def create_entries_by_unique_artist(billboard_df, start_year, end_year):
    billboard_df = billboard_df[(billboard_df["Year"] >= start_year) & (billboard_df["Year"] <= end_year)]
    billboard_df_temp = pd.DataFrame.copy(billboard_df)

    billboard_unique_artists = []
    billboard_songs = []
    billboard_years = []
    billboard_rank = []

    for index_artist, row in billboard_df_temp.iterrows():
        artist = row["Artist(s)"]
        title = row["Title"]
        year = row["Year"]
        rank = row["Num"]
        if artist == "Earth, Wind & Fire & The Emotions":
            billboard_unique_artists.append("Earth, Wind & Fire")
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            billboard_unique_artists.append("The Emotions")
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            continue
        elif artist == "Grover Washington, Jr. & Bill Withers":
            billboard_unique_artists.append("Grover Washington, Jr.")
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            billboard_unique_artists.append("Bill Withers") 
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            continue
        elif artist == "Dionne and Friends (Dionne Warwick, Gladys Knight, Elton John and Stevie Wonder)":
            billboard_unique_artists.append("Dionne Warwick")
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            billboard_unique_artists.append("Gladys Knight") 
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            billboard_unique_artists.append("Elton John")
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            billboard_unique_artists.append("Stevie Wonder") 
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            continue
        elif artist == "Allen, KrisKris Allen":
            billboard_unique_artists.append("Kris Allen") 
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            continue
        elif artist == "Crosby, Stills, Nash & Young":
            billboard_unique_artists.append("Crosby, Stills & Nash") 
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            continue 
        elif artist == "Neil Sedaka & Elton John":
            billboard_unique_artists.append("Neil Sedaka")
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            billboard_unique_artists.append("Elton John") 
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            continue
        elif artist == "Neil & Dara Sedaka":
            billboard_unique_artists.append("Neil Sedaka")
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            billboard_unique_artists.append("Dara Sedaka") 
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
        elif artist == "Donna Summer and Brooklyn Dreams":
            billboard_unique_artists.append("Donna Summer")
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            billboard_unique_artists.append("Brooklyn Dreams") 
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
        elif artist == "Donny and Marie Osmond":
            billboard_unique_artists.append("Donny Osmond")
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            billboard_unique_artists.append("Marie Osmond") 
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
        elif artist in MULTIPLE_ARTIST_LIST:
            billboard_unique_artists.append(artist) 
            billboard_rank.append(rank)
            billboard_songs.append(title)
            billboard_years.append(year)
            continue   
        else:
            artist_comma_splitted = artist.split(", ")
            for item in artist_comma_splitted:
                if (item == "") or (item == " "):
                    continue
                elif item in MULTIPLE_ARTIST_LIST:
                    billboard_unique_artists.append(item) 
                    billboard_rank.append(rank)
                    billboard_songs.append(title)
                    billboard_years.append(year)
                    continue
                item_featuring_splitted = item.split(" featuring ")
                for item2 in item_featuring_splitted:
                    if (item2 == "") or (item2 == " "):
                        continue
                    
                    if item2 in MULTIPLE_ARTIST_LIST:
                        billboard_unique_artists.append(item2) 
                        billboard_rank.append(rank)
                        billboard_songs.append(title)
                        billboard_years.append(year)
                        continue
                    elif (year >= 1982) & ((" and " in item2) or (item2.startswith("and "))):
                        if item2.startswith("and "):
                            item_and_splitted = item2.split("and ")
                        else:
                            item_and_splitted = item2.split(" and ")

                        for item3 in item_and_splitted:
                            if (item3 == "") or (item3 == " "):
                                continue
                            
                            if item3 in ARTIST_DICTIONARY:
                                billboard_unique_artists.append(ARTIST_DICTIONARY[item3])
                            else:
                                billboard_unique_artists.append(item3)
                            billboard_rank.append(rank)
                            billboard_songs.append(title)
                            billboard_years.append(year)
                    else:
                        if item2 in ARTIST_DICTIONARY:
                            billboard_unique_artists.append(ARTIST_DICTIONARY[item2])
                        else:
                            billboard_unique_artists.append(item2)
                        billboard_rank.append(rank)
                        billboard_songs.append(title)
                        billboard_years.append(year)

    data = {"Rank": billboard_rank, "Artist(s)": billboard_unique_artists, "Title": billboard_songs, "Year": billboard_years}
    unique_artist_df = pd.DataFrame(data, columns = ["Rank", "Artist(s)", "Title", "Year"])
    return unique_artist_df
示例#2
0
def getArtists():
        
        
        songs =  request.json['songs']
        
        
        ### API Key Configuration
        
        from pyechonest import config
        config.ECHO_NEST_API_KEY="YZZS9XI0IMOLQRKQ6"
        
        
        ######################          Getting Artists + Song Info           ########################
        ## Basic info on the artists and song from the Echonest API based on a spotify ID sent to the 
        ## app. This part also collects  any available information on tempo, danceability and energy
        ## from the Echonest API for use in subsetting the recommended playlist
        
        
        from pyechonest import track
        artists = []
        EchoNestSongId = []
        EchoNestArtistId = []
        energy = []
        dance = []
        tempo = []
        
        for i in range(len(songs)):
            songs[i] = songs[i].replace("spotify:track:", "spotify-WW:track:")
            try:
                t = track.track_from_id(songs[i])
                EchoNestSongId.append(t.song_id)
                EchoNestArtistId.append(t.id)
                artists.append(t.artist)
                
                if "energy" in vars(t):
                    energy.append(t.energy)
                if "danceability" in vars(t):
                    dance.append(t.danceability)
                if "tempo" in vars(t):
                    tempo.append(t.tempo)
                
            except:
                continue
           
             
                
        ######################          Terms Per Artist // All Terms           ########################
        
        ### Building Terms from Artists
        artist_dict = {}
        terms = []
        from pyechonest import artist
        
        ##Creates a dictionary with artists and terms associated with that artist, also creates a vector of all terms
        for i in range(len(artists)):
                artistTerm = artist.Artist(artists[i]).terms
                find_term = []
                
                limitTerms = 4
                for artistT in artistTerm:
                    find_term.append(artistT['name'])
                    limitTerms -= 1
                    if limitTerms == 0:
                        break
                
                artist_dict[artists[i]] = find_term;
                terms.extend(find_term)   
        
               
        
        ######################           Weights for Terms           ########################
        ##Creates weights for each term based on the number of times it appeared in artist list
        
        terms_dict = {}
        for i in range(len(terms)):
            if terms[i] not in terms_dict.items():
                find_count = terms.count(terms[i])
                terms_dict[terms[i]] = find_count
                    
               
        
        ######################           Weights for Artists            ########################
        ## Adds all of the weights per term per artist to get the overall weight for an artist
        ## 5 subtracted from total weight (number of terms used per artist, each guarenteed a count of 5)
        weights = {}
        
        for key in artist_dict:
            getWeight=0
            for value in artist_dict[key]:
                if value in terms:
                    getWeight = getWeight+terms_dict[value]
            weights[key] = getWeight
            
        
        #checking weights
        #for key in weights:
        #    print  key +":" + str(weights[key]) 
        #NOTE::: If we ever want to add more than 5 songs, we have to order the dictionary and select top 5 artists of terms.
        
       
        
        ######################          Finding Similar Artists w/Weights           ########################
        
        createURL = "http://developer.echonest.com/api/v4/artist/similar?api_key=YZZS9XI0IMOLQRKQ6"
        
        for key in weights:
            createURL += "&id=" +artist.Artist(key).id +"^" + str(weights[key])
        
        simMake = urllib2.urlopen(createURL);
        echonestSim = simMake.read();
        findSimilarArtist = []
        for artist in echonestSim.split(":"):
            if "name" in artist:
                artistShrink = artist.split(",")[0]
                artistShrink= artistShrink.translate(None, string.punctuation)
                artistShrink = artistShrink.strip()
                findSimilarArtist.append(artistShrink)
        findSimilarArtists = findSimilarArtist[1:30]
        
        
        
        ######################          Setting Limits on Audio for Song Rec          ########################
        ### Used to find songs in range of input songs on danceability, enerygy, and tempo, and return full range
        ### values if there is not enough data to calculate an adjusted range
        ### NOTE: Currently - tempo and energy not used 
        
        if len(dance) > 1:
            min_danceability = dance[dance.index(min(dance))]
            max_danceability = dance[dance.index(max(dance))]
        else:
            min_danceability = 0
            max_danceability = 1
        
        if len(tempo) > 1:                                       
            min_tempo = tempo[tempo.index(min(tempo))]
            max_tempo = tempo[tempo.index(max(tempo))]
        else:
            min_tempo = 0
            max_tempo = 500
        
        if len(energy) > 1:                                
            min_energy = energy[energy.index(min(energy))] 
            max_energy = energy[energy.index(max(energy))]
        else: 
            min_energy = 0 
            max_energy = 1 
   
               
        ######################          Selecting Top Songs for Recommended Artists + Creates Playlist         ########################        
        playlist = []
        for i in findSimilarArtists:
            createURL="http://developer.echonest.com/api/v4/song/search?api_key=YZZS9XI0IMOLQRKQ6&artist_id=" +i+ "&bucket=id:spotify-WW&bucket=tracks&sort=song_hotttnesss-desc&min_danceability=" + str(min_danceability) + "&max_danceability=" + str(max_danceability) + "&results=5"
            getURL = urllib2.urlopen(createURL);
            clean_page = getURL.read();
            if "spotify-WW:track" in clean_page:
                get_track = clean_page[clean_page.index("spotify-WW:track")-1:clean_page.index("spotify-WW:track")+60].replace(":", ",").split(",")[2].translate(None, string.punctuation)
                playlist.append("spotify:track:" + get_track)        
        
        playlist = jsonify( { 'playlist': playlist} )
        
        return(playlist)