示例#1
0
def test_augment_design_space_bk(binh_korn_points, binh_korn_points_finer):
    """Test the augment function by using a finer sampling of the Binh-Korn function
    for augmentation"""
    X_binh_korn, y_binh_korn = binh_korn_points  # pylint:disable=invalid-name
    (
        X_binh_korn_finer,  # pylint:disable=invalid-name
        _,
    ) = binh_korn_points_finer
    sample_idx = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
    gpr_0 = GaussianProcessRegressor(
        RBF(), normalize_y=True, n_restarts_optimizer=5, random_state=10
    )
    gpr_1 = GaussianProcessRegressor(
        RBF(), normalize_y=True, n_restarts_optimizer=5, random_state=10
    )
    palinstance = PALSklearn(X_binh_korn, [gpr_0, gpr_1], 2, beta_scale=1)
    palinstance.cross_val_points = 0
    palinstance.update_train_set(sample_idx, y_binh_korn[sample_idx])
    new_idx = palinstance.run_one_step()
    palinstance.update_train_set(new_idx, y_binh_korn[new_idx])
    number_pareto_optimal_points_old = palinstance.number_pareto_optimal_points
    palinstance.augment_design_space(X_binh_korn_finer)
    assert palinstance.number_discarded_points == 0
    assert palinstance.number_pareto_optimal_points > number_pareto_optimal_points_old
示例#2
0
def test_augment_design_space(make_random_dataset):
    """Test if the reclassification step in the design step
    agumentation method works"""
    X, y = make_random_dataset  # pylint:disable=invalid-name
    gpr_0 = GaussianProcessRegressor(RBF(), normalize_y=True, n_restarts_optimizer=5)
    gpr_1 = GaussianProcessRegressor(RBF(), normalize_y=True, n_restarts_optimizer=5)
    gpr_2 = GaussianProcessRegressor(RBF(), normalize_y=True, n_restarts_optimizer=5)
    sample_idx = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
    palinstance = PALSklearn(X, [gpr_0, gpr_1, gpr_2], 3, beta_scale=1)
    palinstance.cross_val_points = 0
    palinstance.update_train_set(sample_idx, y[sample_idx])
    _ = palinstance.run_one_step()

    X_new = X + 1  # pylint:disable=invalid-name
    palinstance.augment_design_space(X_new, classify=True, clean_classify=False)
    assert palinstance.number_design_points == 200
    assert palinstance.number_sampled_points == len(sample_idx)

    # Adding new design points should not mess up with the models
    for model in palinstance.models:
        assert check_is_fitted(model) is None

    # Now, test the `clean_classify` flag
    gpr_0 = GaussianProcessRegressor(RBF(), normalize_y=True, n_restarts_optimizer=3)
    gpr_1 = GaussianProcessRegressor(RBF(), normalize_y=True, n_restarts_optimizer=3)
    gpr_2 = GaussianProcessRegressor(RBF(), normalize_y=True, n_restarts_optimizer=3)
    sample_idx = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
    palinstance = PALSklearn(X, [gpr_0, gpr_1, gpr_2], 3, beta_scale=1)
    palinstance.cross_val_points = 0
    palinstance.update_train_set(sample_idx, y[sample_idx])
    _ = palinstance.run_one_step()

    X_new = X + np.full((1, 10), 1)  # pylint:disable=invalid-name
    palinstance.augment_design_space(X_new)
    assert palinstance.number_design_points == 200
    assert palinstance.number_sampled_points == len(sample_idx)