示例#1
0
    def __init__(self):
        self.X = exprvars('x', (1, 10), (1, 10), (1, 10))

        V = And(*[
            And(*[
                OneHot(*[self.X[r, c, v] for v in range(1, 10)])
                for c in range(1, 10)
            ]) for r in range(1, 10)
        ])
        R = And(*[
            And(*[
                OneHot(*[self.X[r, c, v] for c in range(1, 10)])
                for v in range(1, 10)
            ]) for r in range(1, 10)
        ])
        C = And(*[
            And(*[
                OneHot(*[self.X[r, c, v] for r in range(1, 10)])
                for v in range(1, 10)
            ]) for c in range(1, 10)
        ])
        B = And(*[
            And(*[
                OneHot(*[
                    self.X[3 * br + r, 3 * bc + c, v] for r in range(1, 4)
                    for c in range(1, 4)
                ]) for v in range(1, 10)
            ]) for br in range(3) for bc in range(3)
        ])

        self.litmap, self.S = expr2dimacscnf(And(V, R, C, B))
示例#2
0
def test_nf():
    f = a ^ b ^ c
    g = a & b | a & c | b & c

    f_dnf = f.to_dnf()
    f_cnf = f.to_cnf()

    assert f_dnf.equivalent(
        Or(And(~a, ~b, c), And(~a, b, ~c), And(a, ~b, ~c), And(a, b, c)))
    assert f_cnf.equivalent(
        And(Or(a, b, c), Or(a, ~b, ~c), Or(~a, b, ~c), Or(~a, ~b, c)))
示例#3
0
def _cover2exprs(inputs, noutputs, cover):
    """Convert a cover to a tuple of Expression instances."""
    fs = list()
    for i in range(noutputs):
        terms = list()
        for invec, outvec in cover:
            if outvec[i]:
                term = list()
                for j, v in enumerate(inputs):
                    if invec[j] == 1:
                        term.append(~v)
                    elif invec[j] == 2:
                        term.append(v)
                terms.append(term)
        fs.append(Or(*[And(*term) for term in terms]))

    return tuple(fs)
示例#4
0
def test_expr2dimacssat():
    assert_raises(ValueError, expr2dimacssat, Xor(0, a, simplify=False))
    ret = expr2dimacssat(Xor(a, ~b))
    assert ret in {'p satx 2\nxor(-2 1)', 'p satx 2\nxor(1 -2)'}
    ret = expr2dimacssat(Xor(a, Equal(b, ~c)))
    assert ret in {
        'p satex 3\nxor(=(2 -3) 1)', 'p satex 3\nxor(1 =(2 -3))',
        'p satex 3\nxor(=(-3 2) 1)', 'p satex 3\nxor(1 =(-3 2))'
    }
    ret = expr2dimacssat(Equal(a, ~b))
    assert ret in {'p sate 2\n=(1 -2)', 'p sate 2\n=(-2 1)'}
    ret = expr2dimacssat(And(a, ~b))
    assert ret in {'p sat 2\n*(1 -2)', 'p sat 2\n*(-2 1)'}
    ret = expr2dimacssat(Or(a, ~b))
    assert ret in {'p sat 2\n+(1 -2)', 'p sat 2\n+(-2 1)'}
    ret = expr2dimacssat(Not(a | ~b))
    assert ret in {'p sat 2\n-(+(1 -2))', 'p sat 2\n-(+(-2 1))'}
示例#5
0
def test_basic():
    a, b, c, d, p, q, s = map(exprvar, 'abcdpqs')
    assert expr("a & ~b | b & ~c").equivalent(a & ~b | b & ~c)
    assert expr("p => q").equivalent(~p | q)
    assert expr("a <=> b").equivalent(~a & ~b | a & b)
    assert expr("s ? a : b").equivalent(s & a | ~s & b)
    assert expr("Not(a)").equivalent(Not(a))
    assert expr("Or(a, b, c)").equivalent(Or(a, b, c))
    assert expr("And(a, b, c)").equivalent(And(a, b, c))
    assert expr("Xor(a, b, c)").equivalent(Xor(a, b, c))
    assert expr("Xnor(a, b, c)").equivalent(Xnor(a, b, c))
    assert expr("Equal(a, b, c)").equivalent(Equal(a, b, c))
    assert expr("Unequal(a, b, c)").equivalent(Unequal(a, b, c))
    assert expr("Implies(p, q)").equivalent(Implies(p, q))
    assert expr("ITE(s, a, b)").equivalent(ITE(s, a, b))
    assert expr("Nor(a, b, c)").equivalent(Nor(a, b, c))
    assert expr("Nand(a, b, c)").equivalent(Nand(a, b, c))
    assert expr("OneHot0(a, b, c)").equivalent(OneHot0(a, b, c))
    assert expr("OneHot(a, b, c)").equivalent(OneHot(a, b, c))
    assert expr("Majority(a, b, c)").equivalent(Majority(a, b, c))
    assert expr("AchillesHeel(a, b, c, d)").equivalent(AchillesHeel(
        a, b, c, d))
示例#6
0
def test_and():
    assert And() is One
    assert And(a) is a

    assert And(0, 0) is Zero
    assert And(0, 1) is Zero
    assert And(1, 0) is Zero
    assert And(1, 1) is One

    assert And(0, 0, 0) is Zero
    assert And(0, 0, 1) is Zero
    assert And(0, 1, 0) is Zero
    assert And(0, 1, 1) is Zero
    assert And(1, 0, 0) is Zero
    assert And(1, 0, 1) is Zero
    assert And(1, 1, 0) is Zero
    assert And(1, 1, 1) is One

    assert And(a, 0) is Zero
    assert And(1, a) is a
    assert And(~a, a) is Zero

    assert str(And(a, 0, simplify=False)) == "And(a, 0)"
    assert str(And(1, a, simplify=False)) == "And(1, a)"
    assert str(And(~a, a, simplify=False)) == "And(~a, a)"
示例#7
0
文件: test_expr.py 项目: e42s/pyeda
def test_issue81():
    # Or(x) = x
    assert str(Or(Or(a, b))) == "Or(a, b)"
    assert str(Or(And(a, b))) == "And(a, b)"
    assert str(Or(Nor(a, b))) == "Not(Or(a, b))"
    assert str(Or(Nand(a, b))) == "Not(And(a, b))"
    assert str(Or(Xor(a, b))) == "Xor(a, b)"
    assert str(Or(Xnor(a, b))) == "Not(Xor(a, b))"
    # And(x) = x
    assert str(And(Or(a, b))) == "Or(a, b)"
    assert str(And(And(a, b))) == "And(a, b)"
    assert str(And(Nor(a, b))) == "Not(Or(a, b))"
    assert str(And(Nand(a, b))) == "Not(And(a, b))"
    assert str(And(Xor(a, b))) == "Xor(a, b)"
    assert str(And(Xnor(a, b))) == "Not(Xor(a, b))"
    # Nor(x) = ~x
    assert str(Nor(Or(a, b))) == "Not(Or(a, b))"
    assert str(Nor(And(a, b))) == "Not(And(a, b))"
    assert str(Nor(Nor(a, b))) == "Or(a, b)"
    assert str(Nor(Nand(a, b))) == "And(a, b)"
    assert str(Nor(Xor(a, b))) == "Not(Xor(a, b))"
    assert str(Nor(Xnor(a, b))) == "Xor(a, b)"
    # Nand(x) = ~x
    assert str(Nand(Or(a, b))) == "Not(Or(a, b))"
    assert str(Nand(And(a, b))) == "Not(And(a, b))"
    assert str(Nand(Nor(a, b))) == "Or(a, b)"
    assert str(Nand(Nand(a, b))) == "And(a, b)"
    assert str(Nand(Xor(a, b))) == "Not(Xor(a, b))"
    assert str(Nand(Xnor(a, b))) == "Xor(a, b)"
    # Xor(x) = x
    assert str(Xor(Or(a, b))) == "Or(a, b)"
    assert str(Xor(And(a, b))) == "And(a, b)"
    assert str(Xor(Nor(a, b))) == "Not(Or(a, b))"
    assert str(Xor(Nand(a, b))) == "Not(And(a, b))"
    assert str(Xor(Xor(a, b))) == "Xor(a, b)"
    assert str(Xor(Xnor(a, b))) == "Not(Xor(a, b))"
    # Xnor(x) = ~x
    assert str(Xnor(Or(a, b))) == "Not(Or(a, b))"
    assert str(Xnor(And(a, b))) == "Not(And(a, b))"
    assert str(Xnor(Nor(a, b))) == "Or(a, b)"
    assert str(Xnor(Nand(a, b))) == "And(a, b)"
    assert str(Xnor(Xor(a, b))) == "Not(Xor(a, b))"
    assert str(Xnor(Xnor(a, b))) == "Xor(a, b)"
示例#8
0
文件: test_expr.py 项目: e42s/pyeda
def test_and():
    # Function
    assert (~a & b).support == {a, b}

    f = (~a | b | c) & (a | ~b | c) & (a | b | ~c)
    assert f.restrict({a: 0}).equivalent(b & c | ~b & ~c)
    assert f.restrict({a: 1}).equivalent(b | c)
    assert f.restrict({a: 0, b: 0}) == ~c
    assert f.restrict({a: 0, b: 1}) == c
    assert f.restrict({a: 1, b: 0}) == c
    assert f.restrict({a: 1, b: 1}) is EXPRONE
    assert f.compose({a: d, b: c}).equivalent(~d | c)

    # Expression
    assert And() is EXPRONE
    assert And(a) == a

    assert And(0, 0) is EXPRZERO
    assert And(0, 1) is EXPRZERO
    assert And(1, 0) is EXPRZERO
    assert And(1, 1) is EXPRONE

    assert And(0, 0, 0) is EXPRZERO
    assert And(0, 0, 1) is EXPRZERO
    assert And(0, 1, 0) is EXPRZERO
    assert And(0, 1, 1) is EXPRZERO
    assert And(1, 0, 0) is EXPRZERO
    assert And(1, 0, 1) is EXPRZERO
    assert And(1, 1, 0) is EXPRZERO
    assert And(1, 1, 1) is EXPRONE

    assert 0 & a is EXPRZERO
    assert a & 0 is EXPRZERO
    assert 1 & a is a
    assert a & 1 is a

    assert (0 & a & b) is EXPRZERO
    assert (a & b & 0) is EXPRZERO
    assert (1 & a & b).equivalent(a & b)
    assert (a & b & 1).equivalent(a & b)

    assert str(And(a, 1, simplify=False)) == "And(1, a)"

    # associative
    assert str((a & b) & c & d) == "And(a, b, c, d)"
    assert str(a & (b & c) & d) == "And(a, b, c, d)"
    assert str(a & b & (c & d)) == "And(a, b, c, d)"
    assert str((a & b) & (c & d)) == "And(a, b, c, d)"
    assert str((a & b & c) & d) == "And(a, b, c, d)"
    assert str(a & (b & c & d)) == "And(a, b, c, d)"
    assert str(a & (b & (c & d))) == "And(a, b, c, d)"
    assert str(((a & b) & c) & d) == "And(a, b, c, d)"

    # idempotent
    assert a & a is a
    assert a & a & a is a
    assert a & a & a & a is a
    assert (a & a) | (a & a) is a

    # inverse
    assert ~a & a is EXPRZERO
    assert a & ~a is EXPRZERO
示例#9
0
def test_is_nf():
    assert And(a, b, c).is_cnf()
    assert And(a, (b | c), (c | d)).is_cnf()
    assert not And((a | b), (b | c & d)).is_cnf()
示例#10
0
def test_and():
    # Function
    assert (~a & b).support == {a, b}

    f = (~a | b | c) & (a | ~b | c) & (a | b | ~c)
    assert f.restrict({a: 0}).equivalent(b & c | ~b & ~c)
    assert f.restrict({a: 1}).equivalent(b | c)
    assert f.restrict({a: 0, b: 0}) == ~c
    assert f.restrict({a: 0, b: 1}) == c
    assert f.restrict({a: 1, b: 0}) == c
    assert f.restrict({a: 1, b: 1}) is One
    assert f.compose({a: d, b: c}).equivalent(~d | c)

    # Expression
    assert And() is One
    assert And(a) is a

    assert And(0, 0) is Zero
    assert And(0, 1) is Zero
    assert And(1, 0) is Zero
    assert And(1, 1) is One

    assert And(0, 0, 0) is Zero
    assert And(0, 0, 1) is Zero
    assert And(0, 1, 0) is Zero
    assert And(0, 1, 1) is Zero
    assert And(1, 0, 0) is Zero
    assert And(1, 0, 1) is Zero
    assert And(1, 1, 0) is Zero
    assert And(1, 1, 1) is One

    assert (0 & a).equivalent(Zero)
    assert (a & 0).equivalent(Zero)
    assert (1 & a).equivalent(a)
    assert (a & 1).equivalent(a)

    assert (0 & a & b).equivalent(Zero)
    assert (a & b & 0).equivalent(Zero)
    assert (1 & a & b).equivalent(a & b)
    assert (a & b & 1).equivalent(a & b)

    assert str(And(a, 1, simplify=False)) == "And(a, 1)"

    # associative
    assert ((a & b) & c & d).equivalent(And(a, b, c, d))
    assert (a & (b & c) & d).equivalent(And(a, b, c, d))
    assert (a & b & (c & d)).equivalent(And(a, b, c, d))
    assert ((a & b) & (c & d)).equivalent(And(a, b, c, d))
    assert ((a & b & c) & d).equivalent(And(a, b, c, d))
    assert (a & (b & c & d)).equivalent(And(a, b, c, d))
    assert (a & (b & (c & d))).equivalent(And(a, b, c, d))
    assert (((a & b) & c) & d).equivalent(And(a, b, c, d))

    # idempotent
    assert (a & a).equivalent(a)
    assert (a & a & a).equivalent(a)
    assert (a & a & a & a).equivalent(a)
    assert ((a & a) | (a & a)).equivalent(a)

    # inverse
    assert (~a & a).equivalent(Zero)
    assert (a & ~a).equivalent(Zero)
示例#11
0
    exprvar, 'cvp'
)  # creates boolean variables c, v, and p representing contribute, vote, and punish
evars = [c, v, p]

uniqid2evar = {vv.uniqid: vv for vv in evars}

# scenarios
# ---

scen = 0

if scen == 0:

    # no punishers, no voters

    f = And(Not(p), Not(v), Or(c, ~c, simplify=False), simplify=False)
    suffix = '0_nopun_novot'

elif scen == 1:

    # voters and punishers
    # punishers don't cooperate
    f = And(Not(And(p, c)),
            Not(And(~c, v)),
            Or(c, ~c, simplify=False),
            Not(And(p, v)),
            simplify=False)

    # punish non-cooperation only
    poss_prules = [[And(~p, ~c)]]
    suffix = '1_punnocs'