUnits'))) h.add(_.Transient('bottomLevel', _.Get('level'))) h.add(_.Transient('topLevel', _.Get('level'))) else: h.add(_.G2level('topLevel', _.Get('typeOfFirstFixedSurface'), _.Get('scaleFactorOfFirstFixedSurface'), _.Get('scaledValueOfFirstFixedSurface'), _.Get('pressureUnits'))) h.add(_.G2level('bottomLevel', _.Get('typeOfSecondFixedSurface'), _.Get('scaleFactorOfSecondFixedSurface'), _.Get('scaledValueOfSecondFixedSurface'), _.Get('pressureUnits'))) h.alias('level', 'topLevel') h.alias('ls.level', 'level') h.alias('vertical.level', 'level') h.alias('vertical.bottomLevel', 'bottomLevel') h.alias('vertical.topLevel', 'topLevel') h.alias('extraDim', 'zero') if h._defined('extraDimensionPresent'): if h.get_l('extraDimensionPresent'): h.alias('extraDim', 'one') if h.get_l('extraDim'): h.alias('mars.levelist', 'dimension') h.alias('mars.levtype', 'dimensionType') else: h.add(_.Transient('tempPressureUnits', _.Get('pressureUnits'))) if not ((h.get_s('typeOfLevel') == "surface")): if (h.get_s('tempPressureUnits') == "Pa"): h.add(_.Scale('marsLevel', _.Get('level'), _.Get('one'), _.Get('hundred'))) h.alias('mars.levelist', 'marsLevel') else: h.alias('mars.levelist', 'level') h.alias('mars.levtype', 'typeOfFirstFixedSurface') if (h.get_s('levtype') == "sfc"): h.unalias('mars.levelist') if ((h.get_l('typeOfFirstFixedSurface') == 151) and (h.get_l('typeOfSecondFixedSurface') == 151)): h.alias('mars.levelist', 'bottomLevel') h.alias('ls.typeOfLevel', 'typeOfLevel') h.add(_.Codetable('derivedForecast', 1, "4.7.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Unsigned('numberOfForecastsInEnsemble', 1)) h.alias('totalNumber', 'numberOfForecastsInEnsemble') h.add(_.Unsigned('yearOfEndOfOverallTimeInterval', 2)) h.add(_.Unsigned('monthOfEndOfOverallTimeInterval', 1)) h.add(_.Unsigned('dayOfEndOfOverallTimeInterval', 1)) h.add(_.Unsigned('hourOfEndOfOverallTimeInterval', 1)) h.add(_.Unsigned('minuteOfEndOfOverallTimeInterval', 1)) h.add(_.Unsigned('secondOfEndOfOverallTimeInterval', 1)) h.add(_.Unsigned('numberOfTimeRange', 1)) h.alias('n', 'numberOfTimeRange') h.add(_.Unsigned('numberOfMissingInStatisticalProcess', 4)) h.alias('totalNumberOfDataValuesMissingInStatisticalProcess', 'numberOfMissingInStatisticalProcess') with h.list('statisticalProcessesList'): for i in range(0, h.get_l('numberOfTimeRange')): h.add(_.Codetable('typeOfStatisticalProcessing', 1, "4.10.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Codetable('typeOfTimeIncrement', 1, "4.11.table", _.Get('masterDir'), _.Get('localDir'))) h.alias('typeOfTimeIncrementBetweenSuccessiveFieldsUsedInTheStatisticalProcessing', 'typeOfTimeIncrement') h.add(_.Codetable('indicatorOfUnitForTimeRange', 1, "4.4.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Unsigned('lengthOfTimeRange', 4)) h.add(_.Codetable('indicatorOfUnitForTimeIncrement', 1, "4.4.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Unsigned('timeIncrement', 4)) h.alias('timeIncrementBetweenSuccessiveFields', 'timeIncrement') if ((h.get_l('numberOfTimeRange') == 1) or (h.get_l('numberOfTimeRange') == 2)): def stepTypeInternal_inline_concept(h): def wrapped(h): typeOfStatisticalProcessing = h.get_l('typeOfStatisticalProcessing') if typeOfStatisticalProcessing == 255: return 'instant' typeOfTimeIncrement = h.get_l('typeOfTimeIncrement') if typeOfStatisticalProcessing == 0 and typeOfTimeIncrement == 2: return 'avg' if typeOfStatisticalProcessing == 0 and typeOfTimeIncrement == 3: return 'avg' if typeOfStatisticalProcessing == 0 and typeOfTimeIncrement == 1: return 'avgd' if typeOfStatisticalProcessing == 1 and typeOfTimeIncrement == 2: return 'accum' if typeOfStatisticalProcessing == 2: return 'max' if typeOfStatisticalProcessing == 3: return 'min' if typeOfStatisticalProcessing == 4: return 'diff' if typeOfStatisticalProcessing == 5: return 'rms' if typeOfStatisticalProcessing == 6: return 'sd' if typeOfStatisticalProcessing == 7: return 'cov' if typeOfStatisticalProcessing == 8: return 'sdiff' if typeOfStatisticalProcessing == 9: return 'ratio' if typeOfStatisticalProcessing == 10: return 'stdanom' if typeOfStatisticalProcessing == 11: return 'sum' return wrapped h.add(_.Concept('stepTypeInternal', None, concepts=stepTypeInternal_inline_concept(h))) h.add(_.Step_in_units('startStep', _.Get('forecastTime'), _.Get('indicatorOfUnitOfTimeRange'), _.Get('stepUnits'), _.Get('indicatorOfUnitForTimeRange'), _.Get('lengthOfTimeRange'))) h.add(_.G2end_step('endStep', _.Get('startStep'), _.Get('stepUnits'), _.Get('year'), _.Get('month'), _.Get('day'), _.Get('hour'), _.Get('minute'), _.Get('second'), _.Get('yearOfEndOfOverallTimeInterval'), _.Get('monthOfEndOfOverallTimeInterval'), _.Get('dayOfEndOfOverallTimeInterval'), _.Get('hourOfEndOfOverallTimeInterval'), _.Get('minuteOfEndOfOverallTimeInterval'), _.Get('secondOfEndOfOverallTimeInterval'), _.Get('indicatorOfUnitForTimeRange'), _.Get('lengthOfTimeRange'), _.Get('typeOfTimeIncrement'), _.Get('numberOfTimeRange'))) h.add(_.G2step_range('stepRange', _.Get('startStep'), _.Get('endStep'))) else: h.add(_.Constant('stepType', "multiple steps")) h.add(_.Constant('stepTypeInternal', "multiple steps")) h.add(_.Constant('endStep', "unavailable")) h.add(_.Constant('startStep', "unavailable")) h.add(_.Constant('stepRange', "unavailable")) h.alias('ls.stepRange', 'stepRange') h.alias('mars.step', 'endStep') h.alias('time.stepType', 'stepType') h.alias('time.stepRange', 'stepRange') h.alias('time.stepUnits', 'stepUnits') h.alias('time.dataDate', 'dataDate') h.alias('time.dataTime', 'dataTime') h.alias('time.startStep', 'startStep') h.alias('time.endStep', 'endStep') h.add(_.Validity_date('validityDate', _.Get('date'), _.Get('dataTime'), _.Get('step'), _.Get('stepUnits'), _.Get('yearOfEndOfOverallTimeInterval'), _.Get('monthOfEndOfOverallTimeInterval'), _.Get('dayOfEndOfOverallTimeInterval'))) h.alias('time.validityDate', 'validityDate') h.add(_.Validity_time('validityTime', _.Get('date'), _.Get('dataTime'), _.Get('step'), _.Get('stepUnits'), _.Get('hourOfEndOfOverallTimeInterval'), _.Get('minuteOfEndOfOverallTimeInterval'))) h.alias('time.validityTime', 'validityTime')
def load(h): h.add( _.Codetable('parameterCategory', 1, "4.1.[discipline:l].table", _.Get('masterDir'), _.Get('localDir'))) h.add( _.Codetable('parameterNumber', 1, "4.2.[discipline:l].[parameterCategory:l].table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Codetable_units('parameterUnits', _.Get('parameterNumber'))) h.add(_.Codetable_title('parameterName', _.Get('parameterNumber'))) h.add( _.Codetable('tileClassification', 1, "4.242.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Unsigned('totalNumberOfTileAttributePairs', 1)) h.add(_.Unsigned('numberOfUsedSpatialTiles', 1)) h.add(_.Unsigned('tileIndex', 1)) h.add(_.Unsigned('numberOfUsedTileAttributes', 1)) h.add( _.Codetable('attributeOfTile', 1, "4.241.table", _.Get('masterDir'), _.Get('localDir'))) h.alias('NT', 'totalNumberOfTileAttributePairs') h.alias('NUT', 'numberOfUsedSpatialTiles') h.alias('ITN', 'tileIndex') h.alias('NAT', 'numberOfUsedTileAttributes') h.add( _.Codetable('typeOfGeneratingProcess', 1, "4.3.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Unsigned('backgroundProcess', 1)) h.alias('backgroundGeneratingProcessIdentifier', 'backgroundProcess') h.add(_.Unsigned('generatingProcessIdentifier', 1)) h.add(_.Unsigned('hoursAfterDataCutoff', 2)) h.alias('hoursAfterReferenceTimeOfDataCutoff', 'hoursAfterDataCutoff') h.add(_.Unsigned('minutesAfterDataCutoff', 1)) h.alias('minutesAfterReferenceTimeOfDataCutoff', 'minutesAfterDataCutoff') h.add( _.Codetable('indicatorOfUnitOfTimeRange', 1, "4.4.table", _.Get('masterDir'), _.Get('localDir'))) h.alias('defaultStepUnits', 'one') _.Template('grib2/localConcepts/[centre:s]/default_step_units.def', True).load(h) h.add(_.TransientCodetable('stepUnits', 1, "stepUnits.table")) h.add(_.Signed('forecastTime', 4)) h.add( _.Step_in_units('startStep', _.Get('forecastTime'), _.Get('indicatorOfUnitOfTimeRange'), _.Get('stepUnits'))) h.add(_.G2end_step('endStep', _.Get('startStep'), _.Get('stepUnits'))) h.alias('step', 'startStep') h.alias('marsStep', 'startStep') h.alias('mars.step', 'startStep') h.alias('marsStartStep', 'startStep') h.alias('marsEndStep', 'endStep') h.add(_.G2step_range('stepRange', _.Get('startStep'))) h.alias('ls.stepRange', 'stepRange') def stepTypeInternal_inline_concept(h): def wrapped(h): dummy = h.get_l('dummy') if dummy == 1: return 'instant' return wrapped h.add( _.Concept('stepTypeInternal', None, concepts=stepTypeInternal_inline_concept(h))) h.alias('time.stepType', 'stepType') h.alias('time.stepRange', 'stepRange') h.alias('time.stepUnits', 'stepUnits') h.alias('time.dataDate', 'dataDate') h.alias('time.dataTime', 'dataTime') h.alias('time.startStep', 'startStep') h.alias('time.endStep', 'endStep') h.add( _.Validity_date('validityDate', _.Get('dataDate'), _.Get('dataTime'), _.Get('step'), _.Get('stepUnits'))) h.alias('time.validityDate', 'validityDate') h.add( _.Validity_time('validityTime', _.Get('dataDate'), _.Get('dataTime'), _.Get('step'), _.Get('stepUnits'))) h.alias('time.validityTime', 'validityTime') h.add( _.StringCodetable('typeOfFirstFixedSurface', 1, "4.5.table", _.Get('masterDir'), _.Get('localDir'))) h.add( _.Codetable_units('unitsOfFirstFixedSurface', _.Get('typeOfFirstFixedSurface'))) h.add( _.Codetable_title('nameOfFirstFixedSurface', _.Get('typeOfFirstFixedSurface'))) h.add(_.Signed('scaleFactorOfFirstFixedSurface', 1)) h.add(_.Unsigned('scaledValueOfFirstFixedSurface', 4)) h.add( _.Codetable('typeOfSecondFixedSurface', 1, "4.5.table", _.Get('masterDir'), _.Get('localDir'))) h.add( _.Codetable_units('unitsOfSecondFixedSurface', _.Get('typeOfSecondFixedSurface'))) h.add( _.Codetable_title('nameOfSecondFixedSurface', _.Get('typeOfSecondFixedSurface'))) h.add(_.Signed('scaleFactorOfSecondFixedSurface', 1)) h.add(_.Unsigned('scaledValueOfSecondFixedSurface', 4)) h.add(_.Transient('pressureUnits', "hPa")) def typeOfLevel_inline_concept(h): def wrapped(h): typeOfFirstFixedSurface = h.get_l('typeOfFirstFixedSurface') typeOfSecondFixedSurface = h.get_l('typeOfSecondFixedSurface') if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 255: return 'surface' if typeOfFirstFixedSurface == 2 and typeOfSecondFixedSurface == 255: return 'cloudBase' if typeOfFirstFixedSurface == 3 and typeOfSecondFixedSurface == 255: return 'cloudTop' if typeOfFirstFixedSurface == 4 and typeOfSecondFixedSurface == 255: return 'isothermZero' if typeOfFirstFixedSurface == 5 and typeOfSecondFixedSurface == 255: return 'adiabaticCondensation' if typeOfFirstFixedSurface == 6 and typeOfSecondFixedSurface == 255: return 'maxWind' if typeOfFirstFixedSurface == 7 and typeOfSecondFixedSurface == 255: return 'tropopause' if typeOfFirstFixedSurface == 8 and typeOfSecondFixedSurface == 255: return 'nominalTop' if typeOfFirstFixedSurface == 9 and typeOfSecondFixedSurface == 255: return 'seaBottom' if typeOfFirstFixedSurface == 10 and typeOfSecondFixedSurface == 255: return 'atmosphere' if typeOfFirstFixedSurface == 20 and typeOfSecondFixedSurface == 255: return 'isothermal' pressureUnits = h.get_s('pressureUnits') if typeOfFirstFixedSurface == 100 and typeOfSecondFixedSurface == 255 and pressureUnits == "Pa": return 'isobaricInPa' if typeOfFirstFixedSurface == 100 and pressureUnits == "hPa" and typeOfSecondFixedSurface == 255: return 'isobaricInhPa' if typeOfFirstFixedSurface == 100 and typeOfSecondFixedSurface == 100: return 'isobaricLayer' if typeOfFirstFixedSurface == 101 and typeOfSecondFixedSurface == 255: return 'meanSea' if typeOfFirstFixedSurface == 102 and typeOfSecondFixedSurface == 255: return 'heightAboveSea' if typeOfFirstFixedSurface == 102 and typeOfSecondFixedSurface == 102: return 'heightAboveSeaLayer' if typeOfFirstFixedSurface == 103 and typeOfSecondFixedSurface == 255: return 'heightAboveGround' if typeOfFirstFixedSurface == 103 and typeOfSecondFixedSurface == 103: return 'heightAboveGroundLayer' if typeOfFirstFixedSurface == 104 and typeOfSecondFixedSurface == 255: return 'sigma' if typeOfFirstFixedSurface == 104 and typeOfSecondFixedSurface == 104: return 'sigmaLayer' if typeOfFirstFixedSurface == 105 and typeOfSecondFixedSurface == 255: return 'hybrid' if typeOfFirstFixedSurface == 118 and typeOfSecondFixedSurface == 255: return 'hybridHeight' if typeOfFirstFixedSurface == 105 and typeOfSecondFixedSurface == 105: return 'hybridLayer' if typeOfFirstFixedSurface == 106 and typeOfSecondFixedSurface == 255: return 'depthBelowLand' if typeOfFirstFixedSurface == 106 and typeOfSecondFixedSurface == 106: return 'depthBelowLandLayer' if typeOfFirstFixedSurface == 107 and typeOfSecondFixedSurface == 255: return 'theta' if typeOfFirstFixedSurface == 107 and typeOfSecondFixedSurface == 107: return 'thetaLayer' if typeOfFirstFixedSurface == 108 and typeOfSecondFixedSurface == 255: return 'pressureFromGround' if typeOfFirstFixedSurface == 108 and typeOfSecondFixedSurface == 108: return 'pressureFromGroundLayer' if typeOfFirstFixedSurface == 109 and typeOfSecondFixedSurface == 255: return 'potentialVorticity' if typeOfFirstFixedSurface == 111 and typeOfSecondFixedSurface == 255: return 'eta' if typeOfFirstFixedSurface == 151 and typeOfSecondFixedSurface == 255: return 'soil' if typeOfFirstFixedSurface == 151 and typeOfSecondFixedSurface == 151: return 'soilLayer' genVertHeightCoords = h.get_l('genVertHeightCoords') NV = h.get_l('NV') if genVertHeightCoords == 1 and typeOfFirstFixedSurface == 150 and NV == 6: return 'generalVertical' if genVertHeightCoords == 1 and typeOfFirstFixedSurface == 150 and typeOfSecondFixedSurface == 150 and NV == 6: return 'generalVerticalLayer' if typeOfFirstFixedSurface == 160 and typeOfSecondFixedSurface == 255: return 'depthBelowSea' if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 8: return 'entireAtmosphere' if typeOfFirstFixedSurface == 1 and typeOfSecondFixedSurface == 9: return 'entireOcean' if typeOfFirstFixedSurface == 114 and typeOfSecondFixedSurface == 255: return 'snow' if typeOfFirstFixedSurface == 114 and typeOfSecondFixedSurface == 114: return 'snowLayer' scaleFactorOfFirstFixedSurface = h.get_l( 'scaleFactorOfFirstFixedSurface') scaledValueOfFirstFixedSurface = h.get_l( 'scaledValueOfFirstFixedSurface') if typeOfFirstFixedSurface == 160 and scaleFactorOfFirstFixedSurface == 0 and scaledValueOfFirstFixedSurface == 0 and typeOfSecondFixedSurface == 255: return 'oceanSurface' if typeOfFirstFixedSurface == 160 and typeOfSecondFixedSurface == 160: return 'oceanLayer' if typeOfFirstFixedSurface == 169 and typeOfSecondFixedSurface == 255: return 'mixedLayerDepth' return wrapped h.add( _.Concept('typeOfLevel', 'unknown', concepts=typeOfLevel_inline_concept(h))) h.alias('vertical.typeOfLevel', 'typeOfLevel') h.alias('levelType', 'typeOfFirstFixedSurface') if (h.get_l('typeOfSecondFixedSurface') == 255): h.add( _.G2level('level', _.Get('typeOfFirstFixedSurface'), _.Get('scaleFactorOfFirstFixedSurface'), _.Get('scaledValueOfFirstFixedSurface'), _.Get('pressureUnits'))) h.add(_.Transient('bottomLevel', _.Get('level'))) h.add(_.Transient('topLevel', _.Get('level'))) else: h.add( _.G2level('topLevel', _.Get('typeOfFirstFixedSurface'), _.Get('scaleFactorOfFirstFixedSurface'), _.Get('scaledValueOfFirstFixedSurface'), _.Get('pressureUnits'))) h.add( _.G2level('bottomLevel', _.Get('typeOfSecondFixedSurface'), _.Get('scaleFactorOfSecondFixedSurface'), _.Get('scaledValueOfSecondFixedSurface'), _.Get('pressureUnits'))) h.alias('level', 'topLevel') h.alias('ls.level', 'level') h.alias('vertical.level', 'level') h.alias('vertical.bottomLevel', 'bottomLevel') h.alias('vertical.topLevel', 'topLevel') h.alias('extraDim', 'zero') if h._defined('extraDimensionPresent'): if h.get_l('extraDimensionPresent'): h.alias('extraDim', 'one') if h.get_l('extraDim'): h.alias('mars.levelist', 'dimension') h.alias('mars.levtype', 'dimensionType') else: h.add(_.Transient('tempPressureUnits', _.Get('pressureUnits'))) if not ((h.get_s('typeOfLevel') == "surface")): if (h.get_s('tempPressureUnits') == "Pa"): h.add( _.Scale('marsLevel', _.Get('level'), _.Get('one'), _.Get('hundred'))) h.alias('mars.levelist', 'marsLevel') else: h.alias('mars.levelist', 'level') h.alias('mars.levtype', 'typeOfFirstFixedSurface') if (h.get_s('levtype') == "sfc"): h.unalias('mars.levelist') if ((h.get_l('typeOfFirstFixedSurface') == 151) and (h.get_l('typeOfSecondFixedSurface') == 151)): h.alias('mars.levelist', 'bottomLevel') h.alias('ls.typeOfLevel', 'typeOfLevel') h.add( _.Codetable('typeOfEnsembleForecast', 1, "4.6.table", _.Get('masterDir'), _.Get('localDir'))) h.add(_.Unsigned('perturbationNumber', 1)) h.alias('number', 'perturbationNumber') h.add(_.Unsigned('numberOfForecastsInEnsemble', 1)) h.alias('totalNumber', 'numberOfForecastsInEnsemble') if ((((((((h.get_l('productionStatusOfProcessedData') == 4) or (h.get_l('productionStatusOfProcessedData') == 5)) or (h.get_l('productionStatusOfProcessedData') == 6)) or (h.get_l('productionStatusOfProcessedData') == 7)) or (h.get_l('productionStatusOfProcessedData') == 8)) or (h.get_l('productionStatusOfProcessedData') == 9)) or (h.get_l('productionStatusOfProcessedData') == 10)) or (h.get_l('productionStatusOfProcessedData') == 11)): h.alias('mars.number', 'perturbationNumber')