示例#1
0
文件: greit.py 项目: tomyc/eit_reader
 def _setup_eit(self):
     mesh_t = self._mesh  # ms, el_pos
     el_dist, step = 1, 1
     ex_mat = eit_scan_lines(16, el_dist)
     # Reconstruction step
     eit_obj = greit.GREIT(mesh_t[0], mesh_t[1], ex_mat=ex_mat, step=step, perm=0.8,
                           parser='std')  # prem default value eq = 1.
     eit_obj.setup(p=0.45, lamb=1e-3, n=96, s=10.0, ratio=0.05)  # n - wielkość siatki, domyślna wartość 32
     return eit_obj
示例#2
0
ax.grid(True)
ax.set_xlabel("Frames 1/20 (s)")
ax.set_ylabel("Averaged Impedances")
fig.subplots_adjust(top=0.95, bottom=0.15, left=0.175, right=0.95)
""" 2. measurement protocol """
el_dist, step = 1, 1
ex_mat = eit_scan_lines(16, el_dist)
""" 3. JAC solver """
# Note: if the jac and the real-problem are generated using the same mesh,
# then, jac_normalized in JAC and data normalization in solve are not needed.
# However, when you generate jac from a known mesh, but in real-problem
# (mostly) the shape and the electrode positions are not exactly the same
# as in mesh generating the jac, then both JAC and data must be normalized.
eit = greit.GREIT(mesh_obj,
                  el_pos,
                  ex_mat=ex_mat,
                  step=step,
                  parser="fmmu",
                  jac_normalized=True)
eit.setup(p=0.50, lamb=0.01, n=32, s=20, ratio=0.05)
ds = eit.solve(v1, v0, normalize=True)
x, y, ds = eit.mask_value(ds, mask_value=np.NAN)

# plot EIT imaging
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(np.real(ds), interpolation="none", cmap=plt.cm.viridis)
fig.colorbar(im)
ax.axis("equal")
# fig.set_size_inches(6, 4)
# fig.savefig('./figs/daeger_pulmovista_eit.png', dpi=200)
plt.show()
示例#3
0
# calculate simulated data
fwd = Forward(ms, el_pos)
f0 = fwd.solve(ex_mat, step=step, perm=ms0['alpha'])
f1 = fwd.solve(ex_mat, step=step, perm=ms1['alpha'])
""" ax2. BP """
eit = bp.BP(ms, el_pos, ex_mat=ex_mat, step=1, parser='std')
ds = eit.solve(f1.v, f0.v, normalize=True)
ds_bp = ds
""" ax3. JAC """
eit = jac.JAC(ms, el_pos, ex_mat=ex_mat, step=step, perm=1., parser='std')
eit.setup(p=0.2, lamb=0.001, method='kotre')
# parameter tuning is needed for better display
ds = eit.solve(f1.v, f0.v)
ds_jac = pdeprtni(no2xy, el2no, ds)
""" ax4. GREIT """
eit = greit.GREIT(ms, el_pos, ex_mat=ex_mat, step=step, parser='std')
ds = eit.solve(f1.v, f0.v)
x, y, ds_greit = eit.mask_value(ds, mask_value=np.NAN)
""" build for EIT2016b (orig: 300p x 300p, 150dpi) """
size = (6, 6)
axis_size = [-1.2, 1.2, -1.2, 1.2]
fig = plt.figure(figsize=size)
gs = gridspec.GridSpec(2, 2)

# simulation
ax1 = fig.add_subplot(gs[0, 0])
ax1.tripcolor(no2xy[:, 0], no2xy[:, 1], el2no, alpha, shading='flat')
ax1.set_title(r'(a) $\Delta$ Conductivity')
ax1.axis(axis_size)
ax1.axis('off')
示例#4
0
	def simulate(self, el_dist, step, NN_path):
		reconstruction_ims = np.empty_like(self.truth_ims)
		output_ims = np.empty_like(self.truth_ims)
		loss = np.empty((self.truth_ims.shape[2], self.truth_ims.shape[3], self.truth_ims.shape[4]))
		mean_deviation = np.empty((self.truth_ims.shape[2], self.truth_ims.shape[3], self.truth_ims.shape[4]))
		predicted_mean = np.empty((self.truth_ims.shape[2], self.truth_ims.shape[3], self.truth_ims.shape[4], 2))

		el_pos = np.arange(self.n_el * self.num_per_el)
		forward = train.Forward(self.mesh_obj, el_pos, self.n_el)
		ex_mat = self.ex_mat_w_dist(el_dist)

		model = keras.models.load_model(NN_path, custom_objects={'loss_fn': UNet.loss_fn})
		#print(ex_mat)
		for mean_index in range(self.truth_ims.shape[2]):
			for amp_index in range(self.truth_ims.shape[3]):
				for std_index in range(self.truth_ims.shape[4]):

					f_unp = forward.solve_eit(ex_mat=ex_mat, step=step, perm=np.ones(self.mesh_obj['element'].shape[0]))
					f_p = forward.solve_eit(ex_mat=ex_mat, step=step, perm=self.tri_perm[:, mean_index, amp_index, std_index] + np.ones(self.mesh_obj['element'].shape[0]))
					variance = 0.0009 * np.power(f_p.v, 2)
					volt_noise = train.sk.random_noise(f_p.v, mode='gaussian', 
						                        clip=False, mean=0.0, var=variance)
					eit = greit.GREIT(self.mesh_obj, el_pos, f=f_unp, ex_mat=ex_mat, step=step, parser='std')
					eit.setup(p=0.1, lamb=0.01, n=self.npix, s=20., ratio=0.1)
					reconstruction_ims[:, :, mean_index, amp_index, std_index] = eit.solve(volt_noise, f_unp.v).reshape((self.npix, self.npix))
					current_rec = reconstruction_ims[:, :, mean_index, amp_index, std_index].reshape((-1, self.npix, self.npix, 1))
					output_ims[:, :, mean_index, amp_index, std_index] = model.predict(current_rec + 1.).reshape(64 ,64) - 1.
					'''
					plt.figure(1)
					im2 = plt.imshow(self.truth_ims[:,:,mean_index, amp_index, std_index], origin='lower')
					plt.colorbar(im2)
					plt.figure(2)
					im = plt.imshow(reconstruction_ims[:,:,mean_index, amp_index, std_index], origin='lower')
					plt.colorbar(im)					
					plt.figure(3)
					im3 = plt.imshow(output_ims[:, :, mean_index, amp_index, std_index], origin='lower')
					plt.colorbar(im3)
					plt.show()'''
					'''
					t1 = time()
					error = 0.03 * np.ones(self.npix**2)
					
					max_value = np.argmax(reconstruction_ims[:, :, mean_index, amp_index, std_index])
					max_coord = self.centresSq[max_value // self.npix, max_value % self.npix]
					initial_params = np.array([max_coord[0], max_coord[1], 1., 1.])
					params_predicted, _ = curve_fit(gauss, self.centresSq.reshape(self.npix**2, 2), reconstruction_ims[:, :, mean_index, amp_index, std_index].reshape(self.npix**2), p0 = initial_params, sigma=error, method='trf')
					predicted_mean[mean_index, amp_index, std_index] = np.array([params_predicted[0], params_predicted[1]])
					print(predicted_mean[mean_index, amp_index, std_index])
					print(time()-t1)'''
					
					'''
					#find mean without neural net processing
					max_indices = np.argmax(np.abs(reconstruction_ims[:, :, mean_index, amp_index, std_index]))

					max_coord = self.centresSq[max_indices // self.npix, max_indices % self.npix]

					pixels_of_interest = np.linalg.norm(max_coord[None, None] - self.centresSq[:, :], axis=2) < 0.1 * self.a

					predicted_mean[mean_index, amp_index, std_index] = np.sum(self.centresSq[pixels_of_interest] * np.abs(reconstruction_ims[pixels_of_interest][:, None, mean_index, amp_index, std_index]), axis=0) / np.sum(np.abs(reconstruction_ims[pixels_of_interest][:, None, mean_index, amp_index, std_index]), axis=0)
					mean_deviation[mean_index, amp_index, std_index] = (np.linalg.norm(predicted_mean[mean_index, amp_index, std_index] - self.mean_grid[mean_index]))
					'''
					max_indices = np.argmax(np.abs(output_ims[:, :, mean_index, amp_index, std_index]))

					max_coord = self.centresSq[max_indices // self.npix, max_indices % self.npix]

					pixels_of_interest = np.linalg.norm(max_coord[None, None] - self.centresSq[:, :], axis=2) < 0.1 * self.a

					predicted_mean[mean_index, amp_index, std_index] = np.sum(self.centresSq[pixels_of_interest] * np.abs(output_ims[pixels_of_interest][:, None, mean_index, amp_index, std_index]), axis=0) / np.sum(np.abs(output_ims[pixels_of_interest][:, None, mean_index, amp_index, std_index]), axis=0)
					mean_deviation[mean_index, amp_index, std_index] = (np.linalg.norm(predicted_mean[mean_index, amp_index, std_index] - self.mean_grid[mean_index]))


					print(mean_deviation[mean_index, amp_index, std_index])
		'''
		max_indices = np.argmax(np.abs(reconstruction_ims).reshape(self.npix**2, reconstruction_ims.shape[2], reconstruction_ims.shape[3], reconstruction_ims.shape[4]), axis=0)

		max_coord = self.centresSq[max_indices // self.npix, max_indices % self.npix]

		pixels_of_interest = np.linalg.norm(max_coord[None, None] - self.centresSq[:, :, None, None, None], axis=6) < 0.05 * self.a

		self.centresSq[pixels_of_interest]
		'''
		loss[:] = self.L2_loss(output_ims)
		save_file = h5py.File("./sensitivity data/sensitivity_060620_0,5_neural_net.h5", 'a')
		try:
			save_file.create_dataset('predicted_mean', data=predicted_mean, maxshape=(self.truth_ims.shape[2], self.truth_ims.shape[3], self.truth_ims.shape[4], 2))
			save_file.create_dataset('mean_deviation', data=mean_deviation, maxshape=(self.truth_ims.shape[2], self.truth_ims.shape[3], self.truth_ims.shape[4]))
			save_file.create_dataset('loss', data=loss, maxshape=(self.truth_ims.shape[2], self.truth_ims.shape[3], self.truth_ims.shape[4]))
			save_file.create_dataset('reconstruction_ims', data=reconstruction_ims, maxshape=reconstruction_ims.shape)
			save_file.create_dataset('truth_ims', data=self.truth_ims, maxshape=self.truth_ims.shape)
			save_file.create_dataset('output_ims', data=output_ims, maxshape=output_ims.shape)
			print('files saved successfully!')
		# if not first, it returns an error, so the datasets in the hdf5 file are resized and filled
		except:
			save_file["predicted_mean"].resize((save_file["predicted_mean"].shape[0] + 1), axis = 0)
			save_file["mean_deviation"].resize((save_file["mean_deviation"].shape[0] + 1), axis = 0)
			save_file["loss"].resize((save_file["loss"].shape[0] + 1), axis = 0)
			save_file['predicted_mean'][mean_index] = predicted_mean[mean_index]
			save_file['mean_deviation'][mean_index] = mean_deviation[mean_index]
			save_file['loss'][mean_index] = loss[mean_index]
		save_file.close()
		return reconstruction_ims, loss
def greit_rec(p, t, el_pos, anomaly, fwd, continuous=False, step='random', n_pix=64, n_el=20, length=None, el_dist=None, num_per_el=3, continuousPerm=None):
    '''
    function that generates forward solution and a GREIT reconstruction for a given conductivity distribution
    
    Takes:
    p - array of point coordinates created by meshing algorithm [number of points, 2] array[float]
    t - array of a triangles included in meshing [number of triangles , 3] array[int]
    el_pos - array of electrode positions [number of electrodes , 2] array[float]
    anomaly - list of all the anomalies for which reconstruction should be made array[dict]
    step - array storing the distance (in number of electrodes) for each source/sink pair [number of source/sink pairs , 1] array[int]
    (Default is 'random' == generates random step for each measurement)
    n_pix - number of pixels to be created in each dimension for GREIT algorithm [int]
    n_el - number of electrodes of the system that participate in reconstruction [int]

    Returns:
    ds - recreated conductivity map by GREIT algorithm [number of pixels,number of pixels] array[float]
    '''
    #check order of points for each triangle and rearrange to ensure counter-clockwise arrangement (from pyEIT)
    t = checkOrder(p, t)
    #generate electrode indices
    el_pos = np.arange(n_el * num_per_el)
    #initialise unit uniform permitivity for the triangular mesh to be used
    perm = np.ones(t.shape[0], dtype=np.float)
    #build mesh structure given the input elements
    mesh_obj = {'element': t,
                'node': p,
                'perm': perm}

    # extract x, y coordinate of mesh vertices
    x, y = p[:, 0], p[:, 1]
    #check to see the state of the generated mesh (optional)
    #quality.stats(p, t)

    ex_mat = orderedExMat(n_el, length, el_dist)
    #if random step is invoked a random step is generated for each source/sink pair
    if step == 'random':
        step = np.array(rand.randint(1, n_el, size=ex_mat.shape[0]))
    #if the step is not an integer in the needed range, just randomize the same step for a source/sink pairs
    elif (step < 0 or step > n_el).any():
        step = rand.randint(1, n_el)
    start_t = time()
    # calculate simulated data using FEM (for uniform conductivity)
    f = fwd.solve_eit(ex_mat=ex_mat, step=step, perm=mesh_obj['perm'])
    # creating forward dictionary with solution of forward problem
    pde_result = namedtuple("pde_result", ['jac', 'v', 'b_matrix'])
    f0 = pde_result(jac=f.jac,
                    v=f.v,
                    b_matrix=f.b_matrix)
    # adding anomalies with a overwritten anomaly function originally in pyEIT (pyEIT.mesh.wrapper) (heavily changed)
    unp_t = time()
    print("Unperturbed forward solution t", unp_t - start_t)
    if continuous == False:
        mesh_new = set_perm(mesh_obj, anomaly=anomaly, background=None)
        permUsed = mesh_new['perm']
    elif continuous == True:
        permUsed = continuousPerm
    else:
        print('kurec')
    start_anom = time()
    # solving with anomalies
    f1 = fwd.solve_eit(ex_mat=ex_mat, step=step, perm=permUsed)
    # generate array for variance, 3% standard deviation for the voltage measurement
    variance = 0.0009 * np.power(f1.v, 2)
    # apply noise to voltage measurements v
    # here white Gaussian noise is assumed (since we don't have significant sources of systematic error like in medical applications, e.g. moving electrodes...)
    v = sk.random_noise(f1.v, 
                        mode='gaussian', 
                        clip=False, 
                    	mean=0.0, 
                        var=variance)
    # create the Forward object used by GREIT the voltage map with the Gaussian noise
    f1 = pde_result(jac=np.vstack(f1.jac),
                    v=np.hstack(v),
                    b_matrix=np.vstack(f1.b_matrix))
    end_anom = time()
    print("Anomaly forward t: ", end_anom - start_anom )
    # (optional) draw anomalies only
    
    delta_perm = np.real(mesh_new['perm'] - mesh_obj['perm'])
    fig, ax = plt.subplots()
    im = ax.tripcolor(p[:, 0], p[:, 1], t, delta_perm,
                      shading='flat', cmap=plt.cm.viridis)
    ax.set_title(r'$\Delta$ Conductivities')
    fig.colorbar(im)
    ax.axis('equal')
    fig.set_size_inches(6, 4)
    # fig.savefig('demo_bp_0.png', dpi=96)
    #plt.show()
    
    start_greit = time()
    # constructing GREIT object (from pyEIT) (classes changed singificantly for optimisation)
    eit = greit.GREIT(mesh_obj, el_pos, f=f, ex_mat=ex_mat, step=step, parser='std')
    # solving inverse problem with GREIT algorithm
    eit.setup(p=0.1, lamb=0.01, n=n_pix, s=15., ratio=0.1)
    ds = eit.solve(f1.v, f0.v)
    #reshaping output to the desired dimensions
    ds = ds.reshape((n_pix, n_pix))
    print("Greit solution time ", time() - start_greit)
    # (optional) plot to check whether generated sensibly
    
    fig, ax = plt.subplots(figsize=(6, 4))
    im = ax.imshow(np.real(ds), interpolation='none', cmap=plt.cm.viridis, origin='lower', extent=[-1,1,-1,1])
    fig.colorbar(im)
    ax.axis('equal')
    
    plt.show()
    '''
    gradConductivity = np.linalg.norm(np.gradient(ds), axis=0)
    figGrad, axGrad = plt.subplots(figsize=(6, 4))
    imGrad = axGrad.imshow(np.real(gradConductivity), interpolation='none', cmap=plt.cm.viridis, origin='lower', extent=[-1,1,-1,1])
    figGrad.colorbar(imGrad)
    axGrad.axis('equal')

    figGrad2, axGrad2 = plt.subplots(figsize=(6, 4))
    imGrad2 = axGrad2.imshow(np.real(gradConductivity * ds), interpolation='none', cmap=plt.cm.viridis, origin='lower', extent=[-1,1,-1,1])
    figGrad2.colorbar(imGrad2)
    axGrad2.axis('equal')


    v_pert = np.empty(shape=(len(f1.v), len(f1.v)))
    perturbing_mat = np.ones((len(f1.v), len(f1.v))) + 0.05 * np.identity(len(f1.v))
    v_pert[:] = np.dot(perturbing_mat, np.diag(f1.v))
    influence_mat = -np.dot(eit.H, v_pert).reshape(n_pix, n_pix, len(f1.v)) - ds[:, :, None]
    influence_mat = np.absolute(influence_mat)
    influence_mat = np.sum(influence_mat, axis=2)
    
    #mask = circleMask(npix, a)
    #influence_mat[~mask] = np.amax(influence_mat)

    figInfl, axInfl = plt.subplots(figsize=(6, 4))
    imInfl = axInfl.imshow(np.real(influence_mat), interpolation='none', cmap=plt.cm.viridis, origin='lower', extent=[-1,1,-1,1])
    figInfl.colorbar(imInfl)
    axInfl.axis('equal')

    totalMap = gradConductivity * ds * influence_mat
    figTotal, axTotal = plt.subplots(figsize=(6, 4))
    imTotal = axTotal.imshow(np.real(totalMap), interpolation='none', cmap=plt.cm.viridis, origin='lower', extent=[-1,1,-1,1])
    figTotal.colorbar(imTotal)
    axTotal.axis('equal')
    plt.show()
    '''
    return ds
示例#6
0
ax.set_ylim([-1.2, 1.2])
ax.set_title(r"$\Delta$ Conductivity")
# fig.set_size_inches(6, 4)

""" 2. FEM forward simulations """
# setup EIT scan conditions
el_dist, step = 1, 1
ex_mat = eit_scan_lines(16, el_dist)

# calculate simulated data
fwd = Forward(mesh_obj, el_pos)
f0 = fwd.solve_eit(ex_mat, step=step, perm=mesh_obj["perm"])
f1 = fwd.solve_eit(ex_mat, step=step, perm=mesh_new["perm"])

""" 3. Construct using GREIT """
eit = greit.GREIT(mesh_obj, el_pos, ex_mat=ex_mat, step=step, parser="std")
eit.setup(p=0.50, lamb=0.001)
ds = eit.solve(f1.v, f0.v)
x, y, ds = eit.mask_value(ds, mask_value=np.NAN)

# plot
"""
imshow will automatically set NaN (bad values) to 'w',
if you want to manually do so

import matplotlib.cm as cm
cmap = cm.gray
cmap.set_bad('w', 1.)
plt.imshow(np.real(ds), interpolation='nearest', cmap=cmap)
"""
ax = axes[1]