示例#1
0
def findAllWays(f):
    v = bdd.expr("0")
    v = bdd.expr2bdd(v)
    for i in f.satisfy_all():
        s = bdd.expr("1")
        s = bdd.expr2bdd(s)
        for a in i.items():
            if (a[1] == 1):
                s = s & a[0]
            else:
                s = s & ~a[0]
        v = v | s
    return v
示例#2
0
def generate_bdd(comparison: list, expressions: list) -> list:
    '''
    Method that converts given expressions into BDD for a given R.
    Parameter list: comparison list and expression list.
    returns: BDD as list for a given R.
    '''

    R = comparison
    for expr in expressions:
        R = R or expr2bdd(expr(expr))

    return R
示例#3
0
def EquivalentCheckFromFile(path1, path2):
    answ1 = exe.Execution(path1)
    answ2 = exe.Execution(path2)
    prs = parser.Parser(path1)
    for name in prs.varNames("output"):
        r1 = bdd.expr2bdd(answ1[name][0])
        r3 = bdd.expr2bdd(answ2[name][0])
        f1 = findAllWays(~r1) & findAllWays(r3)
        if (~f1.is_zero()):
            return f1
        r2 = bdd.expr2bdd(answ1[name][1])
        r4 = bdd.expr2bdd(answ2[name][1])
        f2 = findAllWays(~r1) & findAllWays(r2) & findAllWays(
            ~r3) & findAllWays(~r4)
        if (~f2.is_zero()):
            return f2
        f3 = findAllWays(~r1) & findAllWays(~r2) & findAllWays(
            ~r3) & findAllWays(r4)
        if (~f3.is_zero()):
            return f3
        f = bdd.expr("0")
        return f
示例#4
0
def EquivalentCheck(out1, out2, inV):
    r1 = out1[0]
    r2 = out1[1]
    r3 = out2[0]
    r4 = out2[1]
    f1 = findAllWays(~r1) & findAllWays(r3)
    f2 = findAllWays(~r1) & findAllWays(r2) & findAllWays(~r3) & findAllWays(
        ~r4)
    f3 = findAllWays(~r1) & findAllWays(~r2) & findAllWays(~r3) & findAllWays(
        r4)
    f = f1 | f2 | f3
    f = bdd.expr2bdd(f)
    return f
def text2bddExpr(text):
    formula = expr2bdd(expr(text))
    print(expr(text))
    gv = Source(formula.to_dot())
    file_path = "selfGeneratedDot.dot"
    gv.render(filename=file_path, format='png', view=False)
    return file_path


# text2bddExpr("Or(a,b,c)")

# get_dot_from_json("delete_this.json", "delete_this.dot")

#text2bddExpr("a|b&c")
# render("dot", "png", "delete_this.dot")
# render("delete_this.dot", format='png')
示例#6
0
def main():
    edgeFormulaList = []
    x0, x1, x2, x3, x4 = pyeda.bddvars('x', 5)
    y0, y1, y2, y3, y4 = pyeda.bddvars('y', 5)
    print("Generating Graph...")
    for i in range(0, 32):

        for j in range(0,32):

            if (((i+3) % 32) == (j % 32)) | (((i+7) % 32) == (j % 32)):
                newFormula = conjure_formula(i, j)
                edgeFormulaList.append(newFormula)
    
    F = connect_to_edges(edgeFormulaList)
    R = pyeda.expr2bdd(F)
    print("Generating transitive closure, R*")
    RStar = transitive_closure(R) 
    print("Negating the transitive closure, R*")
    negRStar = ~RStar
    result = negRStar.smoothing((x0, x1, x2, x3, x4, y0, y1, y2, y3, y4))
    result = ~result
    print("Let x,y be in the set S. Node x can reach node y in one+ steps in a graph G. . .")
    print(f"\n{result.equivalent(True)}\n")
示例#7
0
#!/usr/bin/env python3

from pyeda.inter import expr, expr2bdd, bddvar

# type
#   expr.Variable
#   expr.OrOp
#
#   bdd.BDDVariable
#   bdd.BinaryDecisionDiagram
#
#   expr()     => expr.*
#   expr2bdd() => from expr to bdd
#   bddvar()   => bdd.BDDVariable
#
#   both expr and bdd can use ~|&^ operator

# f = expr('a & b | b & c | c & a')
f = expr('a1_1 & a2_1 | a2_1 & a2_2 | a2_2 & a1_1')
g = f | expr('d')
# type(f) => expr
# type(g) => expr

f2 = expr2bdd(f)
# type(f2) = bdd
print(f2.satisfy_one())
print(f2.satisfy_all())  # generator
print(list(f2.satisfy_all()))
print(f2.satisfy_count())
print(f2.to_dot())
示例#8
0
文件: graph.py 项目: KaceCottam/bdd
bdds_together = join_disjunct(bdds)

print("bdds_together: long string bdd for entire equation")
pprint(bdds_together)

# step 4'

printHeader("Step 4'")

x_names = names[0:5]

p_bdds = join_disjunct(
    map(lambda x: transformEdge(x, x_names), map(lambda x: getBin(x, 5),
                                                 primes)))
p = expr2bdd(expr(p_bdds))

y_names = names[5:-1]
e_bdds = join_disjunct(
    map(lambda y: transformEdge(y, y_names), map(lambda y: getBin(y, 5),
                                                 evens)))
e = expr2bdd(expr(e_bdds))

print("p_bdds: like bdds_together")
pprint(p_bdds)
print("e_bdds: like bdds_together")
pprint(e_bdds)

# step 5

printHeader("Step 5")
示例#9
0
def boolX():
    f = bdd.expr("1")
    f = bdd.expr2bdd(f)
    g = bdd.expr("0")
    g = bdd.expr2bdd(g)
    return (f, g)
示例#10
0
def boolZero():
    f = bdd.expr("0")
    f = bdd.expr2bdd(f)
    g = bdd.expr("0")
    g = bdd.expr2bdd(g)
    return (f, g)
示例#11
0
    print("Joining edges for boolean expressions...")
    rForms = joinEdgeList(rList)
    pForms = joinEdgeList(pList)
    eForms = joinEdgeList(eList)
    debug(rForms)

    if (render_graph):
        print("Attempting to render graph from R formula...")
        try:
            renderGraph(rForms)
        except:
            print("Failed to render graph :(")

    print("Converting boolean functions into BDDs RR, PP, and EE")
    RR = pyeda.expr2bdd(rForms)
    PP = pyeda.expr2bdd(pForms)
    EE = pyeda.expr2bdd(eForms)
    debug(RR)

    print("Computing BDD RR2 from BDD RR")
    RR2 = RR.compose({
        j0: k0,
        j1: k1,
        j2: k2,
        j3: k3,
        j4: k4
    }) & RR.compose({
        i0: k0,
        i1: k1,
        i2: k2,
                # send the edge to to formula creation function
                newFormula = edgeToBooleanFormula(i, j)

                # add the formula to the list
                edgeFormulaList.append(newFormula)
    print("Done")

    # Create a big boolean expression, F, for the entire graph G
    print("Building the boolean expression, F, from the graph G..")
    F = joinEdgeFormulaList(edgeFormulaList)
    print("Done")

    # Convert F into BDD: R
    print("Converting F to a BDD, R..")
    R = pyeda.expr2bdd(F)
    print("Done")

    # Compute the transitive closure R*
    print("Computing the transitive closure, R*..")
    RStar = computeTransitiveClosure(R)
    print("Done")

    # for all i, j ∈ S, node i can reach node j in one or more steps in G
    # first we negate R*
    print("Negating the transitive closure, R*..")
    negRStar = ~RStar
    print("Done")

    # Then apply smoothing over all BDD vars
    print("Smoothing over all x[0]..x[4] and y[0]..y[4]")