def main(args): if not os.path.isfile(args.input): raise RuntimeError("input file '%s' not found" % args.input) eddl.download_mnist() print("importing net from", args.input) net = eddl.import_net_from_onnx_file(args.input) print("input.shape:", net.layers[0].input.shape) print("output size =", len(net.lout)) eddl.build( net, eddl.rmsprop(0.01), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem), False # do not initialize weights to random values ) net.resize(args.batch_size) # resize manually since we don't use "fit" eddl.summary(net) x_test = Tensor.load("mnist_tsX.bin") y_test = Tensor.load("mnist_tsY.bin") x_test.div_(255.0) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) print("All done")
def main(args): eddl.download_mnist() in_ = eddl.Input([784]) layer = in_ layer = eddl.Activation(eddl.Dense(layer, 256), "relu") layer = eddl.Activation(eddl.Dense(layer, 128), "relu") layer = eddl.Activation(eddl.Dense(layer, 64), "relu") layer = eddl.Activation(eddl.Dense(layer, 128), "relu") layer = eddl.Activation(eddl.Dense(layer, 256), "relu") out = eddl.Dense(layer, 784) net = eddl.Model([in_], [out]) mse_loss = MSELoss() mse_metric = MSEMetric() net.build( eddl.sgd(0.001, 0.9), [mse_loss], [mse_metric], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)) eddl.summary(net) eddl.plot(net, "model.pdf") x_train = Tensor.load("mnist_trX.bin") x_train.div_(255.0) eddl.fit(net, [x_train], [x_train], args.batch_size, args.epochs) print("All done")
def main(args): eddl.download_mnist() in_ = eddl.Input([784]) layer = in_ layer = eddl.Activation(eddl.Dense(layer, 256), "relu") layer = eddl.Activation(eddl.Dense(layer, 128), "relu") layer = eddl.Activation(eddl.Dense(layer, 64), "relu") layer = eddl.Activation(eddl.Dense(layer, 128), "relu") layer = eddl.Activation(eddl.Dense(layer, 256), "relu") out = eddl.Dense(layer, 784) net = eddl.Model([in_], [out]) eddl.build( net, eddl.sgd(0.001, 0.9), ["mean_squared_error"], ["mean_squared_error"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)) eddl.summary(net) eddl.plot(net, "model.pdf") x_train = Tensor.load("mnist_trX.bin") if args.small: x_train = x_train.select([":6000"]) x_train.div_(255.0) eddl.fit(net, [x_train], [x_train], args.batch_size, args.epochs) tout = eddl.predict(net, [x_train]) tout[0].info() print("All done")
def main(args): if not os.path.isfile(args.input): raise RuntimeError("input file '%s' not found" % args.input) eddl.download_mnist() net = eddl.import_net_from_onnx_file(args.input) eddl.build( net, eddl.rmsprop(0.01), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem), False # do not initialize weights to random values ) net.resize(args.batch_size) # resize manually since we don't use "fit" eddl.summary(net) x_test = Tensor.load("mnist_tsX.bin") x_test.div_(255.0) sys.stderr.write("forward...\n") eddl.forward(net, [x_test]) sys.stderr.write("forward done\n") sys.stderr.write("lout: %r\n" % (net.lout, )) out = eddl.getOut(net) sys.stderr.write("getOut done\n") sys.stderr.write("out: %r\n" % (out, )) print("All done")
def main(args): eddl.download_mnist() num_classes = 10 in_ = eddl.Input([784]) layer = in_ layer = eddl.Reshape(layer, [1, 28, 28]) layer = eddl.RandomCropScale(layer, [0.9, 1.0]) layer = eddl.Reshape(layer, [-1]) layer = eddl.ReLu( eddl.GaussianNoise( eddl.BatchNormalization(eddl.Dense(layer, 1024), True), 0.3)) layer = eddl.ReLu( eddl.GaussianNoise( eddl.BatchNormalization(eddl.Dense(layer, 1024), True), 0.3)) layer = eddl.ReLu( eddl.GaussianNoise( eddl.BatchNormalization(eddl.Dense(layer, 1024), True), 0.3)) out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.sgd(0.01, 0.9), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)) eddl.summary(net) eddl.plot(net, "model.pdf") x_train = Tensor.load("mnist_trX.bin") y_train = Tensor.load("mnist_trY.bin") x_test = Tensor.load("mnist_tsX.bin") y_test = Tensor.load("mnist_tsY.bin") if args.small: x_train = x_train.select([":6000"]) y_train = y_train.select([":6000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) x_train.div_(255.0) x_test.div_(255.0) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) # LR annealing if args.epochs < 4: return eddl.setlr(net, [0.005, 0.9]) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs // 2) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) eddl.setlr(net, [0.001, 0.9]) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs // 2) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) eddl.setlr(net, [0.0001, 0.9]) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs // 4) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) print("All done")
def main(args): eddl.download_mnist() in_ = eddl.Input([784]) target = eddl.Reshape(in_, [1, 28, 28]) layer = in_ layer = eddl.Reshape(layer, [1, 28, 28]) layer = eddl.ReLu(eddl.Conv(layer, 8, [3, 3])) layer = eddl.ReLu(eddl.Conv(layer, 16, [3, 3])) layer = eddl.ReLu(eddl.Conv(layer, 8, [3, 3])) out = eddl.Sigmoid(eddl.Conv(layer, 1, [3, 3])) net = eddl.Model([in_], []) eddl.build( net, eddl.adam(0.001), [], [], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem) ) eddl.summary(net) x_train = Tensor.load("mnist_trX.bin") if args.small: x_train = x_train.select([":6000"]) x_train.div_(255.0) mse = eddl.newloss(mse_loss, [out, target], "mse_loss") dicei = eddl.newloss(dice_loss_img, [out, target], "dice_loss_img") dicep = eddl.newloss(dice_loss_pixel, [out, target], "dice_loss_pixel") batch = Tensor([args.batch_size, 784]) num_batches = x_train.shape[0] // args.batch_size for i in range(args.epochs): print("Epoch %d/%d (%d batches)" % (i + 1, args.epochs, num_batches)) diceploss = 0.0 diceiloss = 0.0 mseloss = 0 for j in range(num_batches): print("Batch %d " % j, end="", flush=True) eddl.next_batch([x_train], [batch]) eddl.zeroGrads(net) eddl.forward(net, [batch]) diceploss += eddl.compute_loss(dicep) / args.batch_size print("diceploss = %.6f " % (diceploss / (j + 1)), end="") diceiloss += eddl.compute_loss(dicei) / args.batch_size print("diceiloss = %.6f " % (diceiloss / (j + 1)), end="") mseloss += eddl.compute_loss(mse) / args.batch_size print("mseloss = %.6f\r" % (mseloss / (j + 1)), end="") eddl.optimize(dicep) eddl.update(net) print() print("All done")
def main(args): eddl.download_mnist() num_classes = 10 in_ = eddl.Input([784]) layer = in_ layer = eddl.Reshape(layer, [1, 784]) # image as a 1D signal with depth 1 layer = eddl.MaxPool1D(eddl.ReLu(eddl.Conv1D(layer, 16, [3], [1])), [4], [4]) layer = eddl.MaxPool1D( eddl.ReLu(eddl.Conv1D(layer, 32, [3], [1])), [4], [4], ) layer = eddl.MaxPool1D( eddl.ReLu(eddl.Conv1D(layer, 64, [3], [1])), [4], [4], ) layer = eddl.MaxPool1D( eddl.ReLu(eddl.Conv1D(layer, 64, [3], [1])), [4], [4], ) layer = eddl.Reshape(layer, [-1]) out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.rmsprop(0.01), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)) eddl.summary(net) x_train = Tensor.load("mnist_trX.bin") y_train = Tensor.load("mnist_trY.bin") x_test = Tensor.load("mnist_tsX.bin") y_test = Tensor.load("mnist_tsY.bin") if args.small: x_train = x_train.select([":6000"]) y_train = y_train.select([":6000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) x_train.div_(255.0) x_test.div_(255.0) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) print("All done")
def main(args): eddl.download_mnist() num_classes = 10 in_ = eddl.Input([784]) layer = in_ layer = eddl.Activation(eddl.Dense(layer, 1024), "relu") layer = eddl.Activation(eddl.Dense(layer, 1024), "relu") layer = eddl.Activation(eddl.Dense(layer, 1024), "relu") out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) acc = CategoricalAccuracy() net.build( eddl.sgd(0.01, 0.9), [eddl.getLoss("soft_cross_entropy")], [acc], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem) ) eddl.summary(net) eddl.plot(net, "model.pdf") x_train = Tensor.load("mnist_trX.bin") y_train = Tensor.load("mnist_trY.bin") x_test = Tensor.load("mnist_tsX.bin") # y_test = Tensor.load("mnist_tsY.bin") x_train.div_(255.0) x_test.div_(255.0) num_samples = x_train.shape[0] num_batches = num_samples // args.batch_size test_samples = x_test.shape[0] test_batches = test_samples // args.batch_size eddl.set_mode(net, TRMODE) for i in range(args.epochs): for j in range(num_batches): print("Epoch %d/%d (batch %d/%d)" % (i + 1, args.epochs, j + 1, num_batches)) indices = np.random.randint(0, num_samples, args.batch_size) eddl.train_batch(net, [x_train], [y_train], indices) for j in range(test_batches): print("Epoch %d/%d (batch %d/%d)" % (i + 1, args.epochs, j + 1, test_batches)) indices = np.random.randint(0, num_samples, args.batch_size) eddl.eval_batch(net, [x_train], [y_train], indices) print("All done")
def main(args): eddl.download_mnist() num_classes = 10 in_ = eddl.Input([784]) layer = in_ layer = eddl.Reshape(layer, [-1]) layer = eddl.ReLu(eddl.Dense(layer, 1024)) layer = eddl.BatchNormalization(layer, True) layer = eddl.ReLu(eddl.Dense(layer, 1024)) layer = eddl.BatchNormalization(layer, True) layer = eddl.ReLu(eddl.Dense(layer, 1024)) layer = eddl.BatchNormalization(layer, True) out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.rmsprop(0.01), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem), True # initialize weights to random values ) eddl.summary(net) x_train = Tensor.load("mnist_trX.bin") y_train = Tensor.load("mnist_trY.bin") x_test = Tensor.load("mnist_tsX.bin") y_test = Tensor.load("mnist_tsY.bin") if args.small: x_train = x_train.select([":6000"]) y_train = y_train.select([":6000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) x_train.div_(255.0) x_test.div_(255.0) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) eddl.save_net_to_onnx_file(net, args.output) print("saved net to", args.output) print("All done")
def main(args): eddl.download_mnist() num_classes = 10 in_ = eddl.Input([28]) layer = in_ layer = eddl.LeakyReLu(eddl.Dense(layer, 32)) layer = eddl.L2(eddl.LSTM(layer, 128), 0.001) ls = layer out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.rmsprop(0.001), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)) eddl.summary(net) eddl.plot(net, "model.pdf") x_train = Tensor.load("mnist_trX.bin") y_train = Tensor.load("mnist_trY.bin") x_test = Tensor.load("mnist_tsX.bin") y_test = Tensor.load("mnist_tsY.bin") if args.small: x_train = x_train.select([":6000"]) y_train = y_train.select([":6000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) x_train.reshape_([x_train.shape[0], 28, 28]) x_test.reshape_([x_test.shape[0], 28, 28]) y_train.reshape_([y_train.shape[0], 1, 10]) y_test.reshape_([y_test.shape[0], 1, 10]) x_train.div_(255.0) x_test.div_(255.0) for i in range(args.epochs): eddl.fit(net, [x_train], [y_train], args.batch_size, 1) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) ls_in = eddl.getInput(ls) ls_in.info() ls_out = eddl.getOutput(ls) ls_out.info() print("All done")
def main(args): eddl.download_mnist() num_classes = 10 in_ = eddl.Input([784]) layer = in_ layer = eddl.BatchNormalization( eddl.Activation(eddl.L2(eddl.Dense(layer, 1024), 0.0001), "relu"), True ) layer = eddl.BatchNormalization( eddl.Activation(eddl.L2(eddl.Dense(layer, 1024), 0.0001), "relu"), True ) layer = eddl.BatchNormalization( eddl.Activation(eddl.L2(eddl.Dense(layer, 1024), 0.0001), "relu"), True ) out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) acc = CategoricalAccuracy() net.build( eddl.sgd(0.01, 0.9), [eddl.getLoss("soft_cross_entropy")], [acc], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem) ) eddl.summary(net) eddl.plot(net, "model.pdf") x_train = Tensor.load("mnist_trX.bin") y_train = Tensor.load("mnist_trY.bin") x_test = Tensor.load("mnist_tsX.bin") y_test = Tensor.load("mnist_tsY.bin") x_train.div_(255.0) x_test.div_(255.0) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) print("All done")
def main(args): eddl.download_mnist() num_classes = 10 in_ = eddl.Input([784]) layer = in_ layer = eddl.ReLu(eddl.L2(eddl.Dense(layer, 1024), 0.0001)) layer = eddl.ReLu(eddl.L1(eddl.Dense(layer, 1024), 0.0001)) layer = eddl.ReLu(eddl.L1L2(eddl.Dense(layer, 1024), 0.00001, 0.0001)) out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.sgd(0.01, 0.9), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem) ) eddl.summary(net) eddl.plot(net, "model.pdf") x_train = Tensor.load("mnist_trX.bin") y_train = Tensor.load("mnist_trY.bin") x_test = Tensor.load("mnist_tsX.bin") y_test = Tensor.load("mnist_tsY.bin") if args.small: x_train = x_train.select([":6000"]) y_train = y_train.select([":6000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) x_train.div_(255.0) x_test.div_(255.0) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) print("All done")
def main(args): eddl.download_mnist() num_classes = 10 in_ = eddl.Input([784]) layer = in_ layer = eddl.Reshape(layer, [-1]) layer = eddl.ReLu(eddl.Dense(layer, 1024)) layer = eddl.ReLu(eddl.Dense(layer, 1024)) layer = eddl.ReLu(eddl.Dense(layer, 1024)) out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.rmsprop(0.01), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem), True # initialize weights to random values ) serialized_net = eddl.serialize_net_to_onnx_string(net, False) eddl.summary(net) x_train = Tensor.load("mnist_trX.bin") y_train = Tensor.load("mnist_trY.bin") x_test = Tensor.load("mnist_tsX.bin") y_test = Tensor.load("mnist_tsY.bin") if args.small: x_train = x_train.select([":6000"]) y_train = y_train.select([":6000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) x_train.div_(255.0) x_test.div_(255.0) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs) print("evaluating before import") eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) imported_net = eddl.import_net_from_onnx_string(serialized_net) eddl.build( imported_net, eddl.rmsprop(0.01), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem), False # do not initialize weights to random values ) eddl.summary(imported_net) print("net layers:", len(net.layers)) print("imported_net layers:", len(imported_net.layers)) print("evaluating imported net") eddl.evaluate(imported_net, [x_test], [y_test], bs=args.batch_size) print("All done")
def main(args): eddl.download_mnist() num_classes = 10 in_ = eddl.Input([784]) layer = in_ layer = eddl.ReLu(eddl.Dense(layer, 1024)) layer = eddl.ReLu(eddl.Dense(layer, 1024)) layer = eddl.ReLu(eddl.Dense(layer, 1024)) out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.sgd(0.001, 0.9), ["softmax_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)) eddl.summary(net) eddl.plot(net, "model.pdf") eddl.setlogfile(net, "mnist") x_train = Tensor.load("mnist_trX.bin") y_train = Tensor.load("mnist_trY.bin") x_test = Tensor.load("mnist_tsX.bin") y_test = Tensor.load("mnist_tsY.bin") if args.small: x_train = x_train.select([":6000"]) y_train = y_train.select([":6000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) x_train.div_(255.0) x_test.div_(255.0) s = x_train.shape num_batches = s[0] // args.batch_size for i in range(args.epochs): eddl.reset_loss(net) print("Epoch %d/%d (%d batches)" % (i + 1, args.epochs, num_batches)) for j in range(num_batches): indices = np.random.randint(0, s[0], args.batch_size) eddl.train_batch(net, [x_train], [y_train], indices) losses1 = eddl.get_losses(net) metrics1 = eddl.get_metrics(net) for l, m in zip(losses1, metrics1): print("Loss: %.6f\tMetric: %.6f" % (l, m)) s = x_test.shape num_batches = s[0] // args.batch_size for j in range(num_batches): indices = np.arange(j * args.batch_size, j * args.batch_size + args.batch_size) eddl.eval_batch(net, [x_test], [y_test], indices) losses2 = eddl.get_losses(net) metrics2 = eddl.get_metrics(net) for l, m in zip(losses2, metrics2): print("Loss: %.6f\tMetric: %.6f" % (l, m)) last_batch_size = s[0] % args.batch_size if last_batch_size: indices = np.arange(j * args.batch_size, j * args.batch_size + args.batch_size) eddl.eval_batch(net, [x_test], [y_test], indices) losses3 = eddl.get_losses(net) metrics3 = eddl.get_metrics(net) for l, m in zip(losses3, metrics3): print("Loss: %.6f\tMetric: %.6f" % (l, m)) print("All done")