示例#1
0
def abc():
    ts_code='002713.SZ'
    csv_file = '{0}.csv'.format(ts_code)
    render_html = '{0}.html'.format(ts_code)
    end_date = datetime.now().strftime('%Y%m%d')

    df = None
    if not os.path.exists(csv_file):
        MY_TOKEN = '190040a13eb5b092ca76fa003f58d693c9121e0fc621f6d2ad221468'
        ts.set_token(MY_TOKEN)
        pro = ts.pro_api()
        df1 = pro.daily(ts_code=ts_code, start_date='20140101', end_date=end_date)
        df = df1.sort_values(by=['trade_date'])
        df.reset_index(level=0, inplace=True)
        df.drop(['index'], axis=1, inplace=True)
        print(df)
        df.to_csv(csv_file)

    if not df is None:
        df = pd.read_csv(csv_file)

    date = df.trade_date.tolist()
    data = []
    for idx in df.index :
        row=[df.iloc[idx]['open'],df.iloc[idx]['close'],df.iloc[idx]['low'],df.iloc[idx]['high']]
        data.append(row)
    WIDTH = 1100
    HEIGHT = 550
    chart_init = {
        "width": WIDTH,
        "height": HEIGHT,
    }
    kline = Kline()
    kline.add_xaxis(date).add_yaxis('日K', data)
    kline.set_global_opts(
        xaxis_opts=opts.AxisOpts(is_scale=True),
        yaxis_opts=opts.AxisOpts(  
            is_scale=True,  
            splitarea_opts=opts.SplitAreaOpts(  
                is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)  
            ),
        ),
        datazoom_opts=[opts.DataZoomOpts()],
        # title_opts=opts.TitleOpts(title='日K线图:{0}'.format(ts_code)),
    )
    # kline.add_yaxis(
    #     "日K",
    #     date,
    #     data,
    #     mark_point=["max"],
    #     is_datazoom_show=True,
    # )
    # 生成一个名为 render.html 的文件

    kline.render(render_html)
    kline.render_notebook()
    # kline.render('a.html')
    # 在jupyter中使用,只需要使用xxx.render_notebook() 方法即可在Jupyter中显示图
示例#2
0
def gen_kline(df1):

    dt_list = list(df1['datetime'])
    kline_data = df1.apply(lambda record: [
        float(record['open']),
        float(record['close']),
        float(record['low']),
        float(record['high'])
    ],
                           axis=1).tolist()

    #kline = Kline(init_opts=opts.InitOpts(width='1000px'))
    kline = Kline()
    kline.add_xaxis(list(df1['datetime']))
    kline.add_yaxis('日K', kline_data)

    kline.set_global_opts(
        title_opts=opts.TitleOpts(title='K线'),
        datazoom_opts=[
            opts.DataZoomOpts(
                is_show=True,
                type_="slider",
                xaxis_index=[0, 1, 2],
                range_start=0,
                range_end=100,
            ),
            opts.DataZoomOpts(
                is_show=False,
                type_="inside",
                xaxis_index=[0, 1, 2],
                range_start=0,
                range_end=100,
            ),
        ],
        legend_opts=opts.LegendOpts(is_show=False),
        yaxis_opts=opts.AxisOpts(
            is_scale=True,
            splitarea_opts=opts.SplitAreaOpts(
                is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1))),
        tooltip_opts=opts.TooltipOpts(
            trigger="axis",
            axis_pointer_type="cross",
            background_color="rgba(245, 245, 245, 0.8)",
            border_width=1,
            border_color="#ccc",
            textstyle_opts=opts.TextStyleOpts(color="#000"),
        ),
        axispointer_opts=opts.AxisPointerOpts(
            is_show=True,
            link=[{
                "xAxisIndex": "all"
            }],
            label=opts.LabelOpts(background_color="#777"),
        ),
    )

    return kline
示例#3
0
    def kline(self,
              data,
              title="K线图",
              open="open",
              close="close",
              high="high",
              low="low",
              date=None,
              blist=None,
              slist=None,
              positlist=None):
        if type(data) != pd.DataFrame:
            return None

        if data.empty:
            return None

        if date == None:
            xaxis = pd.Series(
                data.index).apply(lambda x: x.strftime("%Y-%m-%d")).to_list()
        else:
            xaxis = pd.Series(data["date"]).apply(
                lambda x: x.strftime("%Y-%m-%d")).to_list()

        yaxis = data[[open, close, high, low]].values.tolist()

        chart = Kline(init_opts=opts.InitOpts())
        chart.add_xaxis(xaxis)
        chart.add_yaxis(
            "kline",
            yaxis,
            itemstyle_opts=opts.ItemStyleOpts(
                color="#ec0000",
                color0="#00da3c",
                border_color="#8A0000",
                border_color0="#008F28",
            ),
            markline_opts=opts.MarkLineOpts(
                data=[opts.MarkLineItem(type_="max", value_dim="close")]),
            markpoint_opts=bsopts(blist=blist, slist=slist))

        chart.set_series_opts(markarea_opts=opts.MarkAreaOpts(
            data=positionsArea(positlist)))
        # chart = maline(data).overlap(chart)
        # chart.set_global_opts(
        #     xaxis_opts=opts.AxisOpts(is_scale=True),
        #     yaxis_opts=opts.AxisOpts(
        #         is_scale=True,
        #         splitarea_opts=opts.SplitAreaOpts(
        #             is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
        #         ),
        #     ),
        #     # datazoom_opts=datazoom,
        #     title_opts=opts.TitleOpts(title=title),
        # )
        return chart
示例#4
0
    def draw_Kline(self):
        """
        画股票的K线图,需要传入四个数据
        分别是["open", "close", "high", "low"]
        :return: 画出图像
        """
        Df_s1 = Read_One_Stock(self.SC).select_col("open", "high", "low",
                                                   "close", "vol", "amount")
        length = Df_s1.shape[0]
        Df_s1.sort_values("trade_date", inplace=True)
        Df_s1.index = list(range(length))
        price = np.array(Df_s1[["open", "close", "high", "low"]]).tolist()
        date = np.array(Df_s1["trade_date"], dtype=np.string_).tolist()
        ma_value_5 = calculate_ma_n(list(Df_s1['close']), 5)
        ma_value_10 = calculate_ma_n(list(Df_s1['close']), 10)
        ma_value = np.array([ma_value_5, ma_value_10]).tolist()

        kline = Kline()
        kline.set_global_opts(
            xaxis_opts=opts.AxisOpts(is_scale=True),
            yaxis_opts=opts.AxisOpts(
                is_scale=True,
                splitarea_opts=opts.SplitAreaOpts(
                    is_show=True,
                    areastyle_opts=opts.AreaStyleOpts(opacity=1)),
            ),
            datazoom_opts=[opts.DataZoomOpts()],
            title_opts=opts.TitleOpts(title="K-Line of {}".format(self.SC)),
        )
        kline.add_xaxis(date)
        kline.add_yaxis('K-Line', price)

        line = Line()
        line.add_xaxis(date)
        line.add_yaxis(series_name="ma5",
                       y_axis=ma_value[0],
                       label_opts=opts.LabelOpts(is_show=False))
        line.add_yaxis(series_name="ma10",
                       y_axis=ma_value[1],
                       label_opts=opts.LabelOpts(is_show=False))
        line.set_global_opts(
            xaxis_opts=opts.AxisOpts(is_scale=True),
            yaxis_opts=opts.AxisOpts(
                is_scale=True,
                splitarea_opts=opts.SplitAreaOpts(
                    is_show=True,
                    areastyle_opts=opts.AreaStyleOpts(opacity=1)),
            ),
            datazoom_opts=[opts.DataZoomOpts()],
            title_opts=opts.TitleOpts(title=""))

        kline.overlap(line)
        kline.render("./Plots/{} Candle Plot.html".format(self.SC))
def _stock_():
    stock_code = '000001'
    freq = 'day'
    # stock_df = download_index_bars(stock_code, freq=freq)
    # print(stock_df)

    csv = os.path.join(ct.DATA_DIR, 'index_%s_%s.csv' % (stock_code, freq))
    stock_df = pd.read_csv(csv)
    html = os.path.join(ct.HTML_DIR, 'index_%s_%s.html' % (stock_code, freq))
    stock_df.to_csv(csv, index=False)
    
    from pyecharts import options as opts
    from pyecharts.charts import Kline

    WIDTH = 1100
    HEIGHT = 550
    chart_init = {
        "width": WIDTH,
        "height": HEIGHT,
    }
    kline = Kline()
    date = stock_df.datetime.tolist()
    data = []
    for index, row in stock_df.iterrows():
        item = [row.open, row.close, row.low, row.high]
        data.append(item)
    print(data)

    kline.add_xaxis(date).add_yaxis('日K', data)
    kline.set_global_opts(
        xaxis_opts=opts.AxisOpts(is_scale=True),
        yaxis_opts=opts.AxisOpts(  
            is_scale=True,  
            splitarea_opts=opts.SplitAreaOpts(  
                is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)  
            ),
        ),
        datazoom_opts=[opts.DataZoomOpts()],
        # title_opts=opts.TitleOpts(title='日K线图:{0}'.format(ts_code)),
    )
    # kline.add_yaxis(
    #     "日K",
    #     date,
    #     data,
    #     mark_point=["max"],
    #     is_datazoom_show=True,
    # )
    # 生成一个名为 render.html 的文件
    kline.render(html)
示例#6
0
def gen_kline_two(df1):

    dt_list =  list(df1['datetime'])
    kline_data = df1.apply(lambda record: [float(record['open']), float(record['close']), float(record['low']), float(record['high'])], axis=1).tolist()


    kline = Kline()
    kline.add_xaxis( list(df1['datetime']) )
    kline.add_yaxis('y', kline_data, xaxis_index=1,yaxis_index=1,)
    kline.set_global_opts(yaxis_opts=opts.AxisOpts(is_scale=True,splitarea_opts=opts.SplitAreaOpts(is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)) ),
                          legend_opts=opts.LegendOpts(is_show=True,pos_right="40%")
                          #xaxis_opts=opts.AxisOpts(type_='time'))
                         )

    return kline
示例#7
0
def kline(data, buy=[], sell=[], zone=[], title="K线图", height="250px"):
    if data.empty:
        return Kline(init_opts=opts.InitOpts(width="100%", height=height))

    xaxis = pd.Series(
        data.index).apply(lambda x: x.strftime("%Y-%m-%d")).to_list()
    yaxis = data[["open", "close", "high", "low"]].values.tolist()

    chart = Kline(init_opts=opts.InitOpts(width="100%", height=height))
    chart.add_xaxis(xaxis)
    chart.add_yaxis(
        "kline",
        yaxis,
        itemstyle_opts=opts.ItemStyleOpts(
            color="#ec0000",
            color0="#00da3c",
            border_color="#8A0000",
            border_color0="#008F28",
        ),
        # markline_opts=opts.MarkLineOpts(
        #     data=[opts.MarkLineItem(type_="max", value_dim="close")]
        # ),
        markpoint_opts=opts.MarkPointOpts(
            data=buy.apply(buypoint, axis=1).values.tolist() +
            (sell.apply(sellpoint, axis=1).values.tolist())),
    )
    chart.set_series_opts(markarea_opts=opts.MarkAreaOpts(
        data=zone.apply(bszone, axis=1).values.tolist()))
    # chart = chart.overlap(maline(data))

    # chart.set_global_opts(
    #     xaxis_opts=opts.AxisOpts(is_scale=True),
    #     yaxis_opts=opts.AxisOpts(
    #         is_scale=True,
    #         splitarea_opts=opts.SplitAreaOpts(
    #             is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
    #         ),
    #     ),
    #     datazoom_opts=[opts.DataZoomOpts(
    #         pos_bottom="0px",
    #         range_start= 100.00-(5000.00/len(xaxis)),
    #         range_end= 100.00,
    #         )],
    #         title_opts=opts.TitleOpts(title=title),
    # )

    return chart
示例#8
0
def kline(data, title="K线图", height="250px"):

    # logging.debug(data)
    if data.empty:
        return Kline(init_opts=opts.InitOpts(width="100%", height=height))

    xaxis = pd.Series(
        data.index).apply(lambda x: x.strftime("%Y-%m-%d")).to_list()
    yaxis = data[["open", "close", "high", "low"]].values.tolist()

    chart = Kline(init_opts=opts.InitOpts(width="100%", height=height))
    chart.add_xaxis(xaxis)
    chart.add_yaxis(
        "kline",
        yaxis,
        itemstyle_opts=opts.ItemStyleOpts(
            color="#ec0000",
            color0="#00da3c",
            border_color="#8A0000",
            border_color0="#008F28",
        ),
        markline_opts=opts.MarkLineOpts(
            data=[opts.MarkLineItem(type_="max", value_dim="close")]),
        markpoint_opts=opts.MarkPointOpts(
            data=bspoint(data),
            label_opts=opts.LabelOpts(
                position="top",
                color="#000",
                font_size=8,
            ),
        ),
    )

    chart.set_series_opts(markarea_opts=opts.MarkAreaOpts(data=bsArea))
    chart = maline(data).overlap(chart)
    chart.set_global_opts(
        xaxis_opts=opts.AxisOpts(is_scale=True),
        yaxis_opts=opts.AxisOpts(
            is_scale=True,
            splitarea_opts=opts.SplitAreaOpts(
                is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)),
        ),
        datazoom_opts=datazoom,
        title_opts=opts.TitleOpts(title=title),
    )
    return chart
示例#9
0
def gen_kline(df1):

    dt_list =  list(df1['datetime'])
    kline_data = df1.apply(lambda record: [float(record['open']), float(record['close']), float(record['low']), float(record['high'])], axis=1).tolist()

    #kline = Kline(init_opts=opts.InitOpts(width='1000px'))
    kline = Kline()
    kline.add_xaxis( list(df1['datetime']) )
    kline.add_yaxis('日K', kline_data)

    kline.set_global_opts(title_opts=opts.TitleOpts(title='Kline-基本示例'),
                          datazoom_opts=[opts.DataZoomOpts(is_show=True,type_="slider",xaxis_index=[0,1,2],range_start=98,range_end=100,),
                                         opts.DataZoomOpts(is_show=False,type_="inside",xaxis_index=[0,1,2],range_start=98,range_end=100,), ],
                          legend_opts=opts.LegendOpts(is_show=False),
                          yaxis_opts=opts.AxisOpts(is_scale=True,splitarea_opts=opts.SplitAreaOpts(is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)) ),
                          # tooltip_opts=opts.TooltipOpts(
                          #                               trigger="axis",
                          #                               axis_pointer_type="cross",
                          #                               background_color="rgba(245, 245, 245, 0.8)",
                          #                               border_width=1,
                          #                               border_color="#ccc",
                          #                               textstyle_opts=opts.TextStyleOpts(color="#000"),
                          #                               ),
                          # visualmap_opts=opts.VisualMapOpts(
                          #                                   is_show=False,
                          #                                   dimension=2,
                          #                                   series_index=5,
                          #                                   is_piecewise=True,
                          #                                   pieces=[
                          #                                       {"value": 1, "color": "#ec0000"},
                          #                                       {"value": -1, "color": "#00da3c"}, ],
                          #                                  ),
                          # axispointer_opts=opts.AxisPointerOpts(
                          #                                       is_show=True,
                          #                                       link=[{"xAxisIndex": "all"}],
                          #                                       label=opts.LabelOpts(background_color="#777"),
                          #                                      ),
                          # brush_opts=opts.BrushOpts(
                          #                             x_axis_index="all",
                          #                             brush_link="all",
                          #                             out_of_brush={"colorAlpha": 0.1},
                          #                             brush_type="lineX",
                          #                          ),
                      )

    return kline
示例#10
0
    def gen_kline(self, df1, symbol):
        df1['datetime'] = df1['date']
        dt_list = list(df1['datetime'])
        k_plot_value = df1.apply(
            lambda record:
            [record['open'], record['close'], record['low'], record['high']],
            axis=1).tolist()
        #print(k_plot_value)

        kline = Kline(init_opts=opts.InitOpts(
            width='1500px',
            height="700px",
        ))
        kline.add_xaxis(dt_list)
        kline.add_yaxis(symbol, k_plot_value)
        kline.set_global_opts(
            title_opts=opts.TitleOpts(title='日线'),
            datazoom_opts=[
                opts.DataZoomOpts(
                    is_show=True,
                    type_="slider",
                    xaxis_index=[0, 1],
                    range_start=0,
                    range_end=100,
                ),
                opts.DataZoomOpts(
                    is_show=False,
                    type_="inside",
                    xaxis_index=[0, 1],
                    range_start=0,
                    range_end=100,
                ),
            ],
            tooltip_opts=opts.TooltipOpts(axis_pointer_type="cross"),
            axispointer_opts=opts.AxisPointerOpts(
                is_show=True,
                link=[{
                    "xAxisIndex": "all"
                }],
            ),
        )

        return kline
示例#11
0
def gen_kline_one(df1):

    dt_list =  list(df1['datetime'])
    kline_data = df1.apply(lambda record: [float(record['open']), float(record['close']), float(record['low']), float(record['high'])], axis=1).tolist()


    kline = Kline(init_opts=opts.InitOpts(width='1500px'))
    kline.add_xaxis( list(df1['datetime']) )
    kline.add_yaxis('m', kline_data)
    kline.set_global_opts(title_opts=opts.TitleOpts(title='K线'),
                          #datazoom_opts=[opts.DataZoomOpts()],
                          #xaxis_opts=opts.AxisOpts(type_='time'))
                          yaxis_opts=opts.AxisOpts(is_scale=True,splitarea_opts=opts.SplitAreaOpts(is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)) ),
                          datazoom_opts=[opts.DataZoomOpts(is_show=True,type_="slider",xaxis_index=[0,1],range_start=0,range_end=100,),
                                         opts.DataZoomOpts(is_show=False,type_="inside",xaxis_index=[0,1],range_start=0,range_end=100,), ],
                          tooltip_opts=opts.TooltipOpts( trigger="axis",axis_pointer_type="cross" ),
                          #axispointer_opts=opts.AxisPointerOpts(is_show=True, link=[{"xAxisIndex": "all"}], ),
                         )

    return kline
示例#12
0
def gen_kline(df1, symbol):
    dt_list = list(df1['datetime'])
    #print(dt_list)
    k_plot_value = df1.apply(
        lambda record:
        [record['open'], record['close'], record['low'], record['high']],
        axis=1).tolist()
    #print(k_plot_value)

    kline = Kline(init_opts=opts.InitOpts(
        width='1500px',
        height="700px",
    ))
    kline.add_xaxis(list(df1['datetime']))
    kline.add_yaxis(symbol, k_plot_value)
    kline.set_global_opts(
        title_opts=opts.TitleOpts(title='K线'),
        datazoom_opts=[opts.DataZoomOpts()],
    )
    #xaxis_opts=opts.AxisOpts(type_='time'))
    return kline
def view_kline(time, data, title=None):
    """K线图"""
    k = Kline(init_opts=opts.InitOpts(width="1800px", height="900px", theme="dark"))
    # 添加x轴数据
    k.add_xaxis(time)
    # 添加图例和y轴数据,颜色 红涨绿跌
    k.add_yaxis("kline", data, itemstyle_opts=opts.ItemStyleOpts(
        color="#db6969",
        color0="#02691e",
        border_color="#8A0000",
        border_color0="#008F28", ))
    # 是否是脱离0值比例,双数值轴的散点图中比较有用

    k.set_global_opts(xaxis_opts=opts.AxisOpts(is_scale=True))
    k.set_global_opts(yaxis_opts=opts.AxisOpts(is_scale=True))
    if title:
        k.set_global_opts(title_opts=opts.TitleOpts(title=title))
    # 添加滑动条,可左右滑动
    k.set_global_opts(datazoom_opts=opts.DataZoomOpts(type_="inside"))
    # 十字星
    k.set_global_opts(tooltip_opts=opts.TooltipOpts(axis_pointer_type="cross"))
    return k
示例#14
0
from pyecharts.charts import Line, Kline, Bar

import pandas as pd
from datetime import datetime, timedelta

fn = 'bar/min1_SR001.csv'

df1 = pd.read_csv(fn)
df1['datetime'] = df1['date'] + ' ' + df1['time']
print(df1.head())
dt_list = list(df1['datetime'])
#print(dt_list)
k_plot_value = df1.apply(
    lambda record:
    [record['open'], record['close'], record['low'], record['high']],
    axis=1).tolist()
#print(k_plot_value)

kline = Kline(init_opts=opts.InitOpts(width='1500px'))
kline.add_xaxis(list(df1['datetime']))
kline.add_yaxis('日K', k_plot_value)
kline.set_global_opts(
    title_opts=opts.TitleOpts(title='Kline-基本示例'),
    datazoom_opts=[opts.DataZoomOpts()],
)
#xaxis_opts=opts.AxisOpts(type_='time'))
kline.render()

# if __name__ == '__main__':
#     pass
示例#15
0
def kline_pro(kline: List[dict],
              fx: List[dict] = None,
              xd=None,
              bs: List[dict] = None,
              title: str = "缠中说禅K线分析",
              width: str = "1400px",
              height: str = '580px') -> Grid:
    """绘制缠中说禅K线分析结果

    :param kline: K线
    :param fx: 分型识别结果
    :param bi: 笔识别结果
    :param xd: 线段识别结果
    :param zs: 中枢
    :param bs: 买卖点
    :param title: 图表标题
    :param width: 图表宽度
    :param height: 图表高度
    :return: 用Grid组合好的图表
    """
    # 配置项设置
    # ------------------------------------------------------------------------------------------------------------------
    bg_color = "#1f212d"  # 背景
    up_color = "#F9293E"
    down_color = "#00aa3b"

    init_opts = opts.InitOpts(bg_color=bg_color,
                              width=width,
                              height=height,
                              animation_opts=opts.AnimationOpts(False))
    title_opts = opts.TitleOpts(
        title=title,
        pos_top="1%",
        title_textstyle_opts=opts.TextStyleOpts(color=up_color, font_size=20),
        subtitle_textstyle_opts=opts.TextStyleOpts(color=down_color,
                                                   font_size=12))

    label_not_show_opts = opts.LabelOpts(is_show=False)
    legend_not_show_opts = opts.LegendOpts(is_show=False)
    red_item_style = opts.ItemStyleOpts(color=up_color)
    green_item_style = opts.ItemStyleOpts(color=down_color)
    k_style_opts = opts.ItemStyleOpts(color=up_color,
                                      color0=down_color,
                                      border_color=up_color,
                                      border_color0=down_color,
                                      opacity=0.8)

    legend_opts = opts.LegendOpts(is_show=True,
                                  pos_top="1%",
                                  pos_left="30%",
                                  item_width=14,
                                  item_height=8,
                                  textstyle_opts=opts.TextStyleOpts(
                                      font_size=12, color="#0e99e2"))
    brush_opts = opts.BrushOpts(tool_box=["rect", "polygon", "keep", "clear"],
                                x_axis_index="all",
                                brush_link="all",
                                out_of_brush={"colorAlpha": 0.1},
                                brush_type="lineX")

    axis_pointer_opts = opts.AxisPointerOpts(is_show=True,
                                             link=[{
                                                 "xAxisIndex": "all"
                                             }])

    range_start = int(100 - 216 / len(kline) * 100)
    dz_inside = opts.DataZoomOpts(False,
                                  "inside",
                                  xaxis_index=[0, 1, 2],
                                  range_start=range_start,
                                  range_end=100)
    dz_slider = opts.DataZoomOpts(True,
                                  "slider",
                                  xaxis_index=[0, 1, 2],
                                  pos_top="96%",
                                  pos_bottom="0%",
                                  range_start=range_start,
                                  range_end=100)

    yaxis_opts = opts.AxisOpts(is_scale=True,
                               axislabel_opts=opts.LabelOpts(
                                   color="#c7c7c7",
                                   font_size=8,
                                   position="inside"))

    grid0_xaxis_opts = opts.AxisOpts(
        type_="category",
        grid_index=0,
        axislabel_opts=label_not_show_opts,
        split_number=20,
        min_="dataMin",
        max_="dataMax",
        is_scale=True,
        boundary_gap=False,
        axisline_opts=opts.AxisLineOpts(is_on_zero=False))

    tool_tip_opts = opts.TooltipOpts(
        trigger="axis",
        axis_pointer_type="cross",
        background_color="rgba(245, 245, 245, 0.8)",
        border_width=1,
        border_color="#ccc",
        position=JsCode("""
                    function (pos, params, el, elRect, size) {
    					var obj = {top: 10};
    					obj[['left', 'right'][+(pos[0] < size.viewSize[0] / 2)]] = 30;
    					return obj;
    				}
                    """),
        textstyle_opts=opts.TextStyleOpts(color="#000"),
    )

    # 数据预处理
    # ------------------------------------------------------------------------------------------------------------------
    # dts = [x.get('dt', x['date']) for x in kline]
    try:
        dts = [x['date'] for x in kline]
    except:
        dts = [x['dt'] for x in kline]
    # k_data = [[x['open'], x['close'], x['low'], x['high']] for x in kline]
    k_data = [
        opts.CandleStickItem(
            name=i, value=[x['open'], x['close'], x['low'], x['high']])
        for i, x in enumerate(kline)
    ]

    vol = []
    for i, row in enumerate(kline):
        item_style = red_item_style if row['close'] > row[
            'open'] else green_item_style
        bar = opts.BarItem(name=i,
                           value=row['volume'],
                           itemstyle_opts=item_style,
                           label_opts=label_not_show_opts)
        vol.append(bar)

    close = np.array([x['close'] for x in kline], dtype=np.double)
    diff, dea, macd = MACD(close)

    ma5 = SMA(close, timeperiod=5)
    ma34 = SMA(close, timeperiod=34)
    ma55 = SMA(close, timeperiod=55)
    ma233 = SMA(close, timeperiod=233)

    macd_bar = []
    for i, v in enumerate(macd.tolist()):
        item_style = red_item_style if v > 0 else green_item_style
        bar = opts.BarItem(name=i,
                           value=round(v, 4),
                           itemstyle_opts=item_style,
                           label_opts=label_not_show_opts)
        macd_bar.append(bar)

    diff = diff.round(4)
    dea = dea.round(4)

    # K 线主图
    # ------------------------------------------------------------------------------------------------------------------
    chart_k = Kline()
    chart_k.add_xaxis(xaxis_data=dts)
    chart_k.add_yaxis(series_name="Kline",
                      y_axis=k_data,
                      itemstyle_opts=k_style_opts)

    chart_k.set_global_opts(legend_opts=legend_opts,
                            datazoom_opts=[dz_inside, dz_slider],
                            yaxis_opts=yaxis_opts,
                            tooltip_opts=tool_tip_opts,
                            axispointer_opts=axis_pointer_opts,
                            brush_opts=brush_opts,
                            title_opts=title_opts,
                            xaxis_opts=grid0_xaxis_opts)

    if xd:
        index = 0
        zs_colors = [
            "yellow", "white", '#f034c1', "#7944b7", "#468b58", "#c17f2f",
            "#9EA0A1"
        ]
        data = []
        temp_xd = xd
        while temp_xd:
            zs_color = zs_colors[index % len(zs_colors)]
            data = data + [
                opts.MarkAreaItem(
                    name='XD{}'.format(index),
                    x=(x['xd_list'][0]['date'], x['xd_list'][-1]['date']),
                    y=(x['ZG']['value'], x['ZD']['value']),
                    label_opts=opts.LabelOpts(color=zs_color),
                    itemstyle_opts=opts.ItemStyleOpts(
                        color=zs_color,
                        opacity=0.2,
                    )) for x in temp_xd.zs_list
            ]
            temp_xd = temp_xd.next
            index = index + 1

        chart_k.set_series_opts(
            markarea_opts=opts.MarkAreaOpts(is_silent=True, data=data))

    # 均线图
    # ------------------------------------------------------------------------------------------------------------------
    chart_ma = Line()
    chart_ma.add_xaxis(xaxis_data=dts)

    ma_keys = {"MA5": ma5, "MA34": ma34, "MA55": ma55, "MA233": ma233}
    ma_colors = ["#39afe6", "#da6ee8", "#A02128", "#00940b"]
    for i, (name, ma) in enumerate(ma_keys.items()):
        chart_ma.add_yaxis(series_name=name,
                           y_axis=ma,
                           is_smooth=True,
                           is_selected=False,
                           symbol_size=0,
                           label_opts=label_not_show_opts,
                           linestyle_opts=opts.LineStyleOpts(
                               opacity=0.8, width=1.0, color=ma_colors[i]))

    chart_ma.set_global_opts(xaxis_opts=grid0_xaxis_opts,
                             legend_opts=legend_not_show_opts)
    chart_k = chart_k.overlap(chart_ma)

    # 缠论结果
    # ------------------------------------------------------------------------------------------------------------------
    if fx:
        try:
            fx_dts = [x['date'] for x in fx]
        except:
            fx_dts = [x['dt'] for x in fx]

        fx_val = [x['value'] for x in fx]
        chart_fx = Scatter()
        chart_fx.add_xaxis(fx_dts)
        chart_fx.add_yaxis(series_name="FX",
                           y_axis=fx_val,
                           is_selected=False,
                           symbol="circle",
                           symbol_size=6,
                           label_opts=label_not_show_opts,
                           itemstyle_opts=opts.ItemStyleOpts(
                               color="rgba(152, 147, 193, 1.0)", ))

        chart_fx.set_global_opts(xaxis_opts=grid0_xaxis_opts,
                                 legend_opts=legend_not_show_opts)
        chart_k = chart_k.overlap(chart_fx)

    if xd:
        index = 0
        xd_colors = zs_colors
        while xd:
            xd_dts = [x['date'] for x in xd]
            xd_val = [x['value'] for x in xd]

            chart_xd = Line()
            chart_xd.add_xaxis(xd_dts)

            xd_color = xd_colors[index % len(xd_colors)]
            chart_xd.add_yaxis(
                series_name="XD{}".format(index),
                y_axis=xd_val,
                is_selected=True,
                symbol="triangle",
                symbol_size=10,
                linestyle_opts=opts.LineStyleOpts(color=xd_color,
                                                  width=index + 1,
                                                  type_="solid"),
                itemstyle_opts=opts.ItemStyleOpts(color=xd_color))

            chart_xd.set_global_opts(xaxis_opts=grid0_xaxis_opts,
                                     legend_opts=legend_not_show_opts)
            chart_k = chart_k.overlap(chart_xd)
            xd = xd.next
            index = index + 1

    if bs:
        b_dts = [x['date'] for x in bs if x['bs'] == 'buy']
        if len(b_dts) > 0:
            b_val = [x['value'] for x in bs if x['bs'] == 'buy']
            chart_b = Scatter()
            chart_b.add_xaxis(b_dts)
            chart_b.add_yaxis(series_name="BUY",
                              y_axis=b_val,
                              is_selected=False,
                              symbol="arrow",
                              symbol_size=8,
                              itemstyle_opts=opts.ItemStyleOpts(
                                  color="#f31e1e", ))

            chart_b.set_global_opts(xaxis_opts=grid0_xaxis_opts,
                                    legend_opts=legend_not_show_opts)
            chart_k = chart_k.overlap(chart_b)

        s_dts = [x['date'] for x in bs if x['bs'] == 'sell']
        if len(s_dts) > 0:
            s_val = [x['value'] for x in bs if x['bs'] == 'sell']
            chart_s = Scatter()
            chart_s.add_xaxis(s_dts)
            chart_s.add_yaxis(series_name="SELL",
                              y_axis=s_val,
                              is_selected=False,
                              symbol="pin",
                              symbol_size=12,
                              itemstyle_opts=opts.ItemStyleOpts(
                                  color="#45b97d", ))

            chart_s.set_global_opts(xaxis_opts=grid0_xaxis_opts,
                                    legend_opts=legend_not_show_opts)
            chart_k = chart_k.overlap(chart_s)

    # 成交量图
    # ------------------------------------------------------------------------------------------------------------------
    chart_vol = Bar()
    chart_vol.add_xaxis(dts)
    chart_vol.add_yaxis(series_name="Volume", y_axis=vol, bar_width='60%')
    chart_vol.set_global_opts(
        xaxis_opts=opts.AxisOpts(
            type_="category",
            grid_index=1,
            axislabel_opts=opts.LabelOpts(is_show=True,
                                          font_size=8,
                                          color="#9b9da9"),
        ),
        yaxis_opts=yaxis_opts,
        legend_opts=legend_not_show_opts,
    )

    # MACD图
    # ------------------------------------------------------------------------------------------------------------------
    chart_macd = Bar()
    chart_macd.add_xaxis(dts)
    chart_macd.add_yaxis(series_name="MACD", y_axis=macd_bar, bar_width='60%')
    chart_macd.set_global_opts(
        xaxis_opts=opts.AxisOpts(
            type_="category",
            grid_index=2,
            axislabel_opts=opts.LabelOpts(is_show=False),
        ),
        yaxis_opts=opts.AxisOpts(
            grid_index=2,
            split_number=4,
            axisline_opts=opts.AxisLineOpts(is_on_zero=False),
            axistick_opts=opts.AxisTickOpts(is_show=False),
            splitline_opts=opts.SplitLineOpts(is_show=False),
            axislabel_opts=opts.LabelOpts(is_show=True, color="#c7c7c7"),
        ),
        legend_opts=opts.LegendOpts(is_show=False),
    )

    line = Line()
    line.add_xaxis(dts)
    line.add_yaxis(series_name="DIFF",
                   y_axis=diff,
                   label_opts=label_not_show_opts,
                   is_symbol_show=False,
                   linestyle_opts=opts.LineStyleOpts(opacity=0.8,
                                                     width=1.0,
                                                     color="#da6ee8"))
    line.add_yaxis(series_name="DEA",
                   y_axis=dea,
                   label_opts=label_not_show_opts,
                   is_symbol_show=False,
                   linestyle_opts=opts.LineStyleOpts(opacity=0.8,
                                                     width=1.0,
                                                     color="#39afe6"))

    chart_macd = chart_macd.overlap(line)

    grid0_opts = opts.GridOpts(pos_left="0%",
                               pos_right="1%",
                               pos_top="12%",
                               height="58%")
    grid1_opts = opts.GridOpts(pos_left="0%",
                               pos_right="1%",
                               pos_top="74%",
                               height="8%")
    grid2_opts = opts.GridOpts(pos_left="0%",
                               pos_right="1%",
                               pos_top="86%",
                               height="10%")

    grid_chart = Grid(init_opts)
    grid_chart.add(chart_k, grid_opts=grid0_opts)
    grid_chart.add(chart_vol, grid_opts=grid1_opts)
    grid_chart.add(chart_macd, grid_opts=grid2_opts)
    return grid_chart
示例#16
0
#-------------------------------------------------------------------------------------------------------------------

df1 = pd.read_csv('F:/Stock/Data_Day/' + df.iloc[0, 1] + ".csv")
df1 = df1.sort_index(ascending=False).reset_index(drop=True)
date1 = df1.xs('Date Time', axis=1).tolist()
data1 = []
vol1 = []
for idx1 in df1.index:
    row1 = [
        df1.iloc[idx1]['Open'], df1.iloc[idx1]['Close'], df1.iloc[idx1]['Low'],
        df1.iloc[idx1]['High']
    ]
    row2 = df1.iloc[idx1]['Volume']
    data1.append(row1)
    vol1.append(row2)
kline1.add_xaxis(date1)
kline1.add_yaxis(str1, data1)

#-------------------------------------------------------------------------------------------------------------------

df2 = pd.read_csv('F:/Stock/Data_Day/' + df.iloc[1, 1] + ".csv")
df2 = df2.sort_index(ascending=False).reset_index(drop=True)
date2 = df2.xs('Date Time', axis=1).tolist()
data2 = []
vol2 = []
for idx2 in df2.index:
    row3 = [
        df2.iloc[idx2]['Open'], df2.iloc[idx2]['Close'], df2.iloc[idx2]['Low'],
        df2.iloc[idx2]['High']
    ]
    row4 = df2.iloc[idx2]['Volume']
示例#17
0
def kline_pro(kline: List[dict],
              ma: List[dict],
              macd: List[dict],
              fx: List[dict] = None,
              bi: List[dict] = None,
              xd: List[dict] = None,
              bs: List[dict] = None,
              title: str = "缠中说禅K线分析",
              width: str = "1200px",
              height: str = '680px') -> Grid:
    """绘制缠中说禅K线分析结果

    :param kline: K线
    :param ma: 均线
    :param macd: MACD
    :param fx: 分型识别结果
    :param bi: 笔识别结果
    :param xd: 线段识别结果
    :param bs: 买卖点
    :param title: 图表标题
    :param width: 图表宽度
    :param height: 图表高度
    :return: 用Grid组合好的图表
    """
    # 配置项设置
    # ------------------------------------------------------------------------------------------------------------------
    bg_color = "#1f212d"  # 背景
    up_color = "#F9293E"
    down_color = "#00aa3b"

    init_opts = opts.InitOpts(bg_color=bg_color,
                              width=width,
                              height=height,
                              animation_opts=opts.AnimationOpts(False))
    title_opts = opts.TitleOpts(
        title=title,
        pos_top="1%",
        title_textstyle_opts=opts.TextStyleOpts(color=up_color, font_size=20),
        subtitle_textstyle_opts=opts.TextStyleOpts(color=down_color,
                                                   font_size=12))

    label_not_show_opts = opts.LabelOpts(is_show=False)
    legend_not_show_opts = opts.LegendOpts(is_show=False)
    red_item_style = opts.ItemStyleOpts(color=up_color)
    green_item_style = opts.ItemStyleOpts(color=down_color)
    k_style_opts = opts.ItemStyleOpts(color=up_color,
                                      color0=down_color,
                                      border_color=up_color,
                                      border_color0=down_color,
                                      opacity=0.8)

    legend_opts = opts.LegendOpts(is_show=True,
                                  pos_top="1%",
                                  pos_left="30%",
                                  item_width=14,
                                  item_height=8,
                                  textstyle_opts=opts.TextStyleOpts(
                                      font_size=12, color="#0e99e2"))
    brush_opts = opts.BrushOpts(tool_box=["rect", "polygon", "keep", "clear"],
                                x_axis_index="all",
                                brush_link="all",
                                out_of_brush={"colorAlpha": 0.1},
                                brush_type="lineX")

    axis_pointer_opts = opts.AxisPointerOpts(is_show=True,
                                             link=[{
                                                 "xAxisIndex": "all"
                                             }])

    dz_inside = opts.DataZoomOpts(False, "inside", xaxis_index=[0, 1, 2])
    dz_slider = opts.DataZoomOpts(True,
                                  "slider",
                                  xaxis_index=[0, 1, 2],
                                  pos_top="96%",
                                  pos_bottom="0%")

    yaxis_opts = opts.AxisOpts(is_scale=True,
                               axislabel_opts=opts.LabelOpts(
                                   color="#c7c7c7",
                                   font_size=8,
                                   position="inside"))

    grid0_xaxis_opts = opts.AxisOpts(
        type_="category",
        grid_index=0,
        axislabel_opts=label_not_show_opts,
        split_number=20,
        min_="dataMin",
        max_="dataMax",
        is_scale=True,
        boundary_gap=False,
        axisline_opts=opts.AxisLineOpts(is_on_zero=False))

    tool_tip_opts = opts.TooltipOpts(
        trigger="axis",
        axis_pointer_type="cross",
        background_color="rgba(245, 245, 245, 0.8)",
        border_width=1,
        border_color="#ccc",
        position=JsCode("""
                    function (pos, params, el, elRect, size) {
    					var obj = {top: 10};
    					obj[['left', 'right'][+(pos[0] < size.viewSize[0] / 2)]] = 30;
    					return obj;
    				}
                    """),
        textstyle_opts=opts.TextStyleOpts(color="#000"),
    )

    # 数据预处理
    # ------------------------------------------------------------------------------------------------------------------
    dts = [x['dt'] for x in kline]
    k_data = [[x['open'], x['close'], x['low'], x['high']] for x in kline]

    vol = []
    for row in kline:
        item_style = red_item_style if row['close'] > row[
            'open'] else green_item_style
        bar = opts.BarItem(value=row['vol'],
                           itemstyle_opts=item_style,
                           label_opts=label_not_show_opts)
        vol.append(bar)

    macd_bar = []
    for row in macd:
        item_style = red_item_style if row['macd'] > 0 else green_item_style
        bar = opts.BarItem(value=round(row['macd'], 4),
                           itemstyle_opts=item_style,
                           label_opts=label_not_show_opts)
        macd_bar.append(bar)

    diff = [round(x['diff'], 4) for x in macd]
    dea = [round(x['dea'], 4) for x in macd]

    # K 线主图
    # ------------------------------------------------------------------------------------------------------------------
    chart_k = Kline()
    chart_k.add_xaxis(xaxis_data=dts)
    chart_k.add_yaxis(series_name="Kline",
                      y_axis=k_data,
                      itemstyle_opts=k_style_opts)

    chart_k.set_global_opts(legend_opts=legend_opts,
                            datazoom_opts=[dz_inside, dz_slider],
                            yaxis_opts=yaxis_opts,
                            tooltip_opts=tool_tip_opts,
                            axispointer_opts=axis_pointer_opts,
                            brush_opts=brush_opts,
                            title_opts=title_opts,
                            xaxis_opts=grid0_xaxis_opts)

    # 均线图
    # ------------------------------------------------------------------------------------------------------------------
    chart_ma = Line()
    chart_ma.add_xaxis(xaxis_data=dts)

    ma_keys = [x for x in ma[0].keys() if "ma" in x][:3]
    ma_colors = ["#39afe6", "#da6ee8", "#00940b"]
    for i, k in enumerate(ma_keys):
        y_data = [x[k] for x in ma]
        chart_ma.add_yaxis(series_name=k.upper(),
                           y_axis=y_data,
                           is_smooth=True,
                           is_selected=False,
                           symbol_size=0,
                           label_opts=label_not_show_opts,
                           linestyle_opts=opts.LineStyleOpts(
                               opacity=0.8, width=1.0, color=ma_colors[i]))

    chart_ma.set_global_opts(xaxis_opts=grid0_xaxis_opts,
                             legend_opts=legend_not_show_opts)
    chart_k = chart_k.overlap(chart_ma)

    # 缠论结果
    # ------------------------------------------------------------------------------------------------------------------
    if fx:
        fx_dts = [x['dt'] for x in fx]
        fx_val = [x['fx'] for x in fx]
        chart_fx = Scatter()
        chart_fx.add_xaxis(fx_dts)
        chart_fx.add_yaxis(series_name="FX",
                           y_axis=fx_val,
                           is_selected=False,
                           symbol="circle",
                           symbol_size=6,
                           label_opts=label_not_show_opts,
                           itemstyle_opts=opts.ItemStyleOpts(
                               color="rgba(152, 147, 193, 1.0)", ))

        chart_fx.set_global_opts(xaxis_opts=grid0_xaxis_opts,
                                 legend_opts=legend_not_show_opts)
        chart_k = chart_k.overlap(chart_fx)

    if bi:
        bi_dts = [x['dt'] for x in bi]
        bi_val = [x['bi'] for x in bi]
        chart_bi = Scatter()
        chart_bi.add_xaxis(bi_dts)
        chart_bi.add_yaxis(series_name="BI",
                           y_axis=bi_val,
                           is_selected=True,
                           symbol="diamond",
                           symbol_size=10,
                           label_opts=label_not_show_opts,
                           itemstyle_opts=opts.ItemStyleOpts(
                               color="rgba(184, 117, 225, 1.0)", ))

        chart_bi.set_global_opts(xaxis_opts=grid0_xaxis_opts,
                                 legend_opts=legend_not_show_opts)
        chart_k = chart_k.overlap(chart_bi)

    if xd:
        xd_dts = [x['dt'] for x in xd]
        xd_val = [x['xd'] for x in xd]
        chart_xd = Scatter()
        chart_xd.add_xaxis(xd_dts)
        chart_xd.add_yaxis(series_name="XD",
                           y_axis=xd_val,
                           is_selected=True,
                           symbol="triangle",
                           symbol_size=10,
                           itemstyle_opts=opts.ItemStyleOpts(
                               color="rgba(37, 141, 54, 1.0)", ))

        chart_xd.set_global_opts(xaxis_opts=grid0_xaxis_opts,
                                 legend_opts=legend_not_show_opts)
        chart_k = chart_k.overlap(chart_xd)

    if bs:
        b_dts = [x['dt'] for x in bs if x['mark'] == 'buy']
        if len(b_dts) > 0:
            b_val = [x['buy'] for x in bs if x['mark'] == 'buy']
            chart_b = Scatter()
            chart_b.add_xaxis(b_dts)
            chart_b.add_yaxis(series_name="BUY",
                              y_axis=b_val,
                              is_selected=False,
                              symbol="arrow",
                              symbol_size=8,
                              itemstyle_opts=opts.ItemStyleOpts(
                                  color="#f31e1e", ))

            chart_b.set_global_opts(xaxis_opts=grid0_xaxis_opts,
                                    legend_opts=legend_not_show_opts)
            chart_k = chart_k.overlap(chart_b)

        s_dts = [x['dt'] for x in bs if x['mark'] == 'sell']
        if len(s_dts) > 0:
            s_val = [x['sell'] for x in bs if x['mark'] == 'sell']
            chart_s = Scatter()
            chart_s.add_xaxis(s_dts)
            chart_s.add_yaxis(series_name="SELL",
                              y_axis=s_val,
                              is_selected=False,
                              symbol="pin",
                              symbol_size=12,
                              itemstyle_opts=opts.ItemStyleOpts(
                                  color="#45b97d", ))

            chart_s.set_global_opts(xaxis_opts=grid0_xaxis_opts,
                                    legend_opts=legend_not_show_opts)
            chart_k = chart_k.overlap(chart_s)

    # 成交量图
    # ------------------------------------------------------------------------------------------------------------------
    chart_vol = Bar()
    chart_vol.add_xaxis(dts)
    chart_vol.add_yaxis(series_name="Volume", y_axis=vol, bar_width='60%')
    chart_vol.set_global_opts(
        xaxis_opts=opts.AxisOpts(
            type_="category",
            grid_index=1,
            axislabel_opts=opts.LabelOpts(is_show=True,
                                          font_size=8,
                                          color="#9b9da9"),
        ),
        yaxis_opts=yaxis_opts,
        legend_opts=legend_not_show_opts,
    )

    # MACD图
    # ------------------------------------------------------------------------------------------------------------------
    chart_macd = Bar()
    chart_macd.add_xaxis(dts)
    chart_macd.add_yaxis(series_name="MACD", y_axis=macd_bar, bar_width='60%')
    chart_macd.set_global_opts(
        xaxis_opts=opts.AxisOpts(
            type_="category",
            grid_index=2,
            axislabel_opts=opts.LabelOpts(is_show=False),
        ),
        yaxis_opts=opts.AxisOpts(
            grid_index=2,
            split_number=4,
            axisline_opts=opts.AxisLineOpts(is_on_zero=False),
            axistick_opts=opts.AxisTickOpts(is_show=False),
            splitline_opts=opts.SplitLineOpts(is_show=False),
            axislabel_opts=opts.LabelOpts(is_show=True, color="#c7c7c7"),
        ),
        legend_opts=opts.LegendOpts(is_show=False),
    )

    line = Line()
    line.add_xaxis(dts)
    line.add_yaxis(series_name="DIFF",
                   y_axis=diff,
                   label_opts=label_not_show_opts,
                   is_symbol_show=False,
                   linestyle_opts=opts.LineStyleOpts(opacity=0.8,
                                                     width=1.0,
                                                     color="#da6ee8"))
    line.add_yaxis(series_name="DEA",
                   y_axis=dea,
                   label_opts=label_not_show_opts,
                   is_symbol_show=False,
                   linestyle_opts=opts.LineStyleOpts(opacity=0.8,
                                                     width=1.0,
                                                     color="#39afe6"))

    chart_macd = chart_macd.overlap(line)

    grid0_opts = opts.GridOpts(pos_left="0%",
                               pos_right="1%",
                               pos_top="12%",
                               height="58%")
    grid1_opts = opts.GridOpts(pos_left="0%",
                               pos_right="1%",
                               pos_top="74%",
                               height="8%")
    grid2_opts = opts.GridOpts(pos_left="0%",
                               pos_right="1%",
                               pos_top="86%",
                               height="10%")

    grid_chart = Grid(init_opts)
    grid_chart.add(chart_k, grid_opts=grid0_opts)
    grid_chart.add(chart_vol, grid_opts=grid1_opts)
    grid_chart.add(chart_macd, grid_opts=grid2_opts)
    return grid_chart
示例#18
0
def kline(stock_data: pd.DataFrame):
    """
    @input: column name ('date', 'open', 'close', 'min', 'max', 'Trading_Volume')
    """
    def calculate_ma(day_count: int, price: list):
        result: List[Union[float, str]] = []
        for i in range(len(price)):
            if i < day_count:
                result.append("-")
                continue
            sum_total = 0.0
            for j in range(day_count):
                sum_total += float(price[i - j])
            result.append(abs(float("%.3f" % (sum_total / day_count))))
        return result

    def process_stock_data(data):
        data = data[["date", "open", "close", "min", "max", "Trading_Volume"]]
        data.columns = ["date", "open", "close", "low", "high", "volume"]
        if is_datetime(data["date"]):
            data_times = data["date"].dt.strftime("%Y-%m-%d").to_list()
        else:
            data_times = data["date"].to_list()
        values = data.values.tolist()
        volumes = []
        for i, tick in enumerate(data.values.tolist()):
            volumes.append([i, tick[5], 1 if tick[1] > tick[2] else -1])
        return {
            "categoryData": data_times,
            "values": values,
            "volumes": volumes,
        }

    chart_data = process_stock_data(stock_data)

    kline_data = [data[1:-1] for data in chart_data["values"]]
    kline = Kline(init_opts=opts.InitOpts(animation_opts=opts.AnimationOpts(
        animation=False), ))
    kline.add_xaxis(xaxis_data=chart_data["categoryData"])
    kline.add_yaxis(
        series_name="kline",
        y_axis=kline_data,
        itemstyle_opts=opts.ItemStyleOpts(color="#ec0000", color0="#00da3c"),
    )
    kline.set_global_opts(
        legend_opts=opts.LegendOpts(is_show=True, pos_left="center"),
        datazoom_opts=[
            opts.DataZoomOpts(
                is_show=False,
                type_="inside",
                xaxis_index=[0, 1],
                range_start=85,
                range_end=100,
            ),
            opts.DataZoomOpts(
                is_show=True,
                xaxis_index=[0, 1],
                type_="slider",
                pos_top="85%",
                range_start=85,
                range_end=100,
            ),
        ],
        yaxis_opts=opts.AxisOpts(
            is_scale=True,
            splitarea_opts=opts.SplitAreaOpts(
                is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)),
        ),
        tooltip_opts=opts.TooltipOpts(
            trigger="axis",
            axis_pointer_type="cross",
            background_color="rgba(245, 245, 245, 0.8)",
            border_width=1,
            border_color="#ccc",
            textstyle_opts=opts.TextStyleOpts(color="#000"),
        ),
        visualmap_opts=opts.VisualMapOpts(
            is_show=False,
            dimension=2,
            series_index=5,
            is_piecewise=True,
            pieces=[
                {
                    "value": 1,
                    "color": "#00da3c"
                },
                {
                    "value": -1,
                    "color": "#ec0000"
                },
            ],
        ),
        axispointer_opts=opts.AxisPointerOpts(
            is_show=True,
            link=[{
                "xAxisIndex": "all"
            }],
            label=opts.LabelOpts(background_color="#777"),
        ),
        brush_opts=opts.BrushOpts(
            x_axis_index="all",
            brush_link="all",
            out_of_brush={"colorAlpha": 0.1},
            brush_type="lineX",
        ),
    )

    close = np.array(chart_data["values"])[:, 2]
    ma_items = [5, 10, 20, 60]

    line = Line(init_opts=opts.InitOpts(animation_opts=opts.AnimationOpts(
        animation=False), )).add_xaxis(xaxis_data=chart_data["categoryData"])
    for ma in ma_items:
        line.add_yaxis(
            series_name="MA" + str(ma),
            y_axis=calculate_ma(day_count=ma, price=close),
            is_smooth=True,
            is_symbol_show=False,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
    line.set_global_opts(xaxis_opts=opts.AxisOpts(type_="category"))

    bar = Bar(init_opts=opts.InitOpts(animation_opts=opts.AnimationOpts(
        animation=False), ))
    bar.add_xaxis(xaxis_data=chart_data["categoryData"])
    bar.add_yaxis(
        series_name="Volume",
        y_axis=chart_data["volumes"],
        xaxis_index=1,
        yaxis_index=1,
        label_opts=opts.LabelOpts(is_show=False),
    )

    bar.set_global_opts(
        xaxis_opts=opts.AxisOpts(
            type_="category",
            is_scale=True,
            grid_index=1,
            boundary_gap=False,
            axisline_opts=opts.AxisLineOpts(is_on_zero=False),
            axistick_opts=opts.AxisTickOpts(is_show=False),
            splitline_opts=opts.SplitLineOpts(is_show=False),
            axislabel_opts=opts.LabelOpts(is_show=False),
            split_number=20,
            min_="dataMin",
            max_="dataMax",
        ),
        yaxis_opts=opts.AxisOpts(
            grid_index=1,
            is_scale=True,
            split_number=2,
            axislabel_opts=opts.LabelOpts(is_show=False),
            axisline_opts=opts.AxisLineOpts(is_show=False),
            axistick_opts=opts.AxisTickOpts(is_show=False),
            splitline_opts=opts.SplitLineOpts(is_show=False),
        ),
        legend_opts=opts.LegendOpts(is_show=False),
    )

    overlap_kline_line = kline.overlap(line)

    grid_chart = Grid(init_opts=opts.InitOpts(
        width="1000px",
        height="800px",
        animation_opts=opts.AnimationOpts(animation=False),
    ))
    grid_chart.add(
        overlap_kline_line,
        grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%", height="50%"),
    )
    grid_chart.add(
        bar,
        grid_opts=opts.GridOpts(pos_left="10%",
                                pos_right="8%",
                                pos_top="63%",
                                height="16%"),
    )
    grid_chart.render("kline.html")
    display(HTML(filename="kline.html"))
    return grid_chart
示例#19
0
def ka_to_echarts(ka: KlineAnalyze, width="1500px", height='800px'):
    # 配置项设置
    # ------------------------------------------------------------------------------------------------------------------
    bg_color = "#1f212d"    # 背景
    up_color = "#F9293E"
    down_color = "#00aa3b"

    init_opts = opts.InitOpts(bg_color=bg_color, width=width, height=height, animation_opts=opts.AnimationOpts(False))
    title_opts = opts.TitleOpts(title="{} - {}".format(ka.symbol, ka.name),
                                subtitle="from {} to {}".format(ka.start_dt, ka.end_dt),
                                pos_top="1%",
                                title_textstyle_opts=opts.TextStyleOpts(color=up_color, font_size=20),
                                subtitle_textstyle_opts=opts.TextStyleOpts(color=down_color, font_size=12))

    label_not_show_opts = opts.LabelOpts(is_show=False)
    legend_not_show_opts = opts.LegendOpts(is_show=False)
    red_item_style = opts.ItemStyleOpts(color=up_color)
    green_item_style = opts.ItemStyleOpts(color=down_color)
    k_style_opts = opts.ItemStyleOpts(color=up_color, color0=down_color, border_color=up_color,
                                      border_color0=down_color, opacity=0.8)

    legend_opts = opts.LegendOpts(is_show=True, pos_top="1%", pos_left="30%", item_width=14, item_height=8,
                                  textstyle_opts=opts.TextStyleOpts(font_size=12, color="#0e99e2"))
    brush_opts = opts.BrushOpts(tool_box=["rect", "polygon", "keep", "clear"],
                                x_axis_index="all", brush_link="all",
                                out_of_brush={"colorAlpha": 0.1}, brush_type="lineX")

    axis_pointer_opts = opts.AxisPointerOpts(is_show=True, link=[{"xAxisIndex": "all"}])

    dz_inside = opts.DataZoomOpts(False, "inside", xaxis_index=[0, 1, 2])
    dz_slider = opts.DataZoomOpts(True, "slider", xaxis_index=[0, 1, 2], pos_top="96%", pos_bottom="0%")

    yaxis_opts = opts.AxisOpts(is_scale=True, axislabel_opts=opts.LabelOpts(color="#c7c7c7", font_size=8, position="inside"))

    grid0_xaxis_opts = opts.AxisOpts(type_="category", grid_index=0, axislabel_opts=label_not_show_opts,
                                     split_number=20, min_="dataMin", max_="dataMax",
                                     is_scale=True, boundary_gap=False, axisline_opts=opts.AxisLineOpts(is_on_zero=False))

    tool_tip_opts = opts.TooltipOpts(
        trigger="axis",
        axis_pointer_type="cross",
        background_color="rgba(245, 245, 245, 0.8)",
        border_width=1,
        border_color="#ccc",
        position=JsCode("""
                    function (pos, params, el, elRect, size) {
    					var obj = {top: 10};
    					obj[['left', 'right'][+(pos[0] < size.viewSize[0] / 2)]] = 30;
    					return obj;
    				}
                    """),
        textstyle_opts=opts.TextStyleOpts(color="#000"),
    )

    # 数据预处理
    # ------------------------------------------------------------------------------------------------------------------
    dts = [x['dt'] for x in ka.kline_raw]
    k_data = [[x['open'], x['close'], x['low'], x['high']] for x in ka.kline_raw]
    ma = ka.ma

    vol = []
    for row in ka.kline_raw:
        item_style = red_item_style if row['close'] > row['open'] else green_item_style
        bar = opts.BarItem(value=row['vol'], itemstyle_opts=item_style, label_opts=label_not_show_opts)
        vol.append(bar)

    macd = []
    for row in ka.macd:
        item_style = red_item_style if row['macd'] > 0 else green_item_style
        bar = opts.BarItem(value=round(row['macd'], 4), itemstyle_opts=item_style, label_opts=label_not_show_opts)
        macd.append(bar)

    diff = [round(x['diff'], 4) for x in ka.macd]
    dea = [round(x['dea'], 4) for x in ka.macd]

    # K 线主图
    # ------------------------------------------------------------------------------------------------------------------
    chart_k = Kline()
    chart_k.add_xaxis(xaxis_data=dts)
    chart_k.add_yaxis(series_name="Kline", y_axis=k_data, itemstyle_opts=k_style_opts)

    chart_k.set_global_opts(
            legend_opts=legend_opts,
            datazoom_opts=[dz_inside, dz_slider],
            yaxis_opts=yaxis_opts,
            tooltip_opts=tool_tip_opts,
            axispointer_opts=axis_pointer_opts,
            brush_opts=brush_opts,
            title_opts=title_opts,
            xaxis_opts=grid0_xaxis_opts
    )

    # 均线图
    # ------------------------------------------------------------------------------------------------------------------
    chart_ma = Line()
    chart_ma.add_xaxis(xaxis_data=dts)

    ma_keys = [x for x in ma[0].keys() if "ma" in x][:3]
    ma_colors = ["#39afe6", "#da6ee8", "#00940b"]
    for i, k in enumerate(ma_keys):
        y_data = [x[k] for x in ma]
        chart_ma.add_yaxis(series_name=k.upper(), y_axis=y_data, is_smooth=True,
                           is_selected=False, symbol_size=0, label_opts=label_not_show_opts,
                           linestyle_opts=opts.LineStyleOpts(opacity=0.8, width=1.0, color=ma_colors[i]))

    chart_ma.set_global_opts(xaxis_opts=grid0_xaxis_opts, legend_opts=legend_not_show_opts)
    chart_k = chart_k.overlap(chart_ma)

    # 缠论结果
    # ------------------------------------------------------------------------------------------------------------------
    fx_dts = [x['dt'] for x in ka.fx_list]
    fx_val = [x['fx'] for x in ka.fx_list]
    chart_fx = Scatter()
    chart_fx.add_xaxis(fx_dts)
    chart_fx.add_yaxis(series_name="FX", y_axis=fx_val, is_selected=False,
                       symbol="circle", symbol_size=6, label_opts=label_not_show_opts,
                       itemstyle_opts=opts.ItemStyleOpts(color="rgba(152, 147, 193, 1.0)",))

    chart_fx.set_global_opts(xaxis_opts=grid0_xaxis_opts, legend_opts=legend_not_show_opts)
    chart_k = chart_k.overlap(chart_fx)

    bi_dts = [x['dt'] for x in ka.bi_list]
    bi_val = [x['bi'] for x in ka.bi_list]
    chart_bi = Scatter()
    chart_bi.add_xaxis(bi_dts)
    chart_bi.add_yaxis(series_name="BI", y_axis=bi_val, is_selected=True,
                       symbol="diamond", symbol_size=10, label_opts=label_not_show_opts,
                       itemstyle_opts=opts.ItemStyleOpts(color="rgba(184, 117, 225, 1.0)",))

    chart_bi.set_global_opts(xaxis_opts=grid0_xaxis_opts, legend_opts=legend_not_show_opts)
    chart_k = chart_k.overlap(chart_bi)

    xd_dts = [x['dt'] for x in ka.xd_list]
    xd_val = [x['xd'] for x in ka.xd_list]
    chart_xd = Scatter()
    chart_xd.add_xaxis(xd_dts)
    chart_xd.add_yaxis(series_name="XD", y_axis=xd_val, is_selected=True, symbol="triangle", symbol_size=10,
                       itemstyle_opts=opts.ItemStyleOpts(color="rgba(37, 141, 54, 1.0)",))

    chart_xd.set_global_opts(xaxis_opts=grid0_xaxis_opts, legend_opts=legend_not_show_opts)
    chart_k = chart_k.overlap(chart_xd)

    # 成交量图
    # ------------------------------------------------------------------------------------------------------------------
    chart_vol = Bar()
    chart_vol.add_xaxis(dts)
    chart_vol.add_yaxis(series_name="Volume", y_axis=vol, bar_width='60%')
    chart_vol.set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=1,
                axislabel_opts=opts.LabelOpts(is_show=True, font_size=8, color="#9b9da9"),
            ),
            yaxis_opts=yaxis_opts, legend_opts=legend_not_show_opts,
        )

    # MACD图
    # ------------------------------------------------------------------------------------------------------------------
    chart_macd = Bar()
    chart_macd.add_xaxis(dts)
    chart_macd.add_yaxis(series_name="MACD", y_axis=macd, bar_width='60%')
    chart_macd.set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=2,
                axislabel_opts=opts.LabelOpts(is_show=False),
            ),
            yaxis_opts=opts.AxisOpts(
                grid_index=2,
                split_number=4,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                axislabel_opts=opts.LabelOpts(is_show=True, color="#c7c7c7"),
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )

    line = Line()
    line.add_xaxis(dts)
    line.add_yaxis(series_name="DIFF", y_axis=diff, label_opts=label_not_show_opts, is_symbol_show=False,
                   linestyle_opts=opts.LineStyleOpts(opacity=0.8, width=1.0, color="#da6ee8"))
    line.add_yaxis(series_name="DEA", y_axis=dea, label_opts=label_not_show_opts, is_symbol_show=False,
                   linestyle_opts=opts.LineStyleOpts(opacity=0.8, width=1.0, color="#39afe6"))

    chart_macd = chart_macd.overlap(line)

    grid0_opts = opts.GridOpts(pos_left="0%", pos_right="1%", pos_top="12%", height="58%")
    grid1_opts = opts.GridOpts(pos_left="0%", pos_right="1%", pos_top="74%", height="8%")
    grid2_opts = opts.GridOpts(pos_left="0%", pos_right="1%", pos_top="86%", height="10%")

    grid_chart = Grid(init_opts)
    grid_chart.add(chart_k, grid_opts=grid0_opts)
    grid_chart.add(chart_vol, grid_opts=grid1_opts)
    grid_chart.add(chart_macd, grid_opts=grid2_opts)
    return grid_chart
示例#20
0
    def kline(self):
        """"""
        if "_" in self.bar_data.symbol[0]:
            symbol_split = self.bar_data.symbol[0].split("_")
            series_name = "_".join(
                [symbol_split[0], symbol_split[1][-2:], symbol_split[2][-2:]])
        else:
            series_name = self.bar_data.symbol[0]

        kline = Kline(init_opts=opts.InitOpts(width="1400px", height="800px"))
        kline.add_xaxis(xaxis_data=self.bar_data_datetime)
        kline.add_yaxis(
            series_name=series_name,
            yaxis_index=0,
            y_axis=self.bar_data[[
                "open_price", "close_price", "low_price", "high_price"
            ]].values.tolist(),
            itemstyle_opts=opts.ItemStyleOpts(color="#ef232a",
                                              color0="#14b143",
                                              border_color="#8A0000",
                                              border_color0="#008F28",
                                              opacity=0.8),
        )

        kline.set_global_opts(
            datazoom_opts=[
                opts.DataZoomOpts(
                    is_show=False,
                    type_="inside",
                    xaxis_index=[0, 0],
                    range_start=0,
                    range_end=100,
                ),
                opts.DataZoomOpts(
                    is_show=True,
                    type_="slider",
                    xaxis_index=[0, 1],
                    pos_top="95%",
                    range_start=0,
                    range_end=100,
                ),
            ],
            xaxis_opts=opts.AxisOpts(
                is_scale=True,
                type_="category",
                boundary_gap=False,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                split_number=20,
                min_="dataMin",
                max_="dataMax",
            ),
            yaxis_opts=opts.AxisOpts(
                is_scale=True,
                splitarea_opts=opts.SplitAreaOpts(
                    is_show=True,
                    areastyle_opts=opts.AreaStyleOpts(opacity=0.8)),
            ),
            brush_opts=opts.BrushOpts(
                tool_box=[
                    "rect", "polygon", "keep", "lineX", "lineY", "clear"
                ],
                x_axis_index="all",
                brush_link="all",
                out_of_brush={"colorAlpha": 0.1},
                brush_type="lineX",
            ),
            tooltip_opts=opts.TooltipOpts(
                is_show=True,
                trigger="axis",
                axis_pointer_type="cross",
                background_color="rgba(245, 245, 245, 0.8)",
                border_width=1,
                border_color="#ccc",
                textstyle_opts=opts.TextStyleOpts(
                    color="#000",
                    font_size=12,
                    font_family="Arial",
                    font_weight="lighter",
                ),
            ),
            toolbox_opts=opts.ToolboxOpts(orient="horizontal",
                                          pos_left="right",
                                          pos_top="0%"),
            legend_opts=opts.LegendOpts(
                is_show=True,
                type_="scroll",
                selected_mode="multiple",
                pos_left="left",
                pos_top="0%",
                legend_icon="roundRect",
            ),

            # 多图的 axis 连在一块
            axispointer_opts=opts.AxisPointerOpts(
                is_show=True,
                link=[{
                    "xAxisIndex": "all"
                }],
                label=opts.LabelOpts(background_color="#777"),
            ),
        )

        self.kline_chart = kline
示例#21
0
def draw_charts(kline_data ,canshu ={} ,canshu2={},vol_bar=False,markline_show1 =False ,markline_show2 =False, path = '0501'):
    '''
    df['candle_begin_time','open','high','low','close','volume']
    [['candle_begin_time','open','high','low','close','volume']]

    kdata = df[['open', 'high', 'low', 'close']].values.tolist()
    df['candle_begin_time'].values.tolist()
    :return:
    '''

    df = kline_data.copy()

    df['candle_begin_time'] = pd.to_datetime(df['candle_begin_time'])
    time_list = df['candle_begin_time'].apply(lambda x: x.strftime('%Y-%m-%d %H:%M:%S')).values.tolist()
    vol = df['volume'].values.tolist()
    kline = Kline()
    kline.add_xaxis(xaxis_data=time_list)
    signal_pos_list = []
    if 'signal' in df.columns:
        print('signal,存在!')
        df['pos'] = df['signal'].shift(1)
        for i  in df[df['pos'] > 0].index:
            bar0 = df.iloc[i]
            sig_pos0 = opts.MarkPointItem(name="做多",
                               coord=[bar0['candle_begin_time'].strftime('%Y-%m-%d %H:%M:%S'),bar0.low -2],
                               value='买',
                               symbol ='circle',
                               symbol_size =[20,40],
                               itemstyle_opts = {'color': 'red'})

            signal_pos_list.append(sig_pos0)
        for i in df[df['pos'] < 0].index:
            bar0 = df.iloc[i]
            sig_pos0 = opts.MarkPointItem(name="做空",
                                          coord=[bar0['candle_begin_time'].strftime('%Y-%m-%d %H:%M:%S'),bar0.high +3],
                                          value='卖',
                                          symbol='circle',
                                          symbol_size=[20, 40],
                                          itemstyle_opts={'color': 'blue'})
            signal_pos_list.append(sig_pos0)
        for i  in df[df['pos'] == 0].index:
            bar0 = df.iloc[i]
            sig_pos0 = opts.MarkPointItem(name="平仓",
                               coord=[bar0['candle_begin_time'].strftime('%Y-%m-%d %H:%M:%S'),bar0.low - 2],
                               value='平',
                               symbol ='triangle',
                               symbol_size =[20,40],
                               itemstyle_opts = {'color': 'green'})

            signal_pos_list.append(sig_pos0)
    else :
        df['pos'] =None
    markline =[]
    if markline_show1 and ('signal' in df.columns) :
        area_index_list =[i for i  in df[(df['pos'] ==0)|(df['pos'] >0)|(df['pos'] <0)].index]
        for ix,i in enumerate(area_index_list):
            if ix+1 > len(area_index_list)-1:
                break
            i_now = df.iloc[area_index_list[ix]]
            i_next = df.iloc[area_index_list[ix+1]]
            if (i_now['pos'] >0) or (i_now['pos'] <0) :
                log_info = f"价差:={i_next['open']-i_now['open']}--({i_next['open']}-{i_now['open']})"
            else :
                log_info =f"平仓:{i_next['open']}---开仓:{i_now['open']}"
            sig_area = [{"xAxis": i_now['candle_begin_time'].strftime('%Y-%m-%d %H:%M:%S'),
                            "yAxis": i_now['open'] ,
                            "value": None},
                        {"xAxis": i_next['candle_begin_time'].strftime('%Y-%m-%d %H:%M:%S'),
                         "yAxis": i_now['open'],
                         "value":log_info}]
            sig_area_v = [{"xAxis": i_next['candle_begin_time'].strftime('%Y-%m-%d %H:%M:%S'),
                            "yAxis": i_now['open'] ,
                            "value": None},
                        {"xAxis": i_next['candle_begin_time'].strftime('%Y-%m-%d %H:%M:%S'),
                         "yAxis": i_next['open'],
                         "value":None}]
            markline.append(sig_area)
            markline.append(sig_area_v)

    elif markline_show2 and ('signal' in df.columns):
        area_index_list =[i for i in  df[(df['pos'] ==0)|(df['pos'] >0)|(df['pos'] <0)].index]
        for ix,i in enumerate(area_index_list):
            i_now = df.iloc[area_index_list[ix]]
            i_1_now = df.iloc[area_index_list[ix-1]] if ix != 0 else 0
            if i_now['pos'] == 0:
                log_info = f"交易价: {round(i_now['open'], 1)} +- 2__盈亏:{round(i_now['open'], 1) - round(i_1_now['open'], 1)}"
            else:
                log_info = f"交易价: {round(i_now['open'],1)} +- 2"

            sig_area = [{"xAxis": i_now['candle_begin_time'].strftime('%Y-%m-%d %H:%M:%S'),
                            "yAxis": i_now['open'] ,
                            "value": None},
                        {"xAxis": (i_now['candle_begin_time']+timedelta(minutes=15)).strftime('%Y-%m-%d %H:%M:%S'),
                         "yAxis": i_now['open'],
                         "value":log_info}]

            markline.append(sig_area)


    colors = {'red': 'rgb((220,20,60)','red2': 'rgb((250,20,40)',
              'yangzi': 'rgb(255,0,255)', 'zi': 'rgb(128,0,128)',
              'sehnzi': 'rgb(148,0,211)', 'blue': 'rgb(0,0,255)',
              'qing': 'rgb(0,255,255)', 'black': 'rgb(0,0,0)',
              'shengreen': 'rgb(157,255,212)', 'green': 'rgb(0,255,0)',
              'yellow': 'rgb(255,255,0)', 'glod': 'rgb(218,165,32)',
              'orange': 'rgb(255,165,0)', 'brown': 'rgb(165,42,42)'}
    kline.add_xaxis(xaxis_data=time_list)
    kline.add_yaxis(series_name="oclh",
                    xaxis_index=1,
                    yaxis_index=1,
                    y_axis =df.loc[:, ['open', 'close', 'low', 'high']].values.tolist(),
                    markline_opts=opts.MarkLineOpts(data=markline,
                                                    linestyle_opts=opts.LineStyleOpts(type_='dotted',width=3,color='red',opacity=0.5),
                                                    label_opts=opts.LabelOpts(position="right", color="blue", font_size=13),),
                    #官网给出的样本
                    markpoint_opts=opts.MarkPointOpts(data=signal_pos_list),
                    itemstyle_opts=opts.ItemStyleOpts(color="#ec0090", color0="#00aa3c"), )

    kline.set_global_opts(
                    legend_opts=opts.LegendOpts(is_show=True,pos_top=30, pos_left="left",orient='vertical'),
                    datazoom_opts=[ opts.DataZoomOpts(
                                        is_show=False,
                                        type_="inside",
                                        xaxis_index=[0, 1],
                                        range_start=90,
                                        range_end=100,
                                        orient='vertical'),
                                    opts.DataZoomOpts(
                                        is_show=True,
                                        xaxis_index=[0, 1],
                                        type_="slider",
                                        pos_top="20%",
                                        range_start=90,
                                        range_end=100,orient='vertical'),],
                    yaxis_opts =opts.AxisOpts(
                                is_scale=True,
                                splitarea_opts=opts.SplitAreaOpts(is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)),),
                    title_opts=opts.TitleOpts(
                        title = 'K_line',
                        pos_top='middle',
                        title_textstyle_opts=opts.TextStyleOpts(
                            color='black',font_weight='bold' ,font_size=20)),
                    tooltip_opts=opts.TooltipOpts(
                                trigger="axis",
                                trigger_on='"mousemove"',#click|mousemove
                                axis_pointer_type="cross",
                                is_show_content=True,
                                is_always_show_content=True,
                                background_color="rgba(20, 105, 245, 0.1)",
                                border_width=1,
                                border_color= "#ccc",
                                position = ['70%','30%'],
                                textstyle_opts=opts.TextStyleOpts(font_size=10,color="#000"),),
                    visualmap_opts=opts.VisualMapOpts(
                                is_show=True,
                                dimension=2,
                                series_index=5,
                                is_piecewise=True,
                                pieces=[{"value": 1, "color": "#00da3c"},{"value": -1, "color": "#ec0000"},],),
                    axispointer_opts=opts.AxisPointerOpts(
                                is_show=True,
                                link=[{"xAxisIndex": "all"}],
                                label=opts.LabelOpts(background_color="#777"),),
                    brush_opts=opts.BrushOpts(
                                x_axis_index="all",
                                brush_link="all",
                                out_of_brush={"colorAlpha": 0.1},
                                brush_type="lineX",),
    )

    if len(canshu.keys())>0:
        cos = list(colors.values())
        line =  Line()
        for k,v in canshu.items():
            line.add_xaxis(xaxis_data=time_list)
            line.set_global_opts(xaxis_opts=opts.AxisOpts(type_="category"))
            co = cos.pop()
            line.add_yaxis(
            series_name=k,
            y_axis = [y for y in v.values.tolist() if y != np.nan],
            xaxis_index=1,
            yaxis_index=1,
            is_smooth=False,
            is_connect_nones=False,# 是否连接空数据
            is_symbol_show=False,#是否显示值的位置,默认显示。
            color = co,
            is_hover_animation = False, # 是否开启 hover 在拐点标志上的提示动画效果。
            linestyle_opts=opts.LineStyleOpts(width=2, opacity=0.9,color=co),
            label_opts=opts.LabelOpts(is_show =True,position='middle',distance=2,rotate=5,color = 'rgb(165,42,42)'),
            itemstyle_opts=opts.ItemStyleOpts(color=co),)
        kline = kline.overlap(line)

    grid_chart = Grid(init_opts=opts.InitOpts(width = "1500px",height= "700px",theme=ThemeType.DARK))
    grid_chart.add(kline,grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%",pos_top='4%' ,height="70%"))

    if( vol_bar == True) or (len(canshu2.keys())==0):
        bar = Bar()
        bar.add_xaxis(xaxis_data=time_list)
        bar.add_yaxis(
            series_name="volume",
            y_axis=vol,
            xaxis_index=1,
            yaxis_index=2,
            label_opts=opts.LabelOpts(is_show=False), )

        bar.set_global_opts(xaxis_opts=opts.AxisOpts(
            type_="category",
            is_scale=True,
            grid_index=1,
            boundary_gap=False,
            axisline_opts=opts.AxisLineOpts(is_on_zero=False),
            axistick_opts=opts.AxisTickOpts(is_show=False),
            splitline_opts=opts.SplitLineOpts(is_show=False),
            axislabel_opts=opts.LabelOpts(is_show=False),
            split_number=20,
            min_="dataMin",
            max_="dataMax", ),
            yaxis_opts=opts.AxisOpts(
                grid_index=1,
                is_scale=True,
                split_number=2,
                axislabel_opts=opts.LabelOpts(is_show=False),
                axisline_opts=opts.AxisLineOpts(is_show=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False), ),
            legend_opts=opts.LegendOpts(is_show=True), )
        grid_chart.add(bar,grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%", pos_top="80%", height="15%"),)

    if len(canshu2.keys())>0 :
        line2 = Line()
        line2.add_xaxis(xaxis_data=time_list)
        for i, k in enumerate(canshu2.keys()):
            co = random.choice(list(colors.values()))
            line2.add_yaxis(
                series_name=k,
                y_axis=[y for y in canshu2[k].values.tolist()],
                xaxis_index=1,
                yaxis_index=i + 1,
                is_smooth=True,
                is_symbol_show=False,
                is_hover_animation=True,
                color=co,
                z_level=0,
                linestyle_opts=opts.LineStyleOpts(width=2, opacity=0.5, color=co),
                label_opts=opts.LabelOpts(is_show=False), )
            if k == list(canshu2.keys())[-1]: continue
            line2.extend_axis(yaxis=opts.AxisOpts(name=k, type_="value", position="right", min_=None, max_=None,
                                                  axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color=co)),
                                                  axislabel_opts=opts.LabelOpts(formatter="{value}"), ))
        line2.set_global_opts(xaxis_opts=opts.AxisOpts(
            type_="category", is_scale=True, grid_index=1, split_number=20, min_="dataMin", max_="dataMax",
            axisline_opts=opts.AxisLineOpts(is_on_zero=False),
            axistick_opts=opts.AxisTickOpts(is_show=False),
            splitline_opts=opts.SplitLineOpts(is_show=False),
            axislabel_opts=opts.LabelOpts(is_show=False), ),
            yaxis_opts=opts.AxisOpts(name=k, grid_index=i + 1, position='right',
                                     splitarea_opts=opts.SplitAreaOpts(is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)),
                                     min_=None, max_=None, is_scale=True, offset=50, ), )
        grid_chart.add(line2,grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%", pos_top="75%", height="23%"),is_control_axis_index=True)


    tab = Tab()

    zijin_data = (kline_data['per_lr'].cumsum())
    zijin_data.fillna(method='ffill', inplace=True)
    zijin_line = Line(init_opts=opts.InitOpts(width = "1500px",height= "700px",theme=ThemeType.DARK)).add_xaxis(time_list)
    zijin_line.add_yaxis(series_name="zijin_line:", y_axis=zijin_data.values, color="#FF0000")
    zijin_line.set_global_opts(

            datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")],
            title_opts=opts.TitleOpts(title="资金曲线变化"),
            tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
            yaxis_opts = opts.AxisOpts(
                is_scale=True,
                axislabel_opts=opts.LabelOpts(is_show=False),
                axisline_opts=opts.AxisLineOpts(is_show=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False), ),
                 legend_opts = opts.LegendOpts(is_show=True)
    )
    tab.add(grid_chart,'kline' )
    tab.add(zijin_line,'资金曲线变化' )
    tab.render(f"{path}.html")
    html0 = tab.render(f"{path}.html")
    if os.path.exists(html0):
        print("ok!保存在:")
        print(html0)
    else:
        print('保存失败!')
示例#22
0
def run_strategy(smaPeriod):
    df_new = pd.DataFrame(columns=('shares_ID', 'total number of trades',
                                   'Profit times number of trades',
                                   'Profit Percentage',
                                   'Final portfolio value'))
    for (root, dirs, files) in os.walk("E:/Stock/Data_Day"):
        z = 0
        for x in range(len(files)):
            z = z + 1
            #K线图
            df = pd.read_csv("E:/Stock/Data_Day/" + files[x])
            df = df.sort_index(ascending=False).reset_index(drop=True)
            print("进度:", z / len(files) * 100, "%")
            date = df.xs('Date Time', axis=1).tolist()
            data = []
            vol = []
            for idx in df.index:
                row1 = [
                    df.iloc[idx]['Open'], df.iloc[idx]['Close'],
                    df.iloc[idx]['Low'], df.iloc[idx]['High']
                ]
                row2 = df.iloc[idx]['Volume']
                data.append(row1)
                vol.append(row2)
            kline1 = Kline()
            line1 = Line()
            line2 = Line()
            line3 = Line()
            scatter1 = Scatter()
            scatter2 = Scatter()

            kline1.set_global_opts(xaxis_opts=opts.AxisOpts(is_scale=True),
                                   yaxis_opts=opts.AxisOpts(is_scale=True),
                                   datazoom_opts=[opts.DataZoomOpts()])
            kline1.extend_axis(
                yaxis=opts.AxisOpts(type_='value', position='right'))
            kline1.extend_axis(
                yaxis=opts.AxisOpts(type_='value', position='right'))

            # 价格均线
            line1.set_global_opts(xaxis_opts=opts.AxisOpts(is_scale=True),
                                  yaxis_opts=opts.AxisOpts(is_scale=True),
                                  datazoom_opts=[opts.DataZoomOpts()])
            # 成交量
            line2.set_global_opts(xaxis_opts=opts.AxisOpts(is_scale=True),
                                  yaxis_opts=opts.AxisOpts(is_scale=True),
                                  datazoom_opts=[opts.DataZoomOpts()])
            #资金量
            line3.set_global_opts(xaxis_opts=opts.AxisOpts(is_scale=True),
                                  yaxis_opts=opts.AxisOpts(is_scale=True),
                                  datazoom_opts=[opts.DataZoomOpts()])
            #买入点
            scatter1.set_global_opts(xaxis_opts=opts.AxisOpts(is_scale=True),
                                     yaxis_opts=opts.AxisOpts(is_scale=True),
                                     datazoom_opts=[opts.DataZoomOpts()])
            #卖出点
            scatter2.set_global_opts(xaxis_opts=opts.AxisOpts(is_scale=True),
                                     yaxis_opts=opts.AxisOpts(is_scale=True),
                                     datazoom_opts=[opts.DataZoomOpts()])

            kline1.add_xaxis(date)
            kline1.add_yaxis(files[x], data)
            line2.add_xaxis(date)
            line2.add_yaxis("vol",
                            vol,
                            yaxis_index=1,
                            label_opts=opts.LabelOpts(is_show=False))

            feed = GenericBarFeed(Frequency.DAY, None, None)
            feed.addBarsFromCSV("fd", "E:/Stock/Data_Day/" + files[x])
            global myStrategy
            myStrategy = MyStrategy(feed, "fd", smaPeriod)
            trade_situation = trades.Trades()
            myStrategy.attachAnalyzer(trade_situation)
            plt = plotter.StrategyPlotter(myStrategy)
            # Include the SMA in the instrument's subplot to get it displayed along with the closing prices.
            plt.getInstrumentSubplot("test").addDataSeries(
                "SMA", myStrategy.getSMA())
            # Plot the simple returns on each bar.
            # plt.getOrCreateSubplot("returns").addDataSeries("Simple returns", returnsAnalyzer.getReturns())
            myStrategy.run()
            scatter1.add_xaxis(myStrategy.Buyday)
            scatter1.add_yaxis("Buy", myStrategy.Buyprice)
            scatter2.add_xaxis(myStrategy.Sellday)
            scatter2.add_yaxis("Sell", myStrategy.Sellprice)
            line1.add_xaxis(myStrategy.Barday)
            line1.add_yaxis("Price_SMA",
                            myStrategy.Sma_price,
                            label_opts=opts.LabelOpts(is_show=False))
            line3.add_xaxis(date)
            line3.add_yaxis("money",
                            myStrategy.money,
                            yaxis_index=2,
                            label_opts=opts.LabelOpts(is_show=False))
            plt.savePlot("E:/Stock/html_png_Total_day/" + files[x] + ".png")
            print(files[x] + " Final portfolio value:$%.2f" %
                  myStrategy.getBroker().getEquity())
            print("total number of trades", trade_situation.getCount())
            print("Profit times number of trades ",
                  trade_situation.getProfitableCount())
            if trade_situation.getCount() > 0:
                Percentage = trade_situation.getProfitableCount(
                ) / trade_situation.getCount()
                print("百分比", Percentage)
            else:
                Percentage = 0
                print("百分比", 0)
            df1 = pd.DataFrame({
                "shares_ID": [files[x]],
                'total number of trades': [trade_situation.getCount()],
                'Profit times number of trades':
                trade_situation.getProfitableCount(),
                'Profit Percentage':
                Percentage,
                'Final portfolio value': [myStrategy.getBroker().getEquity()]
            })
            kline1.overlap(scatter1)
            kline1.overlap(scatter2)
            kline1.overlap(line1)
            kline1.overlap(line2)
            kline1.overlap(line3)
            kline1.render(path='E:\\Stock/html_png_Total_day/' + files[x] +
                          '.html')
            df_new = pd.concat([df1, df_new], ignore_index=True)
    df_new.to_csv("E:/Stock/html_png_Total_day/Total_Min.csv", index=False)
示例#23
0
# %% [markdown]
# ### KLine -- K线图

with open("data/candlestick.json", encoding="utf8") as j:
    ori_data = json.load(j)
    data = {
        "data": [rec[1:] for rec in ori_data],
        "times": [rec[0] for rec in ori_data],
        "vols": [int(rec[5]) for rec in ori_data],
        "macds": [rec[7] for rec in ori_data],
        "difs": [rec[8] for rec in ori_data],
        "deas": [rec[9] for rec in ori_data]
    }
kline = Kline()
kline.add_xaxis(data["times"][-100:])
kline.add_yaxis("", data["data"][-100:])
kline.render_notebook()

# %% [markdown]
# ### WordCloud -- 词云图

with open("data/wordcloud.json", encoding="utf8") as f:
    words = json.load(f)
wordcloud = WordCloud()
wordcloud.add("", words)
wordcloud.render_notebook()

# %% [markdown]
# ### Timeline
示例#24
0
        if len(temp) == 2:
            # 给第2组xy坐标字典添加'itemStyle': {'color': '#14b143'}键值对。
            # df_celue.at[temp[1]['xAxis'], 'close']为读取对应索引的收盘价。
            # 第二组坐标收盘价和第一组坐标收盘价比较,大于则区域颜色是红色表示盈利,小于则绿色亏损
            temp[1]["itemStyle"] = {
                'color':
                "#ef232a" if df_celue.at[temp[1]['xAxis'], 'close'] >
                df_celue.at[temp[0]['xAxis'], 'close'] else "#14b143"
            }
            markareadata.append(temp)
            # rprint(markareadata)
            temp = []

    vol = df_stock['vol'].tolist()
    # print(oclh)
    kline.add_xaxis(datetime)
    kline.add_yaxis(
        stock_code,
        oclh,
        itemstyle_opts=opts.ItemStyleOpts(
            color="#ef232a",
            color0="#14b143",
            border_color="#ef232a",
            border_color0="#14b143",
        ),
        # markpoint_opts=opts.MarkPointOpts(
        #     data=[
        #         opts.MarkPointItem(type_="max", name="最大值"),
        #         opts.MarkPointItem(type_="min", name="最小值"),
        #     ]
        # )
示例#25
0
def to_grid(ka,
              kline_mode: str = "new",
              with_bi: bool = False,
              with_xd: bool = False,
              with_zs: bool = False,
              with_bs: bool = False,
              with_ma: bool = False,
              with_vol: bool = False,
              with_macd: bool = False,
              title: str = "ChanLun In Practise",
              width: str = "1440px",
              height: str = '900px') -> Grid:
    """绘制缠中说禅K线分析结果
    :param kline: K线 new / raw,new标识标准化后的k线,raw标识原始k线
    :param with_bi: 是否显示笔识别结果,默认True,不输出False
    :param with_xd: 是否显示线段识别结果
    :param with_zs: 是否显示中枢识别结果
    :param with_bs: 是否显示买卖点
    :param with_ma: 是否显示均线,默认True,不输出False
    :param with_macd: 是否显示macd,默认True,不输出False
    :param with_vol: 是否显示成交量,默认True,不输出False
    :param title: 图表标题
    :param width: 图表宽度
    :param height: 图表高度
    :return: 用Grid组合好的图表
    """
    
    # 配置项设置
    # ------------------------------------------------------------------------------------------------------------------
    bg_color = "#1f212d"    # 背景
    up_color = "#F9293E"
    down_color = "#00aa3b"

    init_opts = opts.InitOpts(bg_color=bg_color, width='1400px', height='800px')
    title_opts = opts.TitleOpts(title=title, pos_top="1%",
                                title_textstyle_opts=opts.TextStyleOpts(color=up_color, font_size=20),
                                subtitle_textstyle_opts=opts.TextStyleOpts(color=down_color, font_size=12))

    label_not_show_opts = opts.LabelOpts(is_show=False)
    legend_not_show_opts = opts.LegendOpts(is_show=False)
    red_item_style = opts.ItemStyleOpts(color=up_color)
    green_item_style = opts.ItemStyleOpts(color=down_color)
    k_style_opts = opts.ItemStyleOpts(color=up_color, color0=down_color, border_color=up_color,
                                      border_color0=down_color, opacity=0.8)

    legend_opts = opts.LegendOpts(is_show=True, pos_top="1%", pos_left="30%", item_width=14, item_height=8,
                                  textstyle_opts=opts.TextStyleOpts(font_size=12, color="#0e99e2"))
    brush_opts = opts.BrushOpts(tool_box=["rect", "polygon", "keep", "clear"],
                                x_axis_index="all", brush_link="all",
                                out_of_brush={"colorAlpha": 0.1}, brush_type="lineX")

    axis_pointer_opts = opts.AxisPointerOpts(is_show=True, link=[{"xAxisIndex": "all"}])

    dz_inside = opts.DataZoomOpts(False, "inside", xaxis_index=[0, 1, 2])
    dz_slider = opts.DataZoomOpts(True, "slider", xaxis_index=[0, 1, 2], pos_top="96%", pos_bottom="0%")

    yaxis_opts = opts.AxisOpts(is_scale=True, axislabel_opts=opts.LabelOpts(color="#c7c7c7", font_size=8, position="inside"))

    grid0_xaxis_opts = opts.AxisOpts(type_="category", grid_index=0, axislabel_opts=label_not_show_opts,
                                     split_number=20, min_="dataMin", max_="dataMax",
                                     is_scale=True, boundary_gap=False, axisline_opts=opts.AxisLineOpts(is_on_zero=False))

    tool_tip_opts = opts.TooltipOpts(
        trigger="axis",
        axis_pointer_type="cross",
        background_color="rgba(245, 245, 245, 0.8)",
        border_width=1,
        border_color="#ccc",
        textstyle_opts=opts.TextStyleOpts(color="#000"),
    )


    # 数据预处理
    # ------------------------------------------------------------------------------------------------------------------
    kline = ka.kline_new if kline_mode == 'new' else ka.kline_raw
    dts = [x['dt'] for x in kline]
    k_data = [[x['open'], x['close'], x['low'], x['high']] for x in kline]

    # seriesname
    aggregation = len(ka.ka_list)>0
    # {'freq': {'kline', 'ma', 'vol', 'macd'}}
    agg_dict = {}    
    agg_dict[ka.freq] = {
        "kline": k_data,
        "ma": ka.ma,
        "vol": kline,
        "macd": ka.macd
    }
    if aggregation:
        for high_ka in ka.ka_list:
            agg_dict[high_ka.freq] = {}
            _high_k_data = high_ka.kline_new if kline_mode == 'new' else high_ka.kline_raw
            high_k_data = []
            high_ma_data = []
            high_vol_data = []
            high_macd_data = []
            for i in range(len(dts)):
                high_k_data.append([])
                high_ma_data.append({})
                high_vol_data.append(None)
                high_macd_data.append(None)
            for ki in range(len(kline)):
                k = kline[ki]  
                _start = 0                              
                for h_ki in range(_start, len(_high_k_data)):
                    h_k = _high_k_data[h_ki]                    
                    if (h_k['dt'] == k['dt']):                        
                        high_k_data[ki] = [h_k['open'], h_k['close'], h_k['low'], h_k['high']]
                        high_ma_data[ki] = high_ka.ma[h_ki]
                        high_vol_data[ki] = h_k
                        high_macd_data[ki] = high_ka.macd[h_ki]
                        _start = h_ki+1
                        break
            agg_dict[high_ka.freq] = {
                "kline": high_k_data,
                "ma": high_ma_data,
                "vol": high_vol_data,
                "macd": high_macd_data
            }
            
    # K 线主图
    # ------------------------------------------------------------------------------------------------------------------
    chart_k = Kline()
    chart_k.add_xaxis(xaxis_data=dts)
    for k, v in agg_dict.items():
        chart_k.add_yaxis(series_name=k if aggregation else 'kline', y_axis=v['kline'], itemstyle_opts=k_style_opts)
        is_selected = False

    chart_k.set_global_opts(
            legend_opts=legend_opts,
            datazoom_opts=[dz_inside, dz_slider],
            yaxis_opts=yaxis_opts,
            tooltip_opts=tool_tip_opts,
            axispointer_opts=axis_pointer_opts,
            brush_opts=brush_opts,
            title_opts=title_opts,
            xaxis_opts=grid0_xaxis_opts,
    )

    if with_ma:
        # 均线图
        # ------------------------------------------------------------------------------------------------------------------
        ma_keys = [x for x in agg_dict[ka.freq]['ma'][0].keys() if "ma" in x][:3]
        ma_colors = ["#39afe6", "#da6ee8", "#00940b"]

        chart_ma = Line()
        chart_ma.add_xaxis(xaxis_data=dts)

        for key, vals in agg_dict.items():
            for i, k in enumerate(ma_keys):
                y_data = [x[k] if k in x else None for x in v['ma']]
                chart_ma.add_yaxis(series_name=key if aggregation else k.upper(), y_axis=y_data, is_smooth=True,
                                is_selected=True, is_connect_nones=True, symbol_size=0, label_opts=label_not_show_opts,
                                linestyle_opts=opts.LineStyleOpts(opacity=0.8, width=1.0, color=ma_colors[i]))

        chart_ma.set_global_opts(xaxis_opts=grid0_xaxis_opts, legend_opts=legend_not_show_opts)
        chart_k = chart_k.overlap(chart_ma)

    # 缠论结果
    # ------------------------------------------------------------------------------------------------------------------
    def __draw_bi_line(_ka):
        bi_dts = [x['dt'] for x in _ka.bi_list]
        bi_val = [x['bi'] for x in _ka.bi_list]
        chart_bi = Line()
        chart_bi.add_xaxis(bi_dts)
        chart_bi.add_yaxis(series_name=_ka.freq if aggregation else "BI", y_axis=bi_val, is_selected=True,
                        symbol="diamond", symbol_size=10, label_opts=label_not_show_opts,)

        chart_bi.set_global_opts(xaxis_opts=grid0_xaxis_opts, legend_opts=legend_not_show_opts)
        return chart_bi

    if with_bi:
        chark_k = chart_k.overlap(__draw_bi_line(ka))
        for _ka in ka.ka_list:
            chark_k = chart_k.overlap(__draw_bi_line(_ka))

    def __draw_xd_line(_ka):
        
        xd_dts = [x['dt'] for x in _ka.xd_list]
        xd_val = [x['xd'] for x in _ka.xd_list]
        chart_xd = Line()
        chart_xd.add_xaxis(xd_dts)
        chart_xd.add_yaxis(series_name=_ka.freq if aggregation else "XD", y_axis=xd_val, is_selected=True, symbol="triangle", symbol_size=10,)

        chart_xd.set_global_opts(xaxis_opts=grid0_xaxis_opts, legend_opts=legend_not_show_opts)
        return chart_xd

    if with_xd:
        chark_k = chart_k.overlap(__draw_xd_line(ka))
        for _ka in ka.ka_list:
            chark_k = chart_k.overlap(__draw_xd_line(_ka))

    def __draw_zs_area(_ka):
        lines = []
        scatters = []
        for _zs in _ka.zs_list:
            x_start = _zs['start_point']['dt']

            if _zs['zs_finished']:# 中枢完成
                x_end = _zs['end_point']['dt']

                chart_b = EffectScatter()

                if 'buy3' in _zs:
                    chart_b.add_xaxis([_zs['buy3']['dt']])
                    chart_b.add_yaxis(series_name=_ka.freq if aggregation else "B", y_axis=[_zs['buy3']['xd']], is_selected=False, symbol="circle", symbol_size=8,
                                itemstyle_opts=opts.ItemStyleOpts(color="red",))
                    chart_b.set_global_opts(xaxis_opts=grid0_xaxis_opts, legend_opts=legend_not_show_opts)
                    scatters.append(chart_b)
                elif 'sell3' in _zs:
                    chart_b.add_xaxis([_zs['sell3']['dt']])
                    chart_b.add_yaxis(series_name=_ka.freq if aggregation else "S", y_axis=[_zs['sell3']['xd']], is_selected=False, symbol="circle", symbol_size=8,
                                itemstyle_opts=opts.ItemStyleOpts(color="green",))
                    chart_b.set_global_opts(xaxis_opts=grid0_xaxis_opts, legend_opts=legend_not_show_opts)
                    scatters.append(chart_b)
            elif len(_zs['points'])>=5:# 中枢成立但未完成,有3笔或段以上
                x_end = _zs['points'][-1]['dt']
            else:                       # 中枢未完成,且未确定
                continue
            
            ZD = _zs['ZD']
            ZG = _zs['ZG']
            area_data=[[ {'xAxis': x_start, 'yAxis': ZD, 'value': ZD }, {'xAxis': x_end, 'yAxis': ZG, 'value': ZG }]]
            line = (Line()
            .add_xaxis([x_start, x_end])
            .add_yaxis(series_name=_ka.freq if aggregation else "ZS", y_axis=[ZD, ZG], symbol='none' 
            """        
            , markpoint_opts = opts.MarkPointOpts(
                data=[
                    opts.MarkPointItem(type_="max", name="ZG"),
                    opts.MarkPointItem(type_="min", name="ZD"),
                ]
            )
            """
            , markline_opts=opts.MarkLineOpts(
                label_opts=opts.LabelOpts(
                    position="middle", color="blue", font_size=15,
                ),
                linestyle_opts=opts.LineStyleOpts(type_="dashed"),
                data=area_data,
                symbol=["none", "none"],
            )
            )
            .set_series_opts(
                markarea_opts=opts.MarkAreaOpts(data=area_data, itemstyle_opts=opts.ItemStyleOpts(color="#dcdcdc",opacity=0.1))
            ))
            lines.append(line)
        return lines, scatters

    if with_zs:
        _areas, _scatters = __draw_zs_area(ka)
        for _ka in ka.ka_list:
            _a, _s = __draw_zs_area(_ka)
            _areas.extend(_a)
            _scatters.extend(_s)
        for _area in _areas:
            chark_k = chart_k.overlap(_area)
        for _scatter in _scatters:
            chark_k = chart_k.overlap(_scatter)

    # if with_vol:
    # 成交量图
    # ------------------------------------------------------------------------------------------------------------------
    chart_vol = Bar()
    chart_vol.add_xaxis(dts)
    for k, v in agg_dict.items():
        vol = []
        for row in v['vol']:
            if not row:
                row = {'close': 0, 'open': 0, 'vol': 0}
            item_style = red_item_style if row['close'] > row['open'] else green_item_style
            bar = opts.BarItem(name=None, value=row['vol'], itemstyle_opts=item_style, label_opts=label_not_show_opts)
            vol.append(bar)
        chart_vol.add_yaxis(series_name=k if aggregation else "Volume", y_axis=vol, bar_width='60%')

    chart_vol.set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=1,
                axislabel_opts=opts.LabelOpts(is_show=True, font_size=8, color="#9b9da9"),
            ),
            yaxis_opts=yaxis_opts, legend_opts=legend_not_show_opts,
        )

    #if with_macd:
    # MACD图
    # ------------------------------------------------------------------------------------------------------------------
    
    chart_macd = Bar()
    chart_macd.add_xaxis(dts)
    
    for k, v in agg_dict.items():
        macd_bar = []
        for row in v['macd']:
            if not row:
                row = {'macd': 0}
            item_style = red_item_style if row['macd'] > 0 else green_item_style
            bar = opts.BarItem(name=None, value=round(row['macd'], 4), itemstyle_opts=item_style, label_opts=label_not_show_opts)
            macd_bar.append(bar)

        chart_macd.add_yaxis(series_name=k if aggregation else "MACD", y_axis=macd_bar, bar_width='60%')

    chart_macd.set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=2,
                axislabel_opts=opts.LabelOpts(is_show=False),
            ),
            yaxis_opts=opts.AxisOpts(
                grid_index=2,
                split_number=4,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                axislabel_opts=opts.LabelOpts(is_show=True, color="#c7c7c7"),
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )


    line = Line()
    line.add_xaxis(dts)
    for k, v in agg_dict.items():
        macd = v['macd']
        diff = [round(x['diff'], 4) if x else None for x in macd]
        dea = [round(x['dea'], 4) if x else None for x in macd]        
        line.add_yaxis(series_name=k if aggregation else "DIFF", y_axis=diff, label_opts=label_not_show_opts, is_symbol_show=False
                    , is_connect_nones=True, linestyle_opts=opts.LineStyleOpts(opacity=0.8, width=1.0, color="#EDCB89"))
        line.add_yaxis(series_name=k if aggregation else "DEA", y_axis=dea, label_opts=label_not_show_opts, is_symbol_show=False
                    , is_connect_nones=True, linestyle_opts=opts.LineStyleOpts(opacity=0.8, width=1.0, color="#FFFFFF"))

    chart_macd = chart_macd.overlap(line)
    
    grid0_opts = opts.GridOpts(pos_left="3%", pos_right="1%", pos_top="12%", height="58%")
    grid1_opts = opts.GridOpts(pos_left="3%", pos_right="1%", pos_top="74%", height="8%")
    grid2_opts = opts.GridOpts(pos_left="3%", pos_right="1%", pos_top="86%", height="10%")
    grid_chart = Grid(init_opts)
    grid_chart.add(chart_k, grid_opts=grid0_opts)
    grid_chart.add(chart_vol, grid_opts=grid1_opts)    
    grid_chart.add(chart_macd, grid_opts=grid2_opts)
    return grid_chart
示例#26
0
def gen_kline_plot(
    stock_data: pd.DataFrame,
    chart_data: typing.Dict[str, typing.List[typing.List[typing.Union[float,
                                                                      int]]]],
) -> Kline:
    xaxis_index, series_index = get_subgraph_indices(chart_data)
    kline_data = [
        list(kline_dict.values()) for kline_dict in stock_data[
            ["open", "close", "min", "max"]].to_dict("records")
    ]
    kline = Kline(init_opts=opts.InitOpts(animation_opts=opts.AnimationOpts(
        animation=False), ))
    kline.add_xaxis(xaxis_data=chart_data["categoryData"])
    kline.add_yaxis(
        series_name="kline",
        y_axis=kline_data,
        itemstyle_opts=opts.ItemStyleOpts(color="#ec0000", color0="#00da3c"),
    )
    kline.set_global_opts(
        legend_opts=opts.LegendOpts(is_show=True, pos_left="center"),
        datazoom_opts=[
            opts.DataZoomOpts(
                is_show=False,
                type_="inside",
                xaxis_index=xaxis_index,
                range_start=85,
                range_end=100,
            ),
            opts.DataZoomOpts(
                is_show=True,
                xaxis_index=xaxis_index,
                type_="slider",
                pos_top="85%",
                range_start=85,
                range_end=100,
            ),
        ],
        yaxis_opts=opts.AxisOpts(
            is_scale=True,
            splitarea_opts=opts.SplitAreaOpts(
                is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)),
        ),
        tooltip_opts=opts.TooltipOpts(
            trigger="axis",
            axis_pointer_type="cross",
            background_color="rgba(245, 245, 245, 0.8)",
            border_width=1,
            border_color="#ccc",
            textstyle_opts=opts.TextStyleOpts(color="#000"),
        ),
        visualmap_opts=opts.VisualMapOpts(
            is_show=False,
            dimension=2,
            series_index=series_index,
            is_piecewise=True,
            pieces=[
                {
                    "value": 1,
                    "color": "#ec0000"
                },
                {
                    "value": -1,
                    "color": "#00da3c"
                },
            ],
        ),
        axispointer_opts=opts.AxisPointerOpts(
            is_show=True,
            link=[{
                "xAxisIndex": "all"
            }],
            label=opts.LabelOpts(background_color="#777"),
        ),
        brush_opts=opts.BrushOpts(
            x_axis_index="all",
            brush_link="all",
            out_of_brush={"colorAlpha": 0.1},
            brush_type="lineX",
        ),
    )
    return kline