def gen_long_model(): model = AcadosModel() model.name = MODEL_NAME # set up states & controls x_ego = SX.sym('x_ego') v_ego = SX.sym('v_ego') a_ego = SX.sym('a_ego') model.x = vertcat(x_ego, v_ego, a_ego) # controls j_ego = SX.sym('j_ego') model.u = vertcat(j_ego) # xdot x_ego_dot = SX.sym('x_ego_dot') v_ego_dot = SX.sym('v_ego_dot') a_ego_dot = SX.sym('a_ego_dot') model.xdot = vertcat(x_ego_dot, v_ego_dot, a_ego_dot) # live parameters a_min = SX.sym('a_min') a_max = SX.sym('a_max') x_obstacle = SX.sym('x_obstacle') prev_a = SX.sym('prev_a') model.p = vertcat(a_min, a_max, x_obstacle, prev_a) # dynamics model f_expl = vertcat(v_ego, a_ego, j_ego) model.f_impl_expr = model.xdot - f_expl model.f_expl_expr = f_expl return model
def gen_long_model(): model = AcadosModel() model.name = 'long' # set up states & controls x_ego = SX.sym('x_ego') v_ego = SX.sym('v_ego') a_ego = SX.sym('a_ego') model.x = vertcat(x_ego, v_ego, a_ego) # controls j_ego = SX.sym('j_ego') model.u = vertcat(j_ego) # xdot x_ego_dot = SX.sym('x_ego_dot') v_ego_dot = SX.sym('v_ego_dot') a_ego_dot = SX.sym('a_ego_dot') model.xdot = vertcat(x_ego_dot, v_ego_dot, a_ego_dot) # live parameters x_obstacle = SX.sym('x_obstacle') desired_TR = SX.sym('desired_TR') a_min = SX.sym('a_min') a_max = SX.sym('a_max') model.p = vertcat(a_min, a_max, x_obstacle, desired_TR) # dynamics model f_expl = vertcat(v_ego, a_ego, j_ego) model.f_impl_expr = model.xdot - f_expl model.f_expl_expr = f_expl return model
def gen_lead_model(): model = AcadosModel() model.name = 'lead' # set up states & controls x_ego = SX.sym('x_ego') v_ego = SX.sym('v_ego') a_ego = SX.sym('a_ego') model.x = vertcat(x_ego, v_ego, a_ego) # controls j_ego = SX.sym('j_ego') model.u = vertcat(j_ego) # xdot x_ego_dot = SX.sym('x_ego_dot') v_ego_dot = SX.sym('v_ego_dot') a_ego_dot = SX.sym('a_ego_dot') model.xdot = vertcat(x_ego_dot, v_ego_dot, a_ego_dot) # live parameters x_lead = SX.sym('x_lead') v_lead = SX.sym('v_lead') model.p = vertcat(x_lead, v_lead) # dynamics model f_expl = vertcat(v_ego, a_ego, j_ego) model.f_impl_expr = model.xdot - f_expl model.f_expl_expr = f_expl return model
def gen_lat_model(): model = AcadosModel() model.name = 'lat' # set up states & controls x_ego = SX.sym('x_ego') y_ego = SX.sym('y_ego') psi_ego = SX.sym('psi_ego') curv_ego = SX.sym('curv_ego') model.x = vertcat(x_ego, y_ego, psi_ego, curv_ego) # parameters v_ego = SX.sym('v_ego') rotation_radius = SX.sym('rotation_radius') model.p = vertcat(v_ego, rotation_radius) # controls curv_rate = SX.sym('curv_rate') model.u = vertcat(curv_rate) # xdot x_ego_dot = SX.sym('x_ego_dot') y_ego_dot = SX.sym('y_ego_dot') psi_ego_dot = SX.sym('psi_ego_dot') curv_ego_dot = SX.sym('curv_ego_dot') model.xdot = vertcat(x_ego_dot, y_ego_dot, psi_ego_dot, curv_ego_dot) # dynamics model f_expl = vertcat( v_ego * cos(psi_ego) - rotation_radius * sin(psi_ego) * (v_ego * curv_ego), v_ego * sin(psi_ego) + rotation_radius * cos(psi_ego) * (v_ego * curv_ego), v_ego * curv_ego, curv_rate) model.f_impl_expr = model.xdot - f_expl model.f_expl_expr = f_expl return model