示例#1
0
    def construct_UI(self):
        """
        Create additional subwidget(s) needed for filter design:
        These subwidgets are instantiated dynamically when needed in 
        select_filter.py using the handle to the filter instance, fb.fil_inst.
        """
        self.lbl_remez_1 = QLabel("Grid Density", self)
        self.lbl_remez_1.setObjectName('wdg_lbl_remez_1')
        self.led_remez_1 = QLineEdit(self)
        self.led_remez_1.setText(str(self.grid_density))
        self.led_remez_1.setObjectName('wdg_led_remez_1')
        self.led_remez_1.setToolTip(
            "Number of frequency points for Remez algorithm. Increase the\n"
            "number to reduce frequency overshoot in the transition region.")

        self.layHWin = QHBoxLayout()
        self.layHWin.setObjectName('wdg_layGWin')
        self.layHWin.addWidget(self.lbl_remez_1)
        self.layHWin.addWidget(self.led_remez_1)
        self.layHWin.setContentsMargins(0, 0, 0, 0)
        # Widget containing all subwidgets (cmbBoxes, Labels, lineEdits)
        self.wdg_fil = QWidget(self)
        self.wdg_fil.setObjectName('wdg_fil')
        self.wdg_fil.setLayout(self.layHWin)

        #----------------------------------------------------------------------
        # SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.led_remez_1.editingFinished.connect(self._update_UI)
        # fires when edited line looses focus or when RETURN is pressed
        #----------------------------------------------------------------------

        self._load_dict()  # get initial / last setting from dictionary
        self._update_UI()
示例#2
0
文件: delay.py 项目: xfunture/pyfda
    def construct_UI(self):
        """
        Create additional subwidget(s) needed for filter design:
        These subwidgets are instantiated dynamically when needed in 
        select_filter.py using the handle to the filter instance, fb.fil_inst.
        """
        self.lbl_delay = QLabel("Delays", self)
        self.lbl_delay.setObjectName('wdg_lbl_delays')
        self.led_delay = QLineEdit(self)
        self.led_delay.setText(str(self.N))
        self.led_delay.setObjectName('wdg_led_delay')
        self.led_delay.setToolTip("Number of delays, N > 0 produces poles, N < 0 zeros.")

        self.layHWin = QHBoxLayout()
        self.layHWin.setObjectName('wdg_layGWin')
        self.layHWin.addWidget(self.lbl_delay)
        self.layHWin.addWidget(self.led_delay)
        self.layHWin.setContentsMargins(0,0,0,0)
        # Widget containing all subwidgets (cmbBoxes, Labels, lineEdits)
        self.wdg_fil = QWidget(self)
        self.wdg_fil.setObjectName('wdg_fil')
        self.wdg_fil.setLayout(self.layHWin)

        #----------------------------------------------------------------------
        # SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.led_delay.editingFinished.connect(self._update_UI)
        # fires when edited line looses focus or when RETURN is pressed
        #----------------------------------------------------------------------

        self._load_dict() # get initial / last setting from dictionary
        self._update_UI()
示例#3
0
    def construct_UI(self):
        """
        Create additional subwidget(s) needed for filter design:
        These subwidgets are instantiated dynamically when needed in
        select_filter.py using the handle to the filter instance, fb.fil_inst.
        """

        self.lbl_delays = QLabel("<b><i>M =</ i></ b>", self)
        self.lbl_delays.setObjectName('wdg_lbl_ma_0')
        self.led_delays = QLineEdit(self)
        try:
            self.led_delays.setText(str(fb.fil[0]['N']))
        except KeyError:
            self.led_delays.setText(str(self.delays))
        self.led_delays.setObjectName('wdg_led_ma_0')
        self.led_delays.setToolTip("Set number of delays per stage")

        self.lbl_stages = QLabel("<b>Stages =</ b>", self)
        self.lbl_stages.setObjectName('wdg_lbl_ma_1')
        self.led_stages = QLineEdit(self)
        self.led_stages.setText(str(self.stages))

        self.led_stages.setObjectName('wdg_led_ma_1')
        self.led_stages.setToolTip("Set number of stages ")

        self.chk_norm = QCheckBox("Normalize", self)
        self.chk_norm.setChecked(True)
        self.chk_norm.setObjectName('wdg_chk_ma_2')
        self.chk_norm.setToolTip("Normalize to| H_max = 1|")

        self.layHWin = QHBoxLayout()
        self.layHWin.setObjectName('wdg_layGWin')
        self.layHWin.addWidget(self.lbl_delays)
        self.layHWin.addWidget(self.led_delays)
        self.layHWin.addStretch(1)
        self.layHWin.addWidget(self.lbl_stages)
        self.layHWin.addWidget(self.led_stages)
        self.layHWin.addStretch(1)
        self.layHWin.addWidget(self.chk_norm)
        self.layHWin.setContentsMargins(0, 0, 0, 0)
        # Widget containing all subwidgets (cmbBoxes, Labels, lineEdits)
        self.wdg_fil = QWidget(self)
        self.wdg_fil.setObjectName('wdg_fil')
        self.wdg_fil.setLayout(self.layHWin)

        #----------------------------------------------------------------------
        # SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.led_delays.editingFinished.connect(self._update_UI)
        self.led_stages.editingFinished.connect(self._update_UI)
        # fires when edited line looses focus or when RETURN is pressed
        self.chk_norm.clicked.connect(self._update_UI)
        #----------------------------------------------------------------------

        self._load_dict()  # get initial / last setting from dictionary
        self._update_UI()
示例#4
0
    def _show_entries(self, num_new_labels):
        """
        - check whether enough subwidgets (QLabel und QLineEdit) exist for the 
          the required number of `num_new_labels`: 
              - create new ones if required 
              - initialize them with dummy information
              - install eventFilter for new QLineEdit widgets so that the filter 
                  dict is updated automatically when a QLineEdit field has been 
                  edited.
        - if enough subwidgets exist already, make enough of them visible to
          show all spec fields
        """
        num_tot_labels = len(
            self.qlabels)  # number of existing labels (vis. + invis.)

        if num_tot_labels < num_new_labels:  # new widgets need to be generated
            for i in range(num_tot_labels, num_new_labels):
                self.qlabels.append(QLabel(self))
                self.qlabels[i].setText(to_html("dummy", frmt='bi'))

                self.qlineedit.append(QLineEdit(""))
                self.qlineedit[i].setObjectName("dummy")
                self.qlineedit[i].installEventFilter(self)  # filter events

                # first entry is title
                self.layGSpecs.addWidget(self.qlabels[i], i + 1, 0)
                self.layGSpecs.addWidget(self.qlineedit[i], i + 1, 1)

        else:  # make the right number of widgets visible
            for i in range(self.n_cur_labels, num_new_labels):
                self.qlabels[i].show()
                self.qlineedit[i].show()
示例#5
0
    def _construct_UI(self):
        # =====================================================================
        # Controls
        # =====================================================================

        self.butLoad = PushButton(self,
                                  icon=QIcon(':/file.svg'),
                                  checkable=False)
        # self.butLoad.setIconSize(q_icon_size)
        self.butLoad.setToolTip("Load data from file.")
        self.butLoad.setEnabled(False)

        self.lbl_info = QLabel(to_html("  coming soon ...", frmt="b"))

        # ----------------------------------------------------------------------
        # Main Widget
        # ----------------------------------------------------------------------
        layH_io_par = QHBoxLayout()
        layH_io_par.addWidget(self.butLoad)
        layH_io_par.addWidget(self.lbl_info)

        layV_io = QVBoxLayout()
        layV_io.addLayout(layH_io_par)

        layH_io = QHBoxLayout()
        layH_io.addLayout(layV_io)
        layH_io.addStretch(10)

        self.wdg_top = QWidget(self)
        self.wdg_top.setLayout(layH_io)
        self.wdg_top.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Minimum)
示例#6
0
    def _construct_UI(self):
        """
        Construct User Interface  
        """

        self.layGSpecs = QGridLayout()  # Sublayout for spec fields, populated
        # dynamically in _show_entries()
        title = "Weight Specifications"
        bfont = QFont()
        bfont.setBold(True)

        lblTitle = QLabel(self)  # field for widget title
        lblTitle.setText(str(title))
        lblTitle.setFont(bfont)
        lblTitle.setWordWrap(True)

        self.butReset = QToolButton(self)
        self.butReset.setText("Reset")
        self.butReset.setToolTip("Reset weights to 1")

        layHTitle = QHBoxLayout()  # Layout for title and reset button
        layHTitle.addWidget(lblTitle)
        layHTitle.addWidget(self.butReset)

        # set the title as the first (fixed) entry in grid layout. The other
        # fields are added and hidden dynamically in _show_entries and _hide_entries()
        self.layGSpecs.addLayout(layHTitle, 0, 0, 1, 2)

        # This is the top level widget, encompassing the other widgets
        frmMain = QFrame(self)
        frmMain.setLayout(self.layGSpecs)

        self.layVMain = QVBoxLayout()  # Widget main vertical layout
        self.layVMain.addWidget(frmMain)
        self.layVMain.setContentsMargins(*params['wdg_margins'])

        self.setLayout(self.layVMain)

        # - Build a list from all entries in the fil_dict dictionary starting
        #   with "W" (= weight specifications of the current filter)
        # - Pass the list to setEntries which recreates the widget
        # ATTENTION: Entries need to be converted from QString to str for Py 2
        self.n_cur_labels = 0  # number of currently visible labels / qlineedits
        new_labels = [str(l) for l in fb.fil[0] if l[0] == 'W']
        self.update_UI(new_labels=new_labels)

        #----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs / EVENT FILTER
        #----------------------------------------------------------------------
        self.butReset.clicked.connect(self._reset_weights)
示例#7
0
    def _construct_UI(self):
        """
        Construct the User Interface
        """
        bfont = QFont()
        bfont.setBold(True)

        lblTitle = QLabel(str(self.title), self)  # field for widget title
        lblTitle.setFont(bfont)
        lblTitle.setWordWrap(True)
        self.lblUnit = QLabel(self)
        self.lblUnit.setText("in " +
                             to_html(fb.fil[0]['freq_specs_unit'], frmt='bi'))

        layHTitle = QHBoxLayout()
        layHTitle.addWidget(lblTitle)
        layHTitle.addWidget(self.lblUnit)
        layHTitle.addStretch(1)

        # Create a gridLayout consisting of QLabel and QLineEdit fields
        # for the frequency specs:
        self.layGSpecs = QGridLayout()  # sublayout for spec fields
        # set the title as the first (fixed) entry in grid layout. The other
        # fields are added and hidden dynamically in _show_entries and _hide_entries()
        self.layGSpecs.addLayout(layHTitle, 0, 0, 1, 2)
        self.layGSpecs.setAlignment(Qt.AlignLeft)

        self.frmMain = QFrame(self)
        self.frmMain.setLayout(self.layGSpecs)

        self.layVMain = QVBoxLayout()  # Widget main layout
        self.layVMain.addWidget(self.frmMain)  #, Qt.AlignLeft)
        self.layVMain.setContentsMargins(*params['wdg_margins'])
        self.setLayout(self.layVMain)

        self.n_cur_labels = 0  # number of currently visible labels / qlineedits

        #----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.sig_rx.connect(self.process_sig_rx)
示例#8
0
    def _construct_UI(self):
        """
        Construct user interface
        """
        # subwidget for Frequency Specs
        self.f_specs = freq_specs.FreqSpecs(self, title="Frequency")
        # subwidget for Amplitude Specs
        self.a_specs = amplitude_specs.AmplitudeSpecs(self, title="Amplitude")
        self.a_specs.setVisible(True)
        """
        LAYOUT
        """
        bfont = QFont()
        bfont.setBold(True)
        lblTitle = QLabel(self)  # field for widget title
        lblTitle.setText(self.title)
        lblTitle.setFont(bfont)
#        lblTitle.setContentsMargins(2,2,2,2)

        layHTitle = QHBoxLayout()
        layHTitle.addWidget(lblTitle)
        layHTitle.setAlignment(Qt.AlignHCenter)
        layHSpecs = QHBoxLayout()
        layHSpecs.setAlignment(Qt.AlignTop)
        layHSpecs.addWidget(self.f_specs)  # frequency specs
        layHSpecs.addWidget(self.a_specs)  # ampltitude specs

        layVSpecs = QVBoxLayout()
        layVSpecs.addLayout(layHTitle)
        layVSpecs.addLayout(layHSpecs)
        layVSpecs.setContentsMargins(0, 6, 0, 0)  # (left, top, right, bottom)

        # This is the top level widget, encompassing the other widgets
        frmMain = QFrame(self)
        frmMain.setLayout(layVSpecs)

        self.layVMain = QVBoxLayout()  # Widget main layout
        self.layVMain.addWidget(frmMain)
        self.layVMain.setContentsMargins(*params['wdg_margins'])

        self.setLayout(self.layVMain)

        # ----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        # connect f_specs and a_specs subwidget to signalling
        self.f_specs.sig_tx.connect(self.sig_tx)  # pass signal upwards
        self.sig_rx.connect(self.f_specs.sig_rx)  # pass on received signals
        self.a_specs.sig_tx.connect(self.sig_tx)  # pass signal upwards

        self.update_UI()  # first time initialization
示例#9
0
class MplToolbar(NavigationToolbar):
    """
    Custom Matplotlib Navigationtoolbar, derived (subclassed) from Qt's
    NavigationToolbar with the following changes:
    - new icon set
    - new functions and icons for grid toggle, full view, screenshot
    - removed buttons for configuring subplots and editing curves
    - added an x,y location widget and icon

    Signalling / communication works via the signal `sig_tx'


    derived from http://www.python-forum.de/viewtopic.php?f=24&t=26437

    http://pydoc.net/Python/pyQPCR/0.7/pyQPCR.widgets.matplotlibWidget/  !!
    http://matplotlib.org/users/navigation_toolbar.html !!

    see also http://stackoverflow.com/questions/17711099/programmatically-change-matplotlib-toolbar-mode-in-qt4
             http://matplotlib-users.narkive.com/C8XwIXah/need-help-with-darren-dale-qt-example-of-extending-toolbar
             https://sukhbinder.wordpress.com/2013/12/16/simple-pyqt-and-matplotlib-example-with-zoompan/

    Changing the info:
    http://stackoverflow.com/questions/15876011/add-information-to-matplotlib-navigation-toolbar-status-bar
    https://stackoverflow.com/questions/53099295/matplotlib-navigationtoolbar-advanced-figure-options

    Using Tool Manager
    https://matplotlib.org/3.1.1/gallery/user_interfaces/toolmanager_sgskip.html
    https://stackoverflow.com/questions/52971285/add-toolbar-button-icon-matplotlib

    """

    toolitems = () # remove original icons and actions
#    toolitems = (
#        ('Home', 'Reset original view', 'home', 'home'),
#        ('Back', 'Back to  previous view', 'action-undo', 'back'),
#        ('Forward', 'Forward to next view', 'action-redo', 'forward'),
#        (None, None, None, None),
#        ('Pan', 'Pan axes with left mouse, zoom with right', 'move', 'pan'),
#        ('Zoom', 'Zoom to rectangle', 'magnifying-glass', 'zoom'),
#        (None, None, None, None),
#        ('Subplots', 'Configure subplots', 'subplots', 'configure_subplots'),
#        ('Save', 'Save the figure', 'file', 'save_figure'),
#      )

# subclass NavigationToolbar, passing through arguments:
    #def __init__(self, canvas, parent, coordinates=True):

    sig_tx = pyqtSignal(object) # general signal, containing a dict

    def _init_toolbar(self): pass # needed for backward compatibility with mpl < 3.3

    # disable coordinate display when mplcursors is available
    if MPL_CURS:
        def set_message(self, msg): pass

    def __init__(self, canv, mpl_widget, *args, **kwargs):
        NavigationToolbar.__init__(self, canv, mpl_widget, *args, **kwargs)

        #self.canvas = canv
        self.mpl_widget = mpl_widget


#------------------------------------------------------------------------------

        #---------------- Construct Toolbar using QRC icons -------------------
        # ENABLE:
#        self.a_en = self.addAction(QIcon(':/circle-x.svg'), 'Enable Update', self.enable_plot)
#        self.a_en.setToolTip('Enable / disable plot')
#        self.a_en.setCheckable(True)
#        self.a_en.setChecked(True)
##        self.a.setEnabled(False)

 #       self.addSeparator() #---------------------------------------------


        #---------------------------------------------
        # HOME:
        #---------------------------------------------
        self.a_ho = self.addAction(QIcon(':/home.svg'), 'Home', self.home)
        self.a_ho.setToolTip('Reset zoom')
        # BACK:
        self.a_ba = self.addAction(QIcon(':/action-undo.svg'), 'Back', self.back)
        self.a_ba.setToolTip('Back to previous zoom')

        #---------------------------------------------
        # FORWARD:
        #---------------------------------------------
        self.a_fw = self.addAction(QIcon(':/action-redo.svg'), 'Forward', self.forward)
        self.a_fw.setToolTip('Forward to next zoom')

        #---------------------------------------------
        self.addSeparator()
        #---------------------------------------------

        #---------------------------------------------
        # PAN:
        #---------------------------------------------
        self.a_pa = self.addAction(QIcon(':/move.svg'), 'Pan', self.pan)
        self.a_pa.setToolTip("Pan axes with left mouse button, zoom with right,\n"
        "pressing x / y / CTRL keys constrains to horizontal / vertical / diagonal movements.")
        self._actions['pan'] = self.a_pa
        self.a_pa.setCheckable(True)

        #---------------------------------------------
        # ZOOM RECTANGLE:
        #---------------------------------------------
        self.a_zo = self.addAction(QIcon(':/magnifying-glass.svg'), 'Zoom', self.zoom)
        self.a_zo.setToolTip("Zoom in / out to rectangle with left / right mouse button,\n"
        "pressing x / y keys constrains zoom to horizontal / vertical direction.")
        self._actions['zoom'] = self.a_zo
        self.a_zo.setCheckable(True)

        #---------------------------------------------
        # FULL VIEW:
        #---------------------------------------------
        self.a_fv = self.addAction(QIcon(':/fullscreen-enter.svg'), \
            'Zoom full extent', self.mpl_widget.plt_full_view)
        self.a_fv.setToolTip('Zoom to full extent')

        #---------------------------------------------
        # LOCK ZOOM:
        #---------------------------------------------
        self.a_lk = self.addAction(QIcon(':/lock-unlocked.svg'), \
                                   'Lock zoom', self.toggle_lock_zoom)
        self.a_lk.setCheckable(True)
        self.a_lk.setChecked(False)
        self.a_lk.setToolTip('Lock / unlock current zoom setting')

        #---------------------------------------------
        # TRACKING CURSOR:
        #---------------------------------------------
        if MPL_CURS:
            self.a_cr = self.addAction(QIcon(':/map-marker.svg'), \
                                       'Cursor', self.mpl_widget.toggle_cursor)
            self.a_cr.setCheckable(True)
            self.a_cr.setChecked(False)
            self.a_cr.setToolTip('Tracking Cursor')

        # --------------------------------------
        self.addSeparator()
        # --------------------------------------

        #---------------------------------------------
        # GRID:
        #---------------------------------------------
        self.a_gr = self.addAction(QIcon(':/grid_coarse.svg'), 'Grid', self.cycle_draw_grid)
        self.a_gr.setToolTip('Cycle grid: Off / coarse / fine')
        self.a_gr_state = 2  # 0: off, 1: major, 2: minor

        #---------------------------------------------
        # REDRAW:
        #---------------------------------------------
        #self.a_rd = self.addAction(QIcon(':/brush.svg'), 'Redraw', self.mpl_widget.redraw)
        #self.a_rd.setToolTip('Redraw Plot')

        # --------------------------------------
        # SAVE:
        # --------------------------------------
        self.a_sv = self.addAction(QIcon(':/save.svg'), 'Save', self.save_figure)
        self.a_sv.setToolTip('Save the figure')

        self.cb = fb.clipboard

        self.a_cb = self.addAction(QIcon(':/clipboard.svg'), 'To Clipboard', self.mpl2Clip)
        self.a_cb.setToolTip('Copy to clipboard in png format.')
        self.a_cb.setShortcut("Ctrl+C")

        # --------------------------------------
        self.addSeparator()
        # --------------------------------------

        # --------------------------------------
        # SETTINGS:
        # --------------------------------------
        if figureoptions is not None:
            self.a_op = self.addAction(QIcon(':/settings.svg'), 'Customize', self.edit_parameters)
            self.a_op.setToolTip('Edit curves line and axes parameters')

#        self.buttons = {}

        # --------------------------------------
        # PRINT COORDINATES (only when mplcursors is not available):
        # --------------------------------------
        # Add the x,y location widget at the right side of the toolbar
        # The stretch factor is 1 which means any resizing of the toolbar
        # will resize this label instead of the buttons.
        # --------------------------------------
        if not MPL_CURS and self.coordinates:
            self.addSeparator()
            self.locLabel = QLabel("", self)
            self.locLabel.setAlignment(
                    QtCore.Qt.AlignRight | QtCore.Qt.AlignTop)
            self.locLabel.setSizePolicy(
                QSizePolicy(QSizePolicy.Expanding,
                                  QSizePolicy.Ignored))
            labelAction = self.addWidget(self.locLabel)
            labelAction.setVisible(True)

        #---------------------------------------------
        # HELP:
        #---------------------------------------------
        self.a_he = self.addAction(QIcon(':/help.svg'), 'help', self.help)
        self.a_he.setToolTip('Open help page from https://pyfda.rtfd.org in browser')
        self.a_he.setDisabled(True)

#------------------------------------------------------------------------------
    if figureoptions is not None:
        def edit_parameters(self):
            allaxes = self.canvas.figure.get_axes()
            if len(allaxes) == 1:
                axes = allaxes[0]
            else:
                titles = []
                for axes in allaxes:
                    title = axes.get_title()
                    ylabel = axes.get_ylabel()
                    label = axes.get_label()
                    if title:
                        fmt = "%(title)s"
                        if ylabel:
                            fmt += ": %(ylabel)s"
                        fmt += " (%(axes_repr)s)"
                    elif ylabel:
                        fmt = "%(axes_repr)s (%(ylabel)s)"
                    elif label:
                        fmt = "%(axes_repr)s (%(label)s)"
                    else:
                        fmt = "%(axes_repr)s"
                    titles.append(fmt % dict(title=title,
                                         ylabel=ylabel, label=label,
                                         axes_repr=repr(axes)))
                item, ok = QInputDialog.getItem(
                    self, 'Customize', 'Select axes:', titles, 0, False)
                if ok:
                    axes = allaxes[titles.index(str(item))]
                else:
                    return

            figureoptions.figure_edit(axes, self)

#------------------------------------------------------------------------------
    def home(self):
        """
        Reset zoom to default settings (defined by plotting widget).
        This method shadows `home()` inherited from NavigationToolbar.
        """
        self.push_current()
        self.sig_tx.emit({'sender':__name__, 'home':''}) # only the key is used by the slot
        self.mpl_widget.redraw()

#------------------------------------------------------------------------------
    def help(self):
        """
        Open help page from https://pyfda.rtfd.org in browser
        """

        url = QtCore.QUrl('https://pyfda.readthedocs.io/en/latest/' + self.a_he.info)
        if not url.isValid():
            logger.warning("Invalid URL\n\t{0}\n\tOpening "
                           "'https://pyfda.readthedocs.io/en/latest/' instead".format(url.toString()))
            url = QtCore.QUrl('https://pyfda.readthedocs.io/en/latest/')
            #if url.isLocalFile()
        QtGui.QDesktopServices.openUrl(url)

        #https://stackoverflow.com/questions/28494571/how-in-qt5-to-check-if-url-is-available
        #https://stackoverflow.com/questions/16778435/python-check-if-website-exists


#------------------------------------------------------------------------------
    def cycle_draw_grid(self, cycle=True, axes=None):
        """
        Cycle the grid of all axes through the states 'off', 'coarse' and 'fine'
        and redraw the figure.

        Parameters
        ----------
        cycle : bool, optional
            Cycle the grid display and redraw the canvas in the end when True.
            When false, only restore the grid settings.
        axes : matplotlib axes, optional
            When none is passed, use local `self.mpl_widget.fig.axes`

        Returns
        -------
        None.

        """

        if cycle:
            self.a_gr_state = (self.a_gr_state + 1) % 3

        if not axes:
            axes = self.mpl_widget.fig.axes

        for ax in self.mpl_widget.fig.axes:
            if hasattr(ax, "is_twin"): # the axis is a twinx() system, suppress the gridlines
                ax.grid(False)
            else:
                if self.a_gr_state == 0:
                    ax.grid(False, which='both')

                    self.a_gr.setIcon(QIcon(':/grid_none.svg'))
                elif self.a_gr_state == 1:
                    ax.grid(True, which='major', lw=0.75, ls='-')
                    ax.grid(False, which='minor')
                    self.a_gr.setIcon(QIcon(':/grid_coarse.svg'))
                else:
                    ax.grid(True, which='major', lw=0.75, ls='-')
                    ax.grid(True, which='minor')
                    self.a_gr.setIcon(QIcon(':/grid_fine.svg'))

        if cycle:
            self.canvas.draw() # don't use self.draw(), use FigureCanvasQTAgg.draw()

#------------------------------------------------------------------------------
    def toggle_lock_zoom(self):
        """
        Toggle the lock zoom settings and save the plot limits in any case:
            when previously unlocked, settings need to be saved
            when previously locked, current settings can be saved without effect
        """
        self.mpl_widget.save_limits() # save limits in any case:
        self.zoom_locked = not self.zoom_locked
        if self.zoom_locked:
            self.a_lk.setIcon(QIcon(':/lock-locked.svg'))
            if self.a_zo.isChecked():
                self.a_zo.trigger()  # toggle off programmatically
            self.a_zo.setEnabled(False)

            if self.a_pa.isChecked():
                self.a_pa.trigger() # toggle off programmatically
            self.a_pa.setEnabled(False)

            self.a_fv.setEnabled(False)
            self.a_ho.setEnabled(False)
        else:
            self.a_lk.setIcon(QIcon(':/lock-unlocked.svg'))
            self.a_zo.setEnabled(True)
            self.a_pa.setEnabled(True)
            self.a_fv.setEnabled(True)
            self.a_ho.setEnabled(True)

        self.sig_tx.emit({'sender':__name__, 'lock_zoom':self.zoom_locked})

#------------------------------------------------------------------------------
# =============================================================================
#     def enable_plot(self, state = None):
#         """
#         Toggle the enable button and setting and enable / disable all
#         buttons accordingly.
#         """
#         if state is not None:
#             self.enabled = state
#         else:
#             self.enabled = not self.enabled
#         if self.enabled:
#             self.a_en.setIcon(QIcon(':/circle-x.svg'))
#         else:
#             self.a_en.setIcon(QIcon(':/circle-check.svg'))
#
#         self.a_ho.setEnabled(self.enabled)
#         self.a_ba.setEnabled(self.enabled)
#         self.a_fw.setEnabled(self.enabled)
#         self.a_pa.setEnabled(self.enabled)
#         self.a_zo.setEnabled(self.enabled)
#         self.a_fv.setEnabled(self.enabled)
#         self.a_lk.setEnabled(self.enabled)
#         self.a_gr.setEnabled(self.enabled)
#         #self.a_rd.setEnabled(self.enabled)
#         self.a_sv.setEnabled(self.enabled)
#         self.a_cb.setEnabled(self.enabled)
#         self.a_op.setEnabled(self.enabled)
#
#         self.sig_tx.emit({'sender':__name__, 'enabled':self.enabled})
#
# =============================================================================
#------------------------------------------------------------------------------
    def mpl2Clip(self):
        """
        Save current figure to temporary file and copy it to the clipboard.
        """
        try:
            img = QImage(self.canvas.grab())
            self.cb.setImage(img)
        except:
            logger.error('Error copying figure to clipboard:\n{0}'.format(sys.exc_info()))
示例#10
0
class FreqUnits(QWidget):
    """
    Build and update widget for entering frequency unit, frequency range and
    sampling frequency f_S

    The following key-value pairs of the `fb.fil[0]` dict are modified:

        - `'freq_specs_unit'` : The unit ('k', 'f_S', 'f_Ny', 'Hz' etc.) as a string
        - `'freqSpecsRange'` : A list with two entries for minimum and maximum frequency
                               values for labelling the frequency axis
        - `'f_S'` : The sampling frequency for referring frequency values to as a float
        - `'f_max'` : maximum frequency for scaling frequency axis
        - `'plt_fUnit'`: frequency unit as string
        - `'plt_tUnit'`: time unit as string
        - `'plt_fLabel'`: label for frequency axis
        - `'plt_tLabel'`: label for time axis

    """

    # class variables (shared between instances if more than one exists)
    sig_tx = pyqtSignal(object)  # outgoing
    from pyfda.libs.pyfda_qt_lib import emit

    def __init__(self, parent=None, title="Frequency Units"):

        super(FreqUnits, self).__init__(parent)
        self.title = title
        self.spec_edited = False  # flag whether QLineEdit field has been edited

        self._construct_UI()

    def _construct_UI(self):
        """
        Construct the User Interface
        """
        self.layVMain = QVBoxLayout()  # Widget main layout

        f_units = ['k', 'f_S', 'f_Ny', 'Hz', 'kHz', 'MHz', 'GHz']
        self.t_units = ['', 'T_S', 'T_S', 's', 'ms', r'$\mu$s', 'ns']

        bfont = QFont()
        bfont.setBold(True)

        self.lblUnits = QLabel(self)
        self.lblUnits.setText("Freq. Unit")
        self.lblUnits.setFont(bfont)

        self.fs_old = fb.fil[0]['f_S']  # store current sampling frequency

        self.lblF_S = QLabel(self)
        self.lblF_S.setText(to_html("f_S =", frmt='bi'))

        self.ledF_S = QLineEdit()
        self.ledF_S.setText(str(fb.fil[0]["f_S"]))
        self.ledF_S.setObjectName("f_S")
        self.ledF_S.installEventFilter(self)  # filter events

        self.butLock = QToolButton(self)
        self.butLock.setIcon(QIcon(':/lock-unlocked.svg'))
        self.butLock.setCheckable(True)
        self.butLock.setChecked(False)
        self.butLock.setToolTip(
            "<span><b>Unlocked:</b> When f_S is changed, all frequency related "
            "widgets are updated, normalized frequencies stay the same.<br />"
            "<b>Locked:</b> When f_S is changed, displayed absolute frequency "
            "values don't change but normalized frequencies do.</span>")
        # self.butLock.setStyleSheet("QToolButton:checked {font-weight:bold}")

        layHF_S = QHBoxLayout()
        layHF_S.addWidget(self.ledF_S)
        layHF_S.addWidget(self.butLock)

        self.cmbUnits = QComboBox(self)
        self.cmbUnits.setObjectName("cmbUnits")
        self.cmbUnits.addItems(f_units)
        self.cmbUnits.setToolTip(
            'Select whether frequencies are specified w.r.t. \n'
            'the sampling frequency "f_S", to the Nyquist frequency \n'
            'f_Ny = f_S/2 or as absolute values. "k" specifies frequencies w.r.t. f_S '
            'but plots graphs over the frequency index k.')
        self.cmbUnits.setCurrentIndex(1)
        #        self.cmbUnits.setItemData(0, (0,QColor("#FF333D"),Qt.BackgroundColorRole))#
        #        self.cmbUnits.setItemData(0, (QFont('Verdana', bold=True), Qt.FontRole)

        fRanges = [("0...½", "half"), ("0...1", "whole"), ("-½...½", "sym")]
        self.cmbFRange = QComboBox(self)
        self.cmbFRange.setObjectName("cmbFRange")
        for f in fRanges:
            self.cmbFRange.addItem(f[0], f[1])
        self.cmbFRange.setToolTip("Select frequency range (whole or half).")
        self.cmbFRange.setCurrentIndex(0)

        # Combobox resizes with longest entry
        self.cmbUnits.setSizeAdjustPolicy(QComboBox.AdjustToContents)
        self.cmbFRange.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        self.butSort = QToolButton(self)
        self.butSort.setText("Sort")
        self.butSort.setIcon(QIcon(':/sort-ascending.svg'))
        #self.butDelCells.setIconSize(q_icon_size)
        self.butSort.setCheckable(True)
        self.butSort.setChecked(True)
        self.butSort.setToolTip(
            "Sort frequencies in ascending order when pushed.")
        self.butSort.setStyleSheet("QToolButton:checked {font-weight:bold}")

        self.layHUnits = QHBoxLayout()
        self.layHUnits.addWidget(self.cmbUnits)
        self.layHUnits.addWidget(self.cmbFRange)
        self.layHUnits.addWidget(self.butSort)

        # Create a gridLayout consisting of QLabel and QLineEdit fields
        # for setting f_S, the units and the actual frequency specs:
        self.layGSpecWdg = QGridLayout()  # sublayout for spec fields
        self.layGSpecWdg.addWidget(self.lblF_S, 1, 0)
        # self.layGSpecWdg.addWidget(self.ledF_S,1,1)
        self.layGSpecWdg.addLayout(layHF_S, 1, 1)
        self.layGSpecWdg.addWidget(self.lblUnits, 0, 0)
        self.layGSpecWdg.addLayout(self.layHUnits, 0, 1)

        frmMain = QFrame(self)
        frmMain.setLayout(self.layGSpecWdg)

        self.layVMain.addWidget(frmMain)
        self.layVMain.setContentsMargins(*params['wdg_margins'])

        self.setLayout(self.layVMain)

        #----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.cmbUnits.currentIndexChanged.connect(self.update_UI)
        self.butLock.clicked.connect(self._lock_freqs)
        self.cmbFRange.currentIndexChanged.connect(self._freq_range)
        self.butSort.clicked.connect(self._store_sort_flag)
        # ----------------------------------------------------------------------

        self.update_UI()  # first-time initialization

# -------------------------------------------------------------

    def _lock_freqs(self):
        """
        Lock / unlock frequency entries: The values of frequency related widgets
        are stored in normalized form (w.r.t. sampling frequency)`fb.fil[0]['f_S']`.

        When the sampling frequency changes, absolute frequencies displayed in the
        widgets change their values. Most of the time, this is the desired behaviour,
        the properties of discrete time systems or signals are usually defined
        by the normalized frequencies.

        When the effect of varying the sampling frequency is to be analyzed, the
        displayed values in the widgets can be locked by pressing the Lock button.
        After changing the sampling frequency, normalized frequencies have to be
        rescaled like `f_a *= fb.fil[0]['f_S_prev'] / fb.fil[0]['f_S']` to maintain
        the displayed value `f_a * f_S`.

        This has to be accomplished by each frequency widget (currently, these are
        freq_specs and freq_units).

        The setting is stored as bool in the global dict entry `fb.fil[0]['freq_locked'`,
        the signal 'view_changed':'f_S' is emitted.
        """

        if self.butLock.isChecked():
            # Lock has been activated, keep displayed frequencies locked
            fb.fil[0]['freq_locked'] = True
            self.butLock.setIcon(QIcon(':/lock-locked.svg'))
        else:
            # Lock has been unlocked, scale displayed frequencies with f_S
            fb.fil[0]['freq_locked'] = False
            self.butLock.setIcon(QIcon(':/lock-unlocked.svg'))

        self.emit({'view_changed': 'f_S'})

# -------------------------------------------------------------

    def update_UI(self):
        """
        update_UI is called
        - during init
        - when the unit combobox is changed

        Set various scale factors and labels depending on the setting of the unit
        combobox.

        Update the freqSpecsRange and finally, emit 'view_changed':'f_S' signal
        """
        f_unit = str(self.cmbUnits.currentText())  # selected frequency unit
        idx = self.cmbUnits.currentIndex()  # and its index

        is_normalized_freq = f_unit in {"f_S", "f_Ny", "k"}

        self.ledF_S.setVisible(not is_normalized_freq)  # only vis. when
        self.lblF_S.setVisible(not is_normalized_freq)  # not normalized
        self.butLock.setVisible(not is_normalized_freq)
        f_S_scale = 1  # default setting for f_S scale

        if is_normalized_freq:
            # store current sampling frequency to restore it when returning to
            # unnormalized frequencies
            self.fs_old = fb.fil[0]['f_S']

            if f_unit == "f_S":  # normalized to f_S
                fb.fil[0]['f_S'] = fb.fil[0]['f_max'] = 1.
                fb.fil[0]['T_S'] = 1.
                f_label = r"$F = f\, /\, f_S = \Omega \, /\,  2 \mathrm{\pi} \; \rightarrow$"
                t_label = r"$n = t\, /\, T_S \; \rightarrow$"
            elif f_unit == "f_Ny":  # normalized to f_nyq = f_S / 2
                fb.fil[0]['f_S'] = fb.fil[0]['f_max'] = 2.
                fb.fil[0]['T_S'] = 1.
                f_label = r"$F = 2f \, / \, f_S = \Omega \, / \, \mathrm{\pi} \; \rightarrow$"
                t_label = r"$n = t\, /\, T_S \; \rightarrow$"
            else:  # frequency index k,
                fb.fil[0]['f_S'] = 1.
                fb.fil[0]['T_S'] = 1.
                fb.fil[0]['f_max'] = params['N_FFT']
                f_label = r"$k \; \rightarrow$"
                t_label = r"$n\; \rightarrow$"

            self.ledF_S.setText(params['FMT'].format(fb.fil[0]['f_S']))

        else:  # Hz, kHz, ...
            # Restore sampling frequency when returning from f_S / f_Ny / k
            if fb.fil[0]['freq_specs_unit'] in {
                    "f_S", "f_Ny", "k"
            }:  # previous setting normalized?
                fb.fil[0]['f_S'] = fb.fil[0][
                    'f_max'] = self.fs_old  # yes, restore prev.
                fb.fil[0][
                    'T_S'] = 1. / self.fs_old  # settings for sampling frequency
                self.ledF_S.setText(params['FMT'].format(fb.fil[0]['f_S']))

            if f_unit == "Hz":
                f_S_scale = 1.
            elif f_unit == "kHz":
                f_S_scale = 1.e3
            elif f_unit == "MHz":
                f_S_scale = 1.e6
            elif f_unit == "GHz":
                f_S_scale = 1.e9
            else:
                logger.warning("Unknown frequency unit {0}".format(f_unit))

            f_label = r"$f$ in " + f_unit + r"$\; \rightarrow$"
            t_label = r"$t$ in " + self.t_units[idx] + r"$\; \rightarrow$"

        if f_unit == "k":
            plt_f_unit = "f_S"
        else:
            plt_f_unit = f_unit

        fb.fil[0].update({'f_S_scale':
                          f_S_scale})  # scale factor for f_S (Hz, kHz, ...)
        fb.fil[0].update({'freq_specs_unit': f_unit})  # frequency unit
        # time and frequency unit as string e.g. for plot axis labeling
        fb.fil[0].update({"plt_fUnit": plt_f_unit})
        fb.fil[0].update({"plt_tUnit": self.t_units[idx]})
        # complete plot axis labels including unit and arrow
        fb.fil[0].update({"plt_fLabel": f_label})
        fb.fil[0].update({"plt_tLabel": t_label})

        self._freq_range(
            emit=False)  # update f_lim setting without emitting signal

        self.emit({'view_changed': 'f_S'})

# ------------------------------------------------------------------------------

    def eventFilter(self, source, event):
        """
        Filter all events generated by the QLineEdit `f_S` widget. Source and type
        of all events generated by monitored objects are passed to this eventFilter,
        evaluated and passed on to the next hierarchy level.

        - When a QLineEdit widget gains input focus (QEvent.FocusIn`), display
          the stored value from filter dict with full precision
        - When a key is pressed inside the text field, set the `spec_edited` flag
          to True.
        - When a QLineEdit widget loses input focus (QEvent.FocusOut`), store
          current value with full precision (only if `spec_edited`== True) and
          display the stored value in selected format. Emit 'view_changed':'f_S'
        """
        def _store_entry():
            """
            Update filter dictionary, set line edit entry with reduced precision
            again.
            """
            if self.spec_edited:
                fb.fil[0].update({'f_S_prev': fb.fil[0]['f_S']})
                fb.fil[0].update({
                    'f_S':
                    safe_eval(source.text(), fb.fil[0]['f_S'], sign='pos')
                })
                fb.fil[0].update({'T_S': 1. / fb.fil[0]['f_S']})
                fb.fil[0].update({'f_max': fb.fil[0]['f_S']})

                self._freq_range(emit=False)  # update plotting range
                self.emit({'view_changed': 'f_S'})
                self.spec_edited = False  # reset flag, changed entry has been saved

        if source.objectName() == 'f_S':
            if event.type() == QEvent.FocusIn:
                self.spec_edited = False
                source.setText(str(fb.fil[0]['f_S']))  # full precision
            elif event.type() == QEvent.KeyPress:
                self.spec_edited = True  # entry has been changed
                key = event.key()
                if key in {QtCore.Qt.Key_Return, QtCore.Qt.Key_Enter}:
                    _store_entry()
                elif key == QtCore.Qt.Key_Escape:  # revert changes
                    self.spec_edited = False
                    source.setText(str(fb.fil[0]['f_S']))  # full precision

            elif event.type() == QEvent.FocusOut:
                _store_entry()
                source.setText(params['FMT'].format(
                    fb.fil[0]['f_S']))  # reduced prec.
        # Call base class method to continue normal event processing:
        return super(FreqUnits, self).eventFilter(source, event)

    # -------------------------------------------------------------
    def _freq_range(self, emit=True):
        """
        Set frequency plotting range for single-sided spectrum up to f_S/2 or f_S
        or for double-sided spectrum between -f_S/2 and f_S/2

        Emit 'view_changed':'f_range' when `emit=True`
        """
        if type(emit) == int:  # signal was emitted by combobox
            emit = True

        rangeType = qget_cmb_box(self.cmbFRange)

        fb.fil[0].update({'freqSpecsRangeType': rangeType})
        f_max = fb.fil[0]["f_max"]

        if rangeType == 'whole':
            f_lim = [0, f_max]
        elif rangeType == 'sym':
            f_lim = [-f_max / 2., f_max / 2.]
        else:
            f_lim = [0, f_max / 2.]

        fb.fil[0]['freqSpecsRange'] = f_lim  # store settings in dict

        if emit:
            self.emit({'view_changed': 'f_range'})

    # -------------------------------------------------------------
    def load_dict(self):
        """
        Reload comboBox settings and textfields from filter dictionary
        Block signals during update of combobox / lineedit widgets
        """
        self.ledF_S.setText(params['FMT'].format(fb.fil[0]['f_S']))

        self.cmbUnits.blockSignals(True)
        idx = self.cmbUnits.findText(
            fb.fil[0]['freq_specs_unit'])  # get and set
        self.cmbUnits.setCurrentIndex(idx)  # index for freq. unit combo box
        self.cmbUnits.blockSignals(False)

        self.cmbFRange.blockSignals(True)
        idx = self.cmbFRange.findData(fb.fil[0]['freqSpecsRangeType'])
        self.cmbFRange.setCurrentIndex(idx)  # set frequency range
        self.cmbFRange.blockSignals(False)

        self.butSort.blockSignals(True)
        self.butSort.setChecked(fb.fil[0]['freq_specs_sort'])
        self.butSort.blockSignals(False)

# -------------------------------------------------------------

    def _store_sort_flag(self):
        """
        Store sort flag in filter dict and emit 'specs_changed':'f_sort'
        when sort button is checked.
        """
        fb.fil[0]['freq_specs_sort'] = self.butSort.isChecked()
        if self.butSort.isChecked():
            self.emit({'specs_changed': 'f_sort'})
示例#11
0
    def _construct_UI(self):
        """
        Construct the User Interface
        """
        self.layVMain = QVBoxLayout()  # Widget main layout

        f_units = ['k', 'f_S', 'f_Ny', 'Hz', 'kHz', 'MHz', 'GHz']
        self.t_units = ['', 'T_S', 'T_S', 's', 'ms', r'$\mu$s', 'ns']

        bfont = QFont()
        bfont.setBold(True)

        self.lblUnits = QLabel(self)
        self.lblUnits.setText("Freq. Unit")
        self.lblUnits.setFont(bfont)

        self.fs_old = fb.fil[0]['f_S']  # store current sampling frequency

        self.lblF_S = QLabel(self)
        self.lblF_S.setText(to_html("f_S =", frmt='bi'))

        self.ledF_S = QLineEdit()
        self.ledF_S.setText(str(fb.fil[0]["f_S"]))
        self.ledF_S.setObjectName("f_S")
        self.ledF_S.installEventFilter(self)  # filter events

        self.butLock = QToolButton(self)
        self.butLock.setIcon(QIcon(':/lock-unlocked.svg'))
        self.butLock.setCheckable(True)
        self.butLock.setChecked(False)
        self.butLock.setToolTip(
            "<span><b>Unlocked:</b> When f_S is changed, all frequency related "
            "widgets are updated, normalized frequencies stay the same.<br />"
            "<b>Locked:</b> When f_S is changed, displayed absolute frequency "
            "values don't change but normalized frequencies do.</span>")
        # self.butLock.setStyleSheet("QToolButton:checked {font-weight:bold}")

        layHF_S = QHBoxLayout()
        layHF_S.addWidget(self.ledF_S)
        layHF_S.addWidget(self.butLock)

        self.cmbUnits = QComboBox(self)
        self.cmbUnits.setObjectName("cmbUnits")
        self.cmbUnits.addItems(f_units)
        self.cmbUnits.setToolTip(
            'Select whether frequencies are specified w.r.t. \n'
            'the sampling frequency "f_S", to the Nyquist frequency \n'
            'f_Ny = f_S/2 or as absolute values. "k" specifies frequencies w.r.t. f_S '
            'but plots graphs over the frequency index k.')
        self.cmbUnits.setCurrentIndex(1)
        #        self.cmbUnits.setItemData(0, (0,QColor("#FF333D"),Qt.BackgroundColorRole))#
        #        self.cmbUnits.setItemData(0, (QFont('Verdana', bold=True), Qt.FontRole)

        fRanges = [("0...½", "half"), ("0...1", "whole"), ("-½...½", "sym")]
        self.cmbFRange = QComboBox(self)
        self.cmbFRange.setObjectName("cmbFRange")
        for f in fRanges:
            self.cmbFRange.addItem(f[0], f[1])
        self.cmbFRange.setToolTip("Select frequency range (whole or half).")
        self.cmbFRange.setCurrentIndex(0)

        # Combobox resizes with longest entry
        self.cmbUnits.setSizeAdjustPolicy(QComboBox.AdjustToContents)
        self.cmbFRange.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        self.butSort = QToolButton(self)
        self.butSort.setText("Sort")
        self.butSort.setIcon(QIcon(':/sort-ascending.svg'))
        #self.butDelCells.setIconSize(q_icon_size)
        self.butSort.setCheckable(True)
        self.butSort.setChecked(True)
        self.butSort.setToolTip(
            "Sort frequencies in ascending order when pushed.")
        self.butSort.setStyleSheet("QToolButton:checked {font-weight:bold}")

        self.layHUnits = QHBoxLayout()
        self.layHUnits.addWidget(self.cmbUnits)
        self.layHUnits.addWidget(self.cmbFRange)
        self.layHUnits.addWidget(self.butSort)

        # Create a gridLayout consisting of QLabel and QLineEdit fields
        # for setting f_S, the units and the actual frequency specs:
        self.layGSpecWdg = QGridLayout()  # sublayout for spec fields
        self.layGSpecWdg.addWidget(self.lblF_S, 1, 0)
        # self.layGSpecWdg.addWidget(self.ledF_S,1,1)
        self.layGSpecWdg.addLayout(layHF_S, 1, 1)
        self.layGSpecWdg.addWidget(self.lblUnits, 0, 0)
        self.layGSpecWdg.addLayout(self.layHUnits, 0, 1)

        frmMain = QFrame(self)
        frmMain.setLayout(self.layGSpecWdg)

        self.layVMain.addWidget(frmMain)
        self.layVMain.setContentsMargins(*params['wdg_margins'])

        self.setLayout(self.layVMain)

        #----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.cmbUnits.currentIndexChanged.connect(self.update_UI)
        self.butLock.clicked.connect(self._lock_freqs)
        self.cmbFRange.currentIndexChanged.connect(self._freq_range)
        self.butSort.clicked.connect(self._store_sort_flag)
        # ----------------------------------------------------------------------

        self.update_UI()  # first-time initialization
示例#12
0
    def _construct_UI(self):
        # ----------- ---------------------------------------------------
        # Run control widgets
        # ---------------------------------------------------------------
        # self.but_auto_run = QPushButtonRT(text=to_html("Auto", frmt="b"), margin=0)
        self.but_auto_run = QPushButton(" Auto", self)
        self.but_auto_run.setObjectName("but_auto_run")
        self.but_auto_run.setToolTip(
            "<span>Update response automatically when "
            "parameters have been changed.</span>")
        # self.but_auto_run.setMaximumWidth(qtext_width(text=" Auto "))
        self.but_auto_run.setCheckable(True)
        self.but_auto_run.setChecked(True)

        but_height = self.but_auto_run.sizeHint().height()

        self.but_run = QPushButton(self)
        self.but_run.setIcon(QIcon(":/play.svg"))

        self.but_run.setIconSize(QSize(but_height, but_height))
        self.but_run.setFixedSize(QSize(2 * but_height, but_height))
        self.but_run.setToolTip("Run simulation")
        self.but_run.setEnabled(True)

        self.cmb_sim_select = QComboBox(self)
        self.cmb_sim_select.addItems(["Float", "Fixpoint"])
        qset_cmb_box(self.cmb_sim_select, "Float")
        self.cmb_sim_select.setToolTip("<span>Simulate floating-point or "
                                       "fixpoint response.</span>")

        self.lbl_N_points = QLabel(to_html("N", frmt='bi') + " =", self)
        self.led_N_points = QLineEdit(self)
        self.led_N_points.setText(str(self.N))
        self.led_N_points.setToolTip(
            "<span>Last data point. "
            "<i>N</i> = 0 tries to choose for you.</span>")
        self.led_N_points.setMaximumWidth(qtext_width(N_x=8))
        self.lbl_N_start = QLabel(to_html("N_0", frmt='bi') + " =", self)
        self.led_N_start = QLineEdit(self)
        self.led_N_start.setText(str(self.N_start))
        self.led_N_start.setToolTip("<span>First point to plot.</span>")
        self.led_N_start.setMaximumWidth(qtext_width(N_x=8))

        self.lbl_N_frame = QLabel(to_html("&Delta;N", frmt='bi') + " =", self)
        self.led_N_frame = QLineEdit(self)
        self.led_N_frame.setText(str(self.N_frame))
        self.led_N_frame.setToolTip(
            "<span>Frame length; longer frames calculate faster but calculation cannot "
            "be stopped so quickly. "
            "<i>&Delta;N</i> = 0 calculates all samples in one frame.</span>")
        self.led_N_frame.setMaximumWidth(qtext_width(N_x=8))

        self.prg_wdg = QProgressBar(self)
        self.prg_wdg.setFixedHeight(but_height)
        self.prg_wdg.setFixedWidth(qtext_width(N_x=6))
        self.prg_wdg.setMinimum(0)
        self.prg_wdg.setValue(0)

        self.but_toggle_stim_options = PushButton(" Stimuli ", checked=True)
        self.but_toggle_stim_options.setObjectName("but_stim_options")
        self.but_toggle_stim_options.setToolTip(
            "<span>Show / hide stimulus options.</span>")

        self.lbl_stim_cmplx_warn = QLabel(self)
        self.lbl_stim_cmplx_warn = QLabel(to_html("Cmplx!", frmt='b'), self)
        self.lbl_stim_cmplx_warn.setToolTip(
            '<span>Signal is complex valued; '
            'single-sided and H<sub>id</sub> spectra may be wrong.</span>')
        self.lbl_stim_cmplx_warn.setStyleSheet("background-color : yellow;"
                                               "border : 1px solid grey")

        self.but_fft_wdg = QPushButton(self)
        self.but_fft_wdg.setIcon(QIcon(":/fft.svg"))
        self.but_fft_wdg.setIconSize(QSize(but_height, but_height))
        self.but_fft_wdg.setFixedSize(QSize(int(1.5 * but_height), but_height))
        self.but_fft_wdg.setToolTip(
            '<span>Show / hide FFT widget (select window type '
            ' and display its properties).</span>')
        self.but_fft_wdg.setCheckable(True)
        self.but_fft_wdg.setChecked(False)

        self.qfft_win_select = QFFTWinSelector(self, self.win_dict)

        self.but_fx_scale = PushButton(" FX:Int ")
        self.but_fx_scale.setObjectName("but_fx_scale")
        self.but_fx_scale.setToolTip(
            "<span>Display data with integer (fixpoint) scale.</span>")

        self.but_fx_range = PushButton(" FX:Range")
        self.but_fx_range.setObjectName("but_fx_limits")
        self.but_fx_range.setToolTip(
            "<span>Display limits of fixpoint range.</span>")

        layH_ctrl_run = QHBoxLayout()
        layH_ctrl_run.addWidget(self.but_auto_run)
        layH_ctrl_run.addWidget(self.but_run)
        layH_ctrl_run.addWidget(self.cmb_sim_select)
        layH_ctrl_run.addSpacing(10)
        layH_ctrl_run.addWidget(self.lbl_N_start)
        layH_ctrl_run.addWidget(self.led_N_start)
        layH_ctrl_run.addWidget(self.lbl_N_points)
        layH_ctrl_run.addWidget(self.led_N_points)
        layH_ctrl_run.addWidget(self.lbl_N_frame)
        layH_ctrl_run.addWidget(self.led_N_frame)
        layH_ctrl_run.addWidget(self.prg_wdg)

        layH_ctrl_run.addSpacing(20)
        layH_ctrl_run.addWidget(self.but_toggle_stim_options)
        layH_ctrl_run.addSpacing(5)
        layH_ctrl_run.addWidget(self.lbl_stim_cmplx_warn)
        layH_ctrl_run.addSpacing(20)
        layH_ctrl_run.addWidget(self.but_fft_wdg)
        layH_ctrl_run.addWidget(self.qfft_win_select)
        layH_ctrl_run.addSpacing(20)
        layH_ctrl_run.addWidget(self.but_fx_scale)
        layH_ctrl_run.addWidget(self.but_fx_range)
        layH_ctrl_run.addStretch(10)

        # layH_ctrl_run.setContentsMargins(*params['wdg_margins'])

        self.wdg_ctrl_run = QWidget(self)
        self.wdg_ctrl_run.setLayout(layH_ctrl_run)
        # --- end of run control ----------------------------------------

        # ----------- ---------------------------------------------------
        # Controls for time domain
        # ---------------------------------------------------------------
        self.lbl_plt_time_stim = QLabel(to_html("Stim. x", frmt='bi'), self)
        self.cmb_plt_time_stim = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_time_stim, self.plot_styles_list,
                          self.plt_time_stim)
        self.cmb_plt_time_stim.setToolTip(
            "<span>Plot style for stimulus.</span>")

        self.lbl_plt_time_stmq = QLabel(
            to_html("&nbsp;&nbsp;Fixp. Stim. x_Q", frmt='bi'), self)
        self.cmb_plt_time_stmq = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_time_stmq, self.plot_styles_list,
                          self.plt_time_stmq)
        self.cmb_plt_time_stmq.setToolTip(
            "<span>Plot style for <em>fixpoint</em> "
            "(quantized) stimulus.</span>")

        lbl_plt_time_resp = QLabel(to_html("&nbsp;&nbsp;Resp. y", frmt='bi'),
                                   self)
        self.cmb_plt_time_resp = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_time_resp, self.plot_styles_list,
                          self.plt_time_resp)
        self.cmb_plt_time_resp.setToolTip(
            "<span>Plot style for response.</span>")

        self.lbl_win_time = QLabel(to_html("&nbsp;&nbsp;Win", frmt='bi'), self)
        self.chk_win_time = QCheckBox(self)
        self.chk_win_time.setObjectName("chk_win_time")
        self.chk_win_time.setToolTip(
            '<span>Plot FFT windowing function.</span>')
        self.chk_win_time.setChecked(False)

        line1 = QVLine()
        line2 = QVLine(width=5)

        self.but_log_time = PushButton(" dB")
        self.but_log_time.setObjectName("but_log_time")
        self.but_log_time.setToolTip(
            "<span>Logarithmic scale for y-axis.</span>")

        lbl_plt_time_spgr = QLabel(to_html("Spectrogram", frmt='bi'), self)
        self.cmb_plt_time_spgr = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_time_spgr, self.cmb_time_spgr_items,
                          self.plt_time_spgr)
        spgr_en = self.plt_time_spgr != "none"

        self.cmb_mode_spgr_time = QComboBox(self)
        qcmb_box_populate(self.cmb_mode_spgr_time,
                          self.cmb_mode_spgr_time_items, self.mode_spgr_time)
        self.cmb_mode_spgr_time.setVisible(spgr_en)

        self.lbl_byfs_spgr_time = QLabel(to_html("&nbsp;per f_S", frmt='b'),
                                         self)
        self.lbl_byfs_spgr_time.setVisible(spgr_en)
        self.chk_byfs_spgr_time = QCheckBox(self)
        self.chk_byfs_spgr_time.setObjectName("chk_log_spgr")
        self.chk_byfs_spgr_time.setToolTip("<span>Display spectral density "
                                           "i.e. scale by f_S</span>")
        self.chk_byfs_spgr_time.setChecked(True)
        self.chk_byfs_spgr_time.setVisible(spgr_en)

        self.but_log_spgr_time = QPushButton("dB")
        self.but_log_spgr_time.setMaximumWidth(qtext_width(text=" dB"))
        self.but_log_spgr_time.setObjectName("but_log_spgr")
        self.but_log_spgr_time.setToolTip(
            "<span>Logarithmic scale for spectrogram.</span>")
        self.but_log_spgr_time.setCheckable(True)
        self.but_log_spgr_time.setChecked(True)
        self.but_log_spgr_time.setVisible(spgr_en)

        self.lbl_time_nfft_spgr = QLabel(to_html("&nbsp;N_FFT =", frmt='bi'),
                                         self)
        self.lbl_time_nfft_spgr.setVisible(spgr_en)
        self.led_time_nfft_spgr = QLineEdit(self)
        self.led_time_nfft_spgr.setText(str(self.time_nfft_spgr))
        self.led_time_nfft_spgr.setToolTip("<span>Number of FFT points per "
                                           "spectrogram segment.</span>")
        self.led_time_nfft_spgr.setVisible(spgr_en)

        self.lbl_time_ovlp_spgr = QLabel(to_html("&nbsp;N_OVLP =", frmt='bi'),
                                         self)
        self.lbl_time_ovlp_spgr.setVisible(spgr_en)
        self.led_time_ovlp_spgr = QLineEdit(self)
        self.led_time_ovlp_spgr.setText(str(self.time_ovlp_spgr))
        self.led_time_ovlp_spgr.setToolTip(
            "<span>Number of overlap data points "
            "between spectrogram segments.</span>")
        self.led_time_ovlp_spgr.setVisible(spgr_en)

        self.lbl_log_bottom_time = QLabel(to_html("min =", frmt='bi'), self)
        self.led_log_bottom_time = QLineEdit(self)
        self.led_log_bottom_time.setText(str(self.bottom_t))
        self.led_log_bottom_time.setMaximumWidth(qtext_width(N_x=8))
        self.led_log_bottom_time.setToolTip(
            "<span>Minimum display value for time and spectrogram plots with log. scale."
            "</span>")
        self.lbl_log_bottom_time.setVisible(
            self.but_log_time.isChecked()
            or (spgr_en and self.but_log_spgr_time.isChecked()))
        self.led_log_bottom_time.setVisible(
            self.lbl_log_bottom_time.isVisible())

        # self.lbl_colorbar_time = QLabel(to_html("&nbsp;Col.bar", frmt='b'), self)
        # self.lbl_colorbar_time.setVisible(spgr_en)
        # self.chk_colorbar_time = QCheckBox(self)
        # self.chk_colorbar_time.setObjectName("chk_colorbar_time")
        # self.chk_colorbar_time.setToolTip("<span>Enable colorbar</span>")
        # self.chk_colorbar_time.setChecked(True)
        # self.chk_colorbar_time.setVisible(spgr_en)

        layH_ctrl_time = QHBoxLayout()
        layH_ctrl_time.addWidget(self.lbl_plt_time_stim)
        layH_ctrl_time.addWidget(self.cmb_plt_time_stim)
        #
        layH_ctrl_time.addWidget(self.lbl_plt_time_stmq)
        layH_ctrl_time.addWidget(self.cmb_plt_time_stmq)
        #
        layH_ctrl_time.addWidget(lbl_plt_time_resp)
        layH_ctrl_time.addWidget(self.cmb_plt_time_resp)
        #
        layH_ctrl_time.addWidget(self.lbl_win_time)
        layH_ctrl_time.addWidget(self.chk_win_time)
        layH_ctrl_time.addSpacing(5)
        layH_ctrl_time.addWidget(line1)
        layH_ctrl_time.addSpacing(5)
        #
        layH_ctrl_time.addWidget(self.lbl_log_bottom_time)
        layH_ctrl_time.addWidget(self.led_log_bottom_time)
        layH_ctrl_time.addWidget(self.but_log_time)

        layH_ctrl_time.addSpacing(5)
        layH_ctrl_time.addWidget(line2)
        layH_ctrl_time.addSpacing(5)
        #
        layH_ctrl_time.addWidget(lbl_plt_time_spgr)
        layH_ctrl_time.addWidget(self.cmb_plt_time_spgr)
        layH_ctrl_time.addWidget(self.cmb_mode_spgr_time)
        layH_ctrl_time.addWidget(self.lbl_byfs_spgr_time)
        layH_ctrl_time.addWidget(self.chk_byfs_spgr_time)
        layH_ctrl_time.addWidget(self.but_log_spgr_time)
        layH_ctrl_time.addWidget(self.lbl_time_nfft_spgr)
        layH_ctrl_time.addWidget(self.led_time_nfft_spgr)
        layH_ctrl_time.addWidget(self.lbl_time_ovlp_spgr)
        layH_ctrl_time.addWidget(self.led_time_ovlp_spgr)

        layH_ctrl_time.addStretch(10)

        # layH_ctrl_time.setContentsMargins(*params['wdg_margins'])

        self.wdg_ctrl_time = QWidget(self)
        self.wdg_ctrl_time.setLayout(layH_ctrl_time)
        # ---- end time domain ------------------

        # ---------------------------------------------------------------
        # Controls for frequency domain
        # ---------------------------------------------------------------
        self.lbl_plt_freq_stim = QLabel(to_html("Stimulus X", frmt='bi'), self)
        self.cmb_plt_freq_stim = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_freq_stim, self.plot_styles_list,
                          self.plt_freq_stim)
        self.cmb_plt_freq_stim.setToolTip(
            "<span>Plot style for stimulus.</span>")

        self.lbl_plt_freq_stmq = QLabel(
            to_html("&nbsp;Fixp. Stim. X_Q", frmt='bi'), self)
        self.cmb_plt_freq_stmq = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_freq_stmq, self.plot_styles_list,
                          self.plt_freq_stmq)
        self.cmb_plt_freq_stmq.setToolTip(
            "<span>Plot style for <em>fixpoint</em> (quantized) stimulus.</span>"
        )

        lbl_plt_freq_resp = QLabel(to_html("&nbsp;Response Y", frmt='bi'),
                                   self)
        self.cmb_plt_freq_resp = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_freq_resp, self.plot_styles_list,
                          self.plt_freq_resp)
        self.cmb_plt_freq_resp.setToolTip(
            "<span>Plot style for response.</span>")

        self.but_log_freq = QPushButton("dB")
        self.but_log_freq.setMaximumWidth(qtext_width(" dB"))
        self.but_log_freq.setObjectName(".but_log_freq")
        self.but_log_freq.setToolTip(
            "<span>Logarithmic scale for y-axis.</span>")
        self.but_log_freq.setCheckable(True)
        self.but_log_freq.setChecked(True)

        self.lbl_log_bottom_freq = QLabel(to_html("min =", frmt='bi'), self)
        self.lbl_log_bottom_freq.setVisible(self.but_log_freq.isChecked())
        self.led_log_bottom_freq = QLineEdit(self)
        self.led_log_bottom_freq.setText(str(self.bottom_f))
        self.led_log_bottom_freq.setMaximumWidth(qtext_width(N_x=8))
        self.led_log_bottom_freq.setToolTip(
            "<span>Minimum display value for log. scale.</span>")
        self.led_log_bottom_freq.setVisible(self.but_log_freq.isChecked())

        if not self.but_log_freq.isChecked():
            self.bottom_f = 0

        self.cmb_freq_display = QComboBox(self)
        qcmb_box_populate(self.cmb_freq_display, self.cmb_freq_display_items,
                          self.cmb_freq_display_item)
        self.cmb_freq_display.setObjectName("cmb_re_im_freq")

        self.but_Hf = QPushButtonRT(self, to_html("H_id", frmt="bi"), margin=5)
        self.but_Hf.setObjectName("chk_Hf")
        self.but_Hf.setToolTip(
            "<span>Show ideal frequency response, calculated "
            "from the filter coefficients.</span>")
        self.but_Hf.setChecked(False)
        self.but_Hf.setCheckable(True)

        self.but_freq_norm_impz = QPushButtonRT(
            text="<b><i>E<sub>X</sub></i> = 1</b>", margin=5)
        self.but_freq_norm_impz.setToolTip(
            "<span>Normalize the FFT of the stimulus with <i>N<sub>FFT</sub></i> for "
            "<i>E<sub>X</sub></i> = 1. For a dirac pulse, this yields "
            "|<i>Y(f)</i>| = |<i>H(f)</i>|. DC and Noise need to be "
            "turned off, window should be <b>Rectangular</b>.</span>")
        self.but_freq_norm_impz.setCheckable(True)
        self.but_freq_norm_impz.setChecked(True)
        self.but_freq_norm_impz.setObjectName("freq_norm_impz")

        self.but_freq_show_info = QPushButton("Info", self)
        self.but_freq_show_info.setMaximumWidth(qtext_width(" Info "))
        self.but_freq_show_info.setObjectName("but_show_info_freq")
        self.but_freq_show_info.setToolTip(
            "<span>Show signal power in legend.</span>")
        self.but_freq_show_info.setCheckable(True)
        self.but_freq_show_info.setChecked(False)

        layH_ctrl_freq = QHBoxLayout()
        layH_ctrl_freq.addWidget(self.lbl_plt_freq_stim)
        layH_ctrl_freq.addWidget(self.cmb_plt_freq_stim)
        #
        layH_ctrl_freq.addWidget(self.lbl_plt_freq_stmq)
        layH_ctrl_freq.addWidget(self.cmb_plt_freq_stmq)
        #
        layH_ctrl_freq.addWidget(lbl_plt_freq_resp)
        layH_ctrl_freq.addWidget(self.cmb_plt_freq_resp)
        #
        layH_ctrl_freq.addSpacing(5)
        layH_ctrl_freq.addWidget(self.but_Hf)
        layH_ctrl_freq.addStretch(1)
        #
        layH_ctrl_freq.addWidget(self.lbl_log_bottom_freq)
        layH_ctrl_freq.addWidget(self.led_log_bottom_freq)
        layH_ctrl_freq.addWidget(self.but_log_freq)
        layH_ctrl_freq.addStretch(1)
        layH_ctrl_freq.addWidget(self.cmb_freq_display)
        layH_ctrl_freq.addStretch(1)

        layH_ctrl_freq.addWidget(self.but_freq_norm_impz)
        layH_ctrl_freq.addStretch(1)
        layH_ctrl_freq.addWidget(self.but_freq_show_info)
        layH_ctrl_freq.addStretch(10)

        # layH_ctrl_freq.setContentsMargins(*params['wdg_margins'])

        self.wdg_ctrl_freq = QWidget(self)
        self.wdg_ctrl_freq.setLayout(layH_ctrl_freq)
        # ---- end Frequency Domain ------------------

        # ----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        # connect FFT widget to qfft_selector and vice versa and to and signals upstream:
        self.fft_widget.sig_tx.connect(self.process_sig_rx)
        self.qfft_win_select.sig_tx.connect(self.process_sig_rx)
        # connect process_sig_rx output to both FFT widgets
        self.sig_tx_fft.connect(self.fft_widget.sig_rx)
        self.sig_tx_fft.connect(self.qfft_win_select.sig_rx)

        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        # --- run control ---
        self.led_N_start.editingFinished.connect(self.update_N)
        self.led_N_points.editingFinished.connect(self.update_N)
        self.led_N_frame.editingFinished.connect(self.update_N)
        self.but_fft_wdg.clicked.connect(self.toggle_fft_wdg)
示例#13
0
class PlotImpz_UI(QWidget):
    """
    Create the UI for the PlotImpz class
    """
    # incoming: not implemented at the moment, update_N is triggered directly
    # by plot_impz
    # sig_rx = pyqtSignal(object)
    # outgoing: from various UI elements to PlotImpz ('ui_changed':'xxx')
    sig_tx = pyqtSignal(object)
    # outgoing: to fft related widgets (FFT window widget, qfft_win_select)
    sig_tx_fft = pyqtSignal(object)

    from pyfda.libs.pyfda_qt_lib import emit

    # ------------------------------------------------------------------------------
    def process_sig_rx(self, dict_sig=None):
        """
        Process signals coming from
        - FFT window widget
        - qfft_win_select
        """

        # logger.debug("PROCESS_SIG_RX - vis: {0}\n{1}"
        #              .format(self.isVisible(), pprint_log(dict_sig)))

        if 'id' in dict_sig and dict_sig['id'] == id(self):
            logger.warning("Stopped infinite loop:\n{0}".format(
                pprint_log(dict_sig)))
            return

        # --- signals coming from the FFT window widget or the FFT window selector
        if dict_sig['class'] in {'Plot_FFT_win', 'QFFTWinSelector'}:
            if 'closeEvent' in dict_sig:  # hide FFT window widget and return
                self.hide_fft_wdg()
                return
            else:
                # check for value 'fft_win*':
                if 'view_changed' in dict_sig and 'fft_win' in dict_sig[
                        'view_changed']:
                    # local connection to FFT window widget and qfft_win_select
                    self.emit(dict_sig, sig_name='sig_tx_fft')
                    # global connection to e.g. plot_impz
                    self.emit(dict_sig)

# ------------------------------------------------------------------------------

    def __init__(self):
        super().__init__()
        """
        Intitialize the widget, consisting of:
        - top chkbox row
        - coefficient table
        - two bottom rows with action buttons
        """
        # initial settings
        self.N_start = 0
        self.N_user = 0
        self.N = 0
        self.N_frame_user = 0
        self.N_frame = 0

        # time
        self.plt_time_resp = "stem"
        self.plt_time_stim = "line"
        self.plt_time_stmq = "none"
        self.plt_time_spgr = "none"

        self.bottom_t = -80  # initial value for log. scale (time)
        self.time_nfft_spgr = 256  # number of fft points per spectrogram segment
        self.time_ovlp_spgr = 128  # number of overlap points between spectrogram segments
        self.mode_spgr_time = "psd"

        # frequency
        self.cmb_freq_display_item = "mag"
        self.plt_freq_resp = "line"
        self.plt_freq_stim = "none"
        self.plt_freq_stmq = "none"

        self.bottom_f = -120  # initial value for log. scale
        self.param = None

        self.f_scale = fb.fil[0]['f_S']
        self.t_scale = fb.fil[0]['T_S']
        # list of windows that are available for FFT analysis
        win_names_list = [
            "Boxcar", "Rectangular", "Barthann", "Bartlett", "Blackman",
            "Blackmanharris", "Bohman", "Cosine", "Dolph-Chebyshev", "Flattop",
            "General Gaussian", "Gauss", "Hamming", "Hann", "Kaiser",
            "Nuttall", "Parzen", "Slepian", "Triangular", "Tukey"
        ]
        self.cur_win_name = "Rectangular"  # set initial window type

        # initialize windows dict with the list above
        self.win_dict = get_windows_dict(win_names_list=win_names_list,
                                         cur_win_name=self.cur_win_name)

        # instantiate FFT window with default windows dict
        self.fft_widget = Plot_FFT_win(self,
                                       self.win_dict,
                                       sym=False,
                                       title="pyFDA Spectral Window Viewer")
        # hide window initially, this is modeless i.e. a non-blocking popup window
        self.fft_widget.hide()

        # data / icon / tooltipp (none) for plotting styles
        self.plot_styles_list = [
            ("Plot style"), ("none", QIcon(":/plot_style-none"), "off"),
            ("dots*", QIcon(":/plot_style-mkr"), "markers only"),
            ("line", QIcon(":/plot_style-line"), "line"),
            ("line*", QIcon(":/plot_style-line-mkr"), "line + markers"),
            ("stem", QIcon(":/plot_style-stem"), "stems"),
            ("stem*", QIcon(":/plot_style-stem-mkr"), "stems + markers"),
            ("steps", QIcon(":/plot_style-steps"), "steps"),
            ("steps*", QIcon(":/plot_style-steps-mkr"), "steps + markers")
        ]

        self.cmb_time_spgr_items = [
            "<span>Show Spectrogram for selected signal.</span>",
            ("none", "None", ""), ("xn", "x[n]", "input"),
            ("xqn", "x_q[n]", "quantized input"), ("yn", "y[n]", "output")
        ]

        self.cmb_mode_spgr_time_items = [
            "<span>Spectrogram display mode.</span>",
            ("psd", "PSD",
             "<span>Power Spectral Density, either per bin or referred to "
             "<i>f<sub>S</sub></i></span>"),
            ("magnitude", "Mag.", "Signal magnitude"),
            ("angle", "Angle", "Phase, wrapped to &pm; &pi;"),
            ("phase", "Phase", "Phase (unwrapped)")
        ]
        #        self.N

        self.cmb_freq_display_items = [
            "<span>Select how to display the spectrum.</span>",
            ("mag", "Magnitude", "<span>Spectral magnitude</span>"),
            ("mag_phi", "Mag. / Phase", "<span>Magnitude and phase.</span>"),
            ("re_im", "Re. / Imag.",
             "<span>Real and imaginary part of spectrum.</span>")
        ]

        self._construct_UI()
        #        self._enable_stim_widgets()
        self.update_N(emit=False)  # also updates window function and win_dict
#        self._update_noi()

    def _construct_UI(self):
        # ----------- ---------------------------------------------------
        # Run control widgets
        # ---------------------------------------------------------------
        # self.but_auto_run = QPushButtonRT(text=to_html("Auto", frmt="b"), margin=0)
        self.but_auto_run = QPushButton(" Auto", self)
        self.but_auto_run.setObjectName("but_auto_run")
        self.but_auto_run.setToolTip(
            "<span>Update response automatically when "
            "parameters have been changed.</span>")
        # self.but_auto_run.setMaximumWidth(qtext_width(text=" Auto "))
        self.but_auto_run.setCheckable(True)
        self.but_auto_run.setChecked(True)

        but_height = self.but_auto_run.sizeHint().height()

        self.but_run = QPushButton(self)
        self.but_run.setIcon(QIcon(":/play.svg"))

        self.but_run.setIconSize(QSize(but_height, but_height))
        self.but_run.setFixedSize(QSize(2 * but_height, but_height))
        self.but_run.setToolTip("Run simulation")
        self.but_run.setEnabled(True)

        self.cmb_sim_select = QComboBox(self)
        self.cmb_sim_select.addItems(["Float", "Fixpoint"])
        qset_cmb_box(self.cmb_sim_select, "Float")
        self.cmb_sim_select.setToolTip("<span>Simulate floating-point or "
                                       "fixpoint response.</span>")

        self.lbl_N_points = QLabel(to_html("N", frmt='bi') + " =", self)
        self.led_N_points = QLineEdit(self)
        self.led_N_points.setText(str(self.N))
        self.led_N_points.setToolTip(
            "<span>Last data point. "
            "<i>N</i> = 0 tries to choose for you.</span>")
        self.led_N_points.setMaximumWidth(qtext_width(N_x=8))
        self.lbl_N_start = QLabel(to_html("N_0", frmt='bi') + " =", self)
        self.led_N_start = QLineEdit(self)
        self.led_N_start.setText(str(self.N_start))
        self.led_N_start.setToolTip("<span>First point to plot.</span>")
        self.led_N_start.setMaximumWidth(qtext_width(N_x=8))

        self.lbl_N_frame = QLabel(to_html("&Delta;N", frmt='bi') + " =", self)
        self.led_N_frame = QLineEdit(self)
        self.led_N_frame.setText(str(self.N_frame))
        self.led_N_frame.setToolTip(
            "<span>Frame length; longer frames calculate faster but calculation cannot "
            "be stopped so quickly. "
            "<i>&Delta;N</i> = 0 calculates all samples in one frame.</span>")
        self.led_N_frame.setMaximumWidth(qtext_width(N_x=8))

        self.prg_wdg = QProgressBar(self)
        self.prg_wdg.setFixedHeight(but_height)
        self.prg_wdg.setFixedWidth(qtext_width(N_x=6))
        self.prg_wdg.setMinimum(0)
        self.prg_wdg.setValue(0)

        self.but_toggle_stim_options = PushButton(" Stimuli ", checked=True)
        self.but_toggle_stim_options.setObjectName("but_stim_options")
        self.but_toggle_stim_options.setToolTip(
            "<span>Show / hide stimulus options.</span>")

        self.lbl_stim_cmplx_warn = QLabel(self)
        self.lbl_stim_cmplx_warn = QLabel(to_html("Cmplx!", frmt='b'), self)
        self.lbl_stim_cmplx_warn.setToolTip(
            '<span>Signal is complex valued; '
            'single-sided and H<sub>id</sub> spectra may be wrong.</span>')
        self.lbl_stim_cmplx_warn.setStyleSheet("background-color : yellow;"
                                               "border : 1px solid grey")

        self.but_fft_wdg = QPushButton(self)
        self.but_fft_wdg.setIcon(QIcon(":/fft.svg"))
        self.but_fft_wdg.setIconSize(QSize(but_height, but_height))
        self.but_fft_wdg.setFixedSize(QSize(int(1.5 * but_height), but_height))
        self.but_fft_wdg.setToolTip(
            '<span>Show / hide FFT widget (select window type '
            ' and display its properties).</span>')
        self.but_fft_wdg.setCheckable(True)
        self.but_fft_wdg.setChecked(False)

        self.qfft_win_select = QFFTWinSelector(self, self.win_dict)

        self.but_fx_scale = PushButton(" FX:Int ")
        self.but_fx_scale.setObjectName("but_fx_scale")
        self.but_fx_scale.setToolTip(
            "<span>Display data with integer (fixpoint) scale.</span>")

        self.but_fx_range = PushButton(" FX:Range")
        self.but_fx_range.setObjectName("but_fx_limits")
        self.but_fx_range.setToolTip(
            "<span>Display limits of fixpoint range.</span>")

        layH_ctrl_run = QHBoxLayout()
        layH_ctrl_run.addWidget(self.but_auto_run)
        layH_ctrl_run.addWidget(self.but_run)
        layH_ctrl_run.addWidget(self.cmb_sim_select)
        layH_ctrl_run.addSpacing(10)
        layH_ctrl_run.addWidget(self.lbl_N_start)
        layH_ctrl_run.addWidget(self.led_N_start)
        layH_ctrl_run.addWidget(self.lbl_N_points)
        layH_ctrl_run.addWidget(self.led_N_points)
        layH_ctrl_run.addWidget(self.lbl_N_frame)
        layH_ctrl_run.addWidget(self.led_N_frame)
        layH_ctrl_run.addWidget(self.prg_wdg)

        layH_ctrl_run.addSpacing(20)
        layH_ctrl_run.addWidget(self.but_toggle_stim_options)
        layH_ctrl_run.addSpacing(5)
        layH_ctrl_run.addWidget(self.lbl_stim_cmplx_warn)
        layH_ctrl_run.addSpacing(20)
        layH_ctrl_run.addWidget(self.but_fft_wdg)
        layH_ctrl_run.addWidget(self.qfft_win_select)
        layH_ctrl_run.addSpacing(20)
        layH_ctrl_run.addWidget(self.but_fx_scale)
        layH_ctrl_run.addWidget(self.but_fx_range)
        layH_ctrl_run.addStretch(10)

        # layH_ctrl_run.setContentsMargins(*params['wdg_margins'])

        self.wdg_ctrl_run = QWidget(self)
        self.wdg_ctrl_run.setLayout(layH_ctrl_run)
        # --- end of run control ----------------------------------------

        # ----------- ---------------------------------------------------
        # Controls for time domain
        # ---------------------------------------------------------------
        self.lbl_plt_time_stim = QLabel(to_html("Stim. x", frmt='bi'), self)
        self.cmb_plt_time_stim = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_time_stim, self.plot_styles_list,
                          self.plt_time_stim)
        self.cmb_plt_time_stim.setToolTip(
            "<span>Plot style for stimulus.</span>")

        self.lbl_plt_time_stmq = QLabel(
            to_html("&nbsp;&nbsp;Fixp. Stim. x_Q", frmt='bi'), self)
        self.cmb_plt_time_stmq = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_time_stmq, self.plot_styles_list,
                          self.plt_time_stmq)
        self.cmb_plt_time_stmq.setToolTip(
            "<span>Plot style for <em>fixpoint</em> "
            "(quantized) stimulus.</span>")

        lbl_plt_time_resp = QLabel(to_html("&nbsp;&nbsp;Resp. y", frmt='bi'),
                                   self)
        self.cmb_plt_time_resp = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_time_resp, self.plot_styles_list,
                          self.plt_time_resp)
        self.cmb_plt_time_resp.setToolTip(
            "<span>Plot style for response.</span>")

        self.lbl_win_time = QLabel(to_html("&nbsp;&nbsp;Win", frmt='bi'), self)
        self.chk_win_time = QCheckBox(self)
        self.chk_win_time.setObjectName("chk_win_time")
        self.chk_win_time.setToolTip(
            '<span>Plot FFT windowing function.</span>')
        self.chk_win_time.setChecked(False)

        line1 = QVLine()
        line2 = QVLine(width=5)

        self.but_log_time = PushButton(" dB")
        self.but_log_time.setObjectName("but_log_time")
        self.but_log_time.setToolTip(
            "<span>Logarithmic scale for y-axis.</span>")

        lbl_plt_time_spgr = QLabel(to_html("Spectrogram", frmt='bi'), self)
        self.cmb_plt_time_spgr = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_time_spgr, self.cmb_time_spgr_items,
                          self.plt_time_spgr)
        spgr_en = self.plt_time_spgr != "none"

        self.cmb_mode_spgr_time = QComboBox(self)
        qcmb_box_populate(self.cmb_mode_spgr_time,
                          self.cmb_mode_spgr_time_items, self.mode_spgr_time)
        self.cmb_mode_spgr_time.setVisible(spgr_en)

        self.lbl_byfs_spgr_time = QLabel(to_html("&nbsp;per f_S", frmt='b'),
                                         self)
        self.lbl_byfs_spgr_time.setVisible(spgr_en)
        self.chk_byfs_spgr_time = QCheckBox(self)
        self.chk_byfs_spgr_time.setObjectName("chk_log_spgr")
        self.chk_byfs_spgr_time.setToolTip("<span>Display spectral density "
                                           "i.e. scale by f_S</span>")
        self.chk_byfs_spgr_time.setChecked(True)
        self.chk_byfs_spgr_time.setVisible(spgr_en)

        self.but_log_spgr_time = QPushButton("dB")
        self.but_log_spgr_time.setMaximumWidth(qtext_width(text=" dB"))
        self.but_log_spgr_time.setObjectName("but_log_spgr")
        self.but_log_spgr_time.setToolTip(
            "<span>Logarithmic scale for spectrogram.</span>")
        self.but_log_spgr_time.setCheckable(True)
        self.but_log_spgr_time.setChecked(True)
        self.but_log_spgr_time.setVisible(spgr_en)

        self.lbl_time_nfft_spgr = QLabel(to_html("&nbsp;N_FFT =", frmt='bi'),
                                         self)
        self.lbl_time_nfft_spgr.setVisible(spgr_en)
        self.led_time_nfft_spgr = QLineEdit(self)
        self.led_time_nfft_spgr.setText(str(self.time_nfft_spgr))
        self.led_time_nfft_spgr.setToolTip("<span>Number of FFT points per "
                                           "spectrogram segment.</span>")
        self.led_time_nfft_spgr.setVisible(spgr_en)

        self.lbl_time_ovlp_spgr = QLabel(to_html("&nbsp;N_OVLP =", frmt='bi'),
                                         self)
        self.lbl_time_ovlp_spgr.setVisible(spgr_en)
        self.led_time_ovlp_spgr = QLineEdit(self)
        self.led_time_ovlp_spgr.setText(str(self.time_ovlp_spgr))
        self.led_time_ovlp_spgr.setToolTip(
            "<span>Number of overlap data points "
            "between spectrogram segments.</span>")
        self.led_time_ovlp_spgr.setVisible(spgr_en)

        self.lbl_log_bottom_time = QLabel(to_html("min =", frmt='bi'), self)
        self.led_log_bottom_time = QLineEdit(self)
        self.led_log_bottom_time.setText(str(self.bottom_t))
        self.led_log_bottom_time.setMaximumWidth(qtext_width(N_x=8))
        self.led_log_bottom_time.setToolTip(
            "<span>Minimum display value for time and spectrogram plots with log. scale."
            "</span>")
        self.lbl_log_bottom_time.setVisible(
            self.but_log_time.isChecked()
            or (spgr_en and self.but_log_spgr_time.isChecked()))
        self.led_log_bottom_time.setVisible(
            self.lbl_log_bottom_time.isVisible())

        # self.lbl_colorbar_time = QLabel(to_html("&nbsp;Col.bar", frmt='b'), self)
        # self.lbl_colorbar_time.setVisible(spgr_en)
        # self.chk_colorbar_time = QCheckBox(self)
        # self.chk_colorbar_time.setObjectName("chk_colorbar_time")
        # self.chk_colorbar_time.setToolTip("<span>Enable colorbar</span>")
        # self.chk_colorbar_time.setChecked(True)
        # self.chk_colorbar_time.setVisible(spgr_en)

        layH_ctrl_time = QHBoxLayout()
        layH_ctrl_time.addWidget(self.lbl_plt_time_stim)
        layH_ctrl_time.addWidget(self.cmb_plt_time_stim)
        #
        layH_ctrl_time.addWidget(self.lbl_plt_time_stmq)
        layH_ctrl_time.addWidget(self.cmb_plt_time_stmq)
        #
        layH_ctrl_time.addWidget(lbl_plt_time_resp)
        layH_ctrl_time.addWidget(self.cmb_plt_time_resp)
        #
        layH_ctrl_time.addWidget(self.lbl_win_time)
        layH_ctrl_time.addWidget(self.chk_win_time)
        layH_ctrl_time.addSpacing(5)
        layH_ctrl_time.addWidget(line1)
        layH_ctrl_time.addSpacing(5)
        #
        layH_ctrl_time.addWidget(self.lbl_log_bottom_time)
        layH_ctrl_time.addWidget(self.led_log_bottom_time)
        layH_ctrl_time.addWidget(self.but_log_time)

        layH_ctrl_time.addSpacing(5)
        layH_ctrl_time.addWidget(line2)
        layH_ctrl_time.addSpacing(5)
        #
        layH_ctrl_time.addWidget(lbl_plt_time_spgr)
        layH_ctrl_time.addWidget(self.cmb_plt_time_spgr)
        layH_ctrl_time.addWidget(self.cmb_mode_spgr_time)
        layH_ctrl_time.addWidget(self.lbl_byfs_spgr_time)
        layH_ctrl_time.addWidget(self.chk_byfs_spgr_time)
        layH_ctrl_time.addWidget(self.but_log_spgr_time)
        layH_ctrl_time.addWidget(self.lbl_time_nfft_spgr)
        layH_ctrl_time.addWidget(self.led_time_nfft_spgr)
        layH_ctrl_time.addWidget(self.lbl_time_ovlp_spgr)
        layH_ctrl_time.addWidget(self.led_time_ovlp_spgr)

        layH_ctrl_time.addStretch(10)

        # layH_ctrl_time.setContentsMargins(*params['wdg_margins'])

        self.wdg_ctrl_time = QWidget(self)
        self.wdg_ctrl_time.setLayout(layH_ctrl_time)
        # ---- end time domain ------------------

        # ---------------------------------------------------------------
        # Controls for frequency domain
        # ---------------------------------------------------------------
        self.lbl_plt_freq_stim = QLabel(to_html("Stimulus X", frmt='bi'), self)
        self.cmb_plt_freq_stim = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_freq_stim, self.plot_styles_list,
                          self.plt_freq_stim)
        self.cmb_plt_freq_stim.setToolTip(
            "<span>Plot style for stimulus.</span>")

        self.lbl_plt_freq_stmq = QLabel(
            to_html("&nbsp;Fixp. Stim. X_Q", frmt='bi'), self)
        self.cmb_plt_freq_stmq = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_freq_stmq, self.plot_styles_list,
                          self.plt_freq_stmq)
        self.cmb_plt_freq_stmq.setToolTip(
            "<span>Plot style for <em>fixpoint</em> (quantized) stimulus.</span>"
        )

        lbl_plt_freq_resp = QLabel(to_html("&nbsp;Response Y", frmt='bi'),
                                   self)
        self.cmb_plt_freq_resp = QComboBox(self)
        qcmb_box_populate(self.cmb_plt_freq_resp, self.plot_styles_list,
                          self.plt_freq_resp)
        self.cmb_plt_freq_resp.setToolTip(
            "<span>Plot style for response.</span>")

        self.but_log_freq = QPushButton("dB")
        self.but_log_freq.setMaximumWidth(qtext_width(" dB"))
        self.but_log_freq.setObjectName(".but_log_freq")
        self.but_log_freq.setToolTip(
            "<span>Logarithmic scale for y-axis.</span>")
        self.but_log_freq.setCheckable(True)
        self.but_log_freq.setChecked(True)

        self.lbl_log_bottom_freq = QLabel(to_html("min =", frmt='bi'), self)
        self.lbl_log_bottom_freq.setVisible(self.but_log_freq.isChecked())
        self.led_log_bottom_freq = QLineEdit(self)
        self.led_log_bottom_freq.setText(str(self.bottom_f))
        self.led_log_bottom_freq.setMaximumWidth(qtext_width(N_x=8))
        self.led_log_bottom_freq.setToolTip(
            "<span>Minimum display value for log. scale.</span>")
        self.led_log_bottom_freq.setVisible(self.but_log_freq.isChecked())

        if not self.but_log_freq.isChecked():
            self.bottom_f = 0

        self.cmb_freq_display = QComboBox(self)
        qcmb_box_populate(self.cmb_freq_display, self.cmb_freq_display_items,
                          self.cmb_freq_display_item)
        self.cmb_freq_display.setObjectName("cmb_re_im_freq")

        self.but_Hf = QPushButtonRT(self, to_html("H_id", frmt="bi"), margin=5)
        self.but_Hf.setObjectName("chk_Hf")
        self.but_Hf.setToolTip(
            "<span>Show ideal frequency response, calculated "
            "from the filter coefficients.</span>")
        self.but_Hf.setChecked(False)
        self.but_Hf.setCheckable(True)

        self.but_freq_norm_impz = QPushButtonRT(
            text="<b><i>E<sub>X</sub></i> = 1</b>", margin=5)
        self.but_freq_norm_impz.setToolTip(
            "<span>Normalize the FFT of the stimulus with <i>N<sub>FFT</sub></i> for "
            "<i>E<sub>X</sub></i> = 1. For a dirac pulse, this yields "
            "|<i>Y(f)</i>| = |<i>H(f)</i>|. DC and Noise need to be "
            "turned off, window should be <b>Rectangular</b>.</span>")
        self.but_freq_norm_impz.setCheckable(True)
        self.but_freq_norm_impz.setChecked(True)
        self.but_freq_norm_impz.setObjectName("freq_norm_impz")

        self.but_freq_show_info = QPushButton("Info", self)
        self.but_freq_show_info.setMaximumWidth(qtext_width(" Info "))
        self.but_freq_show_info.setObjectName("but_show_info_freq")
        self.but_freq_show_info.setToolTip(
            "<span>Show signal power in legend.</span>")
        self.but_freq_show_info.setCheckable(True)
        self.but_freq_show_info.setChecked(False)

        layH_ctrl_freq = QHBoxLayout()
        layH_ctrl_freq.addWidget(self.lbl_plt_freq_stim)
        layH_ctrl_freq.addWidget(self.cmb_plt_freq_stim)
        #
        layH_ctrl_freq.addWidget(self.lbl_plt_freq_stmq)
        layH_ctrl_freq.addWidget(self.cmb_plt_freq_stmq)
        #
        layH_ctrl_freq.addWidget(lbl_plt_freq_resp)
        layH_ctrl_freq.addWidget(self.cmb_plt_freq_resp)
        #
        layH_ctrl_freq.addSpacing(5)
        layH_ctrl_freq.addWidget(self.but_Hf)
        layH_ctrl_freq.addStretch(1)
        #
        layH_ctrl_freq.addWidget(self.lbl_log_bottom_freq)
        layH_ctrl_freq.addWidget(self.led_log_bottom_freq)
        layH_ctrl_freq.addWidget(self.but_log_freq)
        layH_ctrl_freq.addStretch(1)
        layH_ctrl_freq.addWidget(self.cmb_freq_display)
        layH_ctrl_freq.addStretch(1)

        layH_ctrl_freq.addWidget(self.but_freq_norm_impz)
        layH_ctrl_freq.addStretch(1)
        layH_ctrl_freq.addWidget(self.but_freq_show_info)
        layH_ctrl_freq.addStretch(10)

        # layH_ctrl_freq.setContentsMargins(*params['wdg_margins'])

        self.wdg_ctrl_freq = QWidget(self)
        self.wdg_ctrl_freq.setLayout(layH_ctrl_freq)
        # ---- end Frequency Domain ------------------

        # ----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        # connect FFT widget to qfft_selector and vice versa and to and signals upstream:
        self.fft_widget.sig_tx.connect(self.process_sig_rx)
        self.qfft_win_select.sig_tx.connect(self.process_sig_rx)
        # connect process_sig_rx output to both FFT widgets
        self.sig_tx_fft.connect(self.fft_widget.sig_rx)
        self.sig_tx_fft.connect(self.qfft_win_select.sig_rx)

        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        # --- run control ---
        self.led_N_start.editingFinished.connect(self.update_N)
        self.led_N_points.editingFinished.connect(self.update_N)
        self.led_N_frame.editingFinished.connect(self.update_N)
        self.but_fft_wdg.clicked.connect(self.toggle_fft_wdg)

    # -------------------------------------------------------------------------
    def update_N(self, emit=True):
        """
        Update values for `self.N` and `self.win_dict['N']`, for `self.N_start` and
        `self.N_end` from the corresponding QLineEditWidgets.
        When `emit==True`, fire `'ui_changed': 'N'` to update the FFT window and the
        `plot_impz` widgets. In contrast to `view_changed`, this also forces a
        recalculation of the transient response.

        This method is called by:

        - `self._construct_ui()` with `emit==False`
        - `plot_impz()` with `emit==False` when the automatic calculation
                of N has to be updated (e.g. order of FIR Filter has changed
        - signal-slot connection when `N_start` or `N_end` QLineEdit widgets have
                been changed (`emit==True`)
        """
        if not isinstance(emit, bool):
            logger.error("update N: emit={0}".format(emit))
        self.N_start = safe_eval(self.led_N_start.text(),
                                 self.N_start,
                                 return_type='int',
                                 sign='poszero')
        self.led_N_start.setText(str(self.N_start))  # update widget

        self.N_user = safe_eval(self.led_N_points.text(),
                                self.N_user,
                                return_type='int',
                                sign='poszero')

        if self.N_user == 0:  # automatic calculation
            self.N = self.calc_n_points(self.N_user)  # widget remains set to 0
            self.led_N_points.setText("0")  # update widget
        else:
            self.N = self.N_user
            self.led_N_points.setText(str(self.N))  # update widget

        # total number of points to be calculated: N + N_start
        self.N_end = self.N + self.N_start

        self.N_frame_user = safe_eval(self.led_N_frame.text(),
                                      self.N_frame_user,
                                      return_type='int',
                                      sign='poszero')

        if self.N_frame_user == 0:
            self.N_frame = self.N_end  # use N_end for frame length
            self.led_N_frame.setText(
                "0")  # update widget with "0" as set by user
        else:
            self.N_frame = self.N_frame_user
            self.led_N_frame.setText(str(self.N_frame))  # update widget

        # recalculate displayed freq. index values when freq. unit == 'k'
        if fb.fil[0]['freq_specs_unit'] == 'k':
            self.update_freqs()

        if emit:
            # use `'ui_changed'` as this triggers recalculation of the transient
            # response
            self.emit({'ui_changed': 'N'})

    # ------------------------------------------------------------------------------
    def toggle_fft_wdg(self):
        """
        Show / hide FFT widget depending on the state of the corresponding button
        When widget is shown, trigger an update of the window function.
        """
        if self.but_fft_wdg.isChecked():
            self.fft_widget.show()
            self.emit({'view_changed': 'fft_win_type'}, sig_name='sig_tx_fft')
        else:
            self.fft_widget.hide()

    # --------------------------------------------------------------------------
    def hide_fft_wdg(self):
        """
        The closeEvent caused by clicking the "x" in the FFT widget is caught
        there and routed here to only hide the window
        """
        self.but_fft_wdg.setChecked(False)
        self.fft_widget.hide()

    # ------------------------------------------------------------------------------
    def calc_n_points(self, N_user=0):
        """
        Calculate number of points to be displayed, depending on type of filter
        (FIR, IIR) and user input. If the user selects 0 points, the number is
        calculated automatically.

        An improvement would be to calculate the dominant pole and the corresponding
        settling time.
        """
        if N_user == 0:  # set number of data points automatically
            if fb.fil[0]['ft'] == 'IIR':
                # IIR: No algorithm yet, set N = 100
                N = 100
            else:
                # FIR: N = number of coefficients (max. 100)
                N = min(len(fb.fil[0]['ba'][0]), 100)
        else:
            N = N_user

        return N
示例#14
0
    def _construct_UI(self):
        # ----------- ---------------------------------------------------
        # Run control widgets
        # ---------------------------------------------------------------
        self.chk_auto_run = QCheckBox("Auto", self)
        self.chk_auto_run.setObjectName("chk_auto_run")
        self.chk_auto_run.setToolTip("<span>Update response automatically when "
                                     "parameters have been changed.</span>")
        self.chk_auto_run.setChecked(True)

        self.but_run = QPushButton(self)
        self.but_run.setText("RUN")
        self.but_run.setToolTip("Run simulation")
        self.but_run.setEnabled(not self.chk_auto_run.isChecked())

        self.cmb_sim_select = QComboBox(self)
        self.cmb_sim_select.addItems(["Float","Fixpoint"])
        qset_cmb_box(self.cmb_sim_select, "Float")
        self.cmb_sim_select.setToolTip("<span>Simulate floating-point or fixpoint response."
                                 "</span>")

        self.lbl_N_points = QLabel(to_html("N", frmt='bi')  + " =", self)
        self.led_N_points = QLineEdit(self)
        self.led_N_points.setText(str(self.N))
        self.led_N_points.setToolTip("<span>Number of displayed data points. "
                                   "<i>N</i> = 0 tries to choose for you.</span>")

        self.lbl_N_start = QLabel(to_html("N_0", frmt='bi') + " =", self)
        self.led_N_start = QLineEdit(self)
        self.led_N_start.setText(str(self.N_start))
        self.led_N_start.setToolTip("<span>First point to plot.</span>")

        self.chk_fx_scale = QCheckBox("Int. scale", self)
        self.chk_fx_scale.setObjectName("chk_fx_scale")
        self.chk_fx_scale.setToolTip("<span>Display data with integer (fixpoint) scale.</span>")
        self.chk_fx_scale.setChecked(False)

        self.chk_stim_options = QCheckBox("Stim. Options", self)
        self.chk_stim_options.setObjectName("chk_stim_options")
        self.chk_stim_options.setToolTip("<span>Show stimulus options.</span>")
        self.chk_stim_options.setChecked(True)

        self.but_fft_win = QPushButton(self)
        self.but_fft_win.setText("WIN FFT")
        self.but_fft_win.setToolTip('<span> time and frequency response of FFT Window '
                                    '(can be modified in the "Frequency" tab)</span>')
        self.but_fft_win.setCheckable(True)
        self.but_fft_win.setChecked(False)

        layH_ctrl_run = QHBoxLayout()
        layH_ctrl_run.addWidget(self.but_run)
        #layH_ctrl_run.addWidget(self.lbl_sim_select)
        layH_ctrl_run.addWidget(self.cmb_sim_select)
        layH_ctrl_run.addWidget(self.chk_auto_run)
        layH_ctrl_run.addStretch(1)
        layH_ctrl_run.addWidget(self.lbl_N_start)
        layH_ctrl_run.addWidget(self.led_N_start)
        layH_ctrl_run.addStretch(1)
        layH_ctrl_run.addWidget(self.lbl_N_points)
        layH_ctrl_run.addWidget(self.led_N_points)
        layH_ctrl_run.addStretch(2)
        layH_ctrl_run.addWidget(self.chk_fx_scale)
        layH_ctrl_run.addStretch(2)
        layH_ctrl_run.addWidget(self.chk_stim_options)
        layH_ctrl_run.addStretch(2)
        layH_ctrl_run.addWidget(self.but_fft_win)
        layH_ctrl_run.addStretch(10)

        #layH_ctrl_run.setContentsMargins(*params['wdg_margins'])

        self.wdg_ctrl_run = QWidget(self)
        self.wdg_ctrl_run.setLayout(layH_ctrl_run)
        # --- end of run control ----------------------------------------

        # ----------- ---------------------------------------------------
        # Controls for time domain
        # ---------------------------------------------------------------
        plot_styles_list = ["None","Dots","Line","Line*","Stem","Stem*","Step","Step*"]

        lbl_plt_time_title = QLabel("<b>View:</b>", self)

        self.lbl_plt_time_stim = QLabel(to_html("Stimulus x", frmt='bi'), self)
        self.cmb_plt_time_stim = QComboBox(self)
        self.cmb_plt_time_stim.addItems(plot_styles_list)
        qset_cmb_box(self.cmb_plt_time_stim, self.plt_time_stim)
        self.cmb_plt_time_stim.setToolTip("<span>Plot style for stimulus.</span>")

        self.lbl_plt_time_stmq = QLabel(to_html("&nbsp;&nbsp;Fixp. Stim. x_Q", frmt='bi'), self)
        self.cmb_plt_time_stmq = QComboBox(self)
        self.cmb_plt_time_stmq.addItems(plot_styles_list)
        qset_cmb_box(self.cmb_plt_time_stmq, self.plt_time_stmq)
        self.cmb_plt_time_stmq.setToolTip("<span>Plot style for <em>fixpoint</em> (quantized) stimulus.</span>")

        lbl_plt_time_resp = QLabel(to_html("&nbsp;&nbsp;Response y", frmt='bi'), self)
        self.cmb_plt_time_resp = QComboBox(self)
        self.cmb_plt_time_resp.addItems(plot_styles_list)
        qset_cmb_box(self.cmb_plt_time_resp, self.plt_time_resp)
        self.cmb_plt_time_resp.setToolTip("<span>Plot style for response.</span>")

        lbl_win_time = QLabel(to_html("&nbsp;&nbsp;FFT Window", frmt='bi'), self)
        self.chk_win_time = QCheckBox(self)
        self.chk_win_time.setObjectName("chk_win_time")
        self.chk_win_time.setToolTip('<span>Show FFT windowing function (can be modified in the "Frequency" tab).</span>')
        self.chk_win_time.setChecked(False)

        lbl_log_time = QLabel(to_html("dB", frmt='b'), self)
        self.chk_log_time = QCheckBox(self)
        self.chk_log_time.setObjectName("chk_log_time")
        self.chk_log_time.setToolTip("<span>Logarithmic scale for y-axis.</span>")
        self.chk_log_time.setChecked(False)

        self.lbl_log_bottom_time = QLabel(to_html("min =", frmt='bi'), self)
        self.lbl_log_bottom_time.setVisible(True)
        self.led_log_bottom_time = QLineEdit(self)
        self.led_log_bottom_time.setText(str(self.bottom_t))
        self.led_log_bottom_time.setToolTip("<span>Minimum display value for time "
                                            "and spectrogram plots with log. scale.</span>")
        self.led_log_bottom_time.setVisible(True)

        lbl_plt_time_spgr = QLabel(to_html("&nbsp;&nbsp;Spectrogram", frmt='bi'), self)
        self.cmb_plt_time_spgr = QComboBox(self)
        self.cmb_plt_time_spgr.addItems(["None", "x[n]", "x_q[n]", "y[n]"])
        qset_cmb_box(self.cmb_plt_time_spgr, self.plt_time_spgr)
        self.cmb_plt_time_spgr.setToolTip("<span>Show Spectrogram for selected signal.</span>")
        spgr_en = self.plt_time_spgr != "None"

        self.lbl_log_spgr_time = QLabel(to_html("&nbsp;dB", frmt='b'), self)
        self.lbl_log_spgr_time.setVisible(spgr_en)
        self.chk_log_spgr_time = QCheckBox(self)
        self.chk_log_spgr_time.setObjectName("chk_log_spgr")
        self.chk_log_spgr_time.setToolTip("<span>Logarithmic scale for spectrogram.</span>")
        self.chk_log_spgr_time.setChecked(True)
        self.chk_log_spgr_time.setVisible(spgr_en)

        self.lbl_nfft_spgr_time = QLabel(to_html("&nbsp;N_FFT =", frmt='bi'), self)
        self.lbl_nfft_spgr_time.setVisible(spgr_en)
        self.led_nfft_spgr_time = QLineEdit(self)
        self.led_nfft_spgr_time.setText(str(self.nfft_spgr_time))
        self.led_nfft_spgr_time.setToolTip("<span>Number of FFT points per spectrogram segment.</span>")
        self.led_nfft_spgr_time.setVisible(spgr_en)

        self.lbl_ovlp_spgr_time = QLabel(to_html("&nbsp;N_OVLP =", frmt='bi'), self)
        self.lbl_ovlp_spgr_time.setVisible(spgr_en)
        self.led_ovlp_spgr_time = QLineEdit(self)
        self.led_ovlp_spgr_time.setText(str(self.ovlp_spgr_time))
        self.led_ovlp_spgr_time.setToolTip("<span>Number of overlap data points between spectrogram segments.</span>")
        self.led_ovlp_spgr_time.setVisible(spgr_en)

        self.lbl_mode_spgr_time = QLabel(to_html("&nbsp;Mode", frmt='bi'), self)
        self.lbl_mode_spgr_time.setVisible(spgr_en)
        self.cmb_mode_spgr_time = QComboBox(self)
        spgr_modes = [("PSD","psd"), ("Mag.","magnitude"),\
                      ("Angle","angle"), ("Phase","phase")]
        for i in spgr_modes:
            self.cmb_mode_spgr_time.addItem(*i)
        qset_cmb_box(self.cmb_mode_spgr_time, self.mode_spgr_time, data=True)
        self.cmb_mode_spgr_time.setToolTip("<span>Spectrogram display mode.</span>")
        self.cmb_mode_spgr_time.setVisible(spgr_en)

        self.lbl_byfs_spgr_time = QLabel(to_html("&nbsp;per f_S", frmt='b'), self)
        self.lbl_byfs_spgr_time.setVisible(spgr_en)
        self.chk_byfs_spgr_time = QCheckBox(self)
        self.chk_byfs_spgr_time.setObjectName("chk_log_spgr")
        self.chk_byfs_spgr_time.setToolTip("<span>Display spectral density i.e. scale by f_S</span>")
        self.chk_byfs_spgr_time.setChecked(True)
        self.chk_byfs_spgr_time.setVisible(spgr_en)


        # self.lbl_colorbar_time = QLabel(to_html("&nbsp;Col.bar", frmt='b'), self)
        # self.lbl_colorbar_time.setVisible(spgr_en)
        # self.chk_colorbar_time = QCheckBox(self)
        # self.chk_colorbar_time.setObjectName("chk_colorbar_time")
        # self.chk_colorbar_time.setToolTip("<span>Enable colorbar</span>")
        # self.chk_colorbar_time.setChecked(True)
        # self.chk_colorbar_time.setVisible(spgr_en)

        self.chk_fx_limits = QCheckBox("Min/max.", self)
        self.chk_fx_limits.setObjectName("chk_fx_limits")
        self.chk_fx_limits.setToolTip("<span>Display limits of fixpoint range.</span>")
        self.chk_fx_limits.setChecked(False)

        layH_ctrl_time = QHBoxLayout()
        layH_ctrl_time.addWidget(lbl_plt_time_title)
        layH_ctrl_time.addStretch(1)
        layH_ctrl_time.addWidget(self.lbl_plt_time_stim)
        layH_ctrl_time.addWidget(self.cmb_plt_time_stim)
        #
        layH_ctrl_time.addWidget(self.lbl_plt_time_stmq)
        layH_ctrl_time.addWidget(self.cmb_plt_time_stmq)
        #
        layH_ctrl_time.addWidget(lbl_plt_time_resp)
        layH_ctrl_time.addWidget(self.cmb_plt_time_resp)
        #
        layH_ctrl_time.addWidget(lbl_win_time)
        layH_ctrl_time.addWidget(self.chk_win_time)
        layH_ctrl_time.addStretch(1)
        layH_ctrl_time.addWidget(lbl_log_time)
        layH_ctrl_time.addWidget(self.chk_log_time)
        layH_ctrl_time.addWidget(self.lbl_log_bottom_time)
        layH_ctrl_time.addWidget(self.led_log_bottom_time)
        #
        layH_ctrl_time.addStretch(1)
        #
        layH_ctrl_time.addWidget(lbl_plt_time_spgr)
        layH_ctrl_time.addWidget(self.cmb_plt_time_spgr)
        layH_ctrl_time.addWidget(self.lbl_log_spgr_time)
        layH_ctrl_time.addWidget(self.chk_log_spgr_time)
        layH_ctrl_time.addWidget(self.lbl_nfft_spgr_time)
        layH_ctrl_time.addWidget(self.led_nfft_spgr_time)
        layH_ctrl_time.addWidget(self.lbl_ovlp_spgr_time)
        layH_ctrl_time.addWidget(self.led_ovlp_spgr_time)
        layH_ctrl_time.addWidget(self.lbl_mode_spgr_time)
        layH_ctrl_time.addWidget(self.cmb_mode_spgr_time)
        layH_ctrl_time.addWidget(self.lbl_byfs_spgr_time)
        layH_ctrl_time.addWidget(self.chk_byfs_spgr_time)

        layH_ctrl_time.addStretch(2)
        layH_ctrl_time.addWidget(self.chk_fx_limits)
        layH_ctrl_time.addStretch(10)

        #layH_ctrl_time.setContentsMargins(*params['wdg_margins'])

        self.wdg_ctrl_time = QWidget(self)
        self.wdg_ctrl_time.setLayout(layH_ctrl_time)
        # ---- end time domain ------------------

        # ---------------------------------------------------------------
        # Controls for frequency domain
        # ---------------------------------------------------------------
        lbl_plt_freq_title = QLabel("<b>View:</b>", self)

        self.lbl_plt_freq_stim = QLabel(to_html("Stimulus X", frmt='bi'), self)
        self.cmb_plt_freq_stim = QComboBox(self)
        self.cmb_plt_freq_stim.addItems(plot_styles_list)
        qset_cmb_box(self.cmb_plt_freq_stim, self.plt_freq_stim)
        self.cmb_plt_freq_stim.setToolTip("<span>Plot style for stimulus.</span>")

        self.lbl_plt_freq_stmq = QLabel(to_html("&nbsp;Fixp. Stim. X_Q", frmt='bi'), self)
        self.cmb_plt_freq_stmq = QComboBox(self)
        self.cmb_plt_freq_stmq.addItems(plot_styles_list)
        qset_cmb_box(self.cmb_plt_freq_stmq, self.plt_freq_stmq)
        self.cmb_plt_freq_stmq.setToolTip("<span>Plot style for <em>fixpoint</em> (quantized) stimulus.</span>")

        lbl_plt_freq_resp = QLabel(to_html("&nbsp;Response Y", frmt='bi'), self)
        self.cmb_plt_freq_resp = QComboBox(self)
        self.cmb_plt_freq_resp.addItems(plot_styles_list)
        qset_cmb_box(self.cmb_plt_freq_resp, self.plt_freq_resp)
        self.cmb_plt_freq_resp.setToolTip("<span>Plot style for response.</span>")

        lbl_log_freq = QLabel(to_html("dB", frmt='b'), self)
        self.chk_log_freq = QCheckBox(self)
        self.chk_log_freq.setObjectName("chk_log_freq")
        self.chk_log_freq.setToolTip("<span>Logarithmic scale for y-axis.</span>")
        self.chk_log_freq.setChecked(True)

        self.lbl_log_bottom_freq = QLabel(to_html("min =", frmt='bi'), self)
        self.lbl_log_bottom_freq.setVisible(self.chk_log_freq.isChecked())
        self.led_log_bottom_freq = QLineEdit(self)
        self.led_log_bottom_freq.setText(str(self.bottom_f))
        self.led_log_bottom_freq.setToolTip("<span>Minimum display value for log. scale.</span>")
        self.led_log_bottom_freq.setVisible(self.chk_log_freq.isChecked())

        if not self.chk_log_freq.isChecked():
            self.bottom_f = 0
            
        lbl_re_im_freq = QLabel(to_html("Re / Im", frmt='b'), self)
        self.chk_re_im_freq = QCheckBox(self)
        self.chk_re_im_freq.setObjectName("chk_re_im_freq")
        self.chk_re_im_freq.setToolTip("<span>Show real and imaginary part of spectrum</span>")
        self.chk_re_im_freq.setChecked(False)

        self.lbl_win_fft = QLabel(to_html("Window", frmt='bi'), self)
        self.cmb_win_fft = QComboBox(self)
        self.cmb_win_fft.addItems(get_window_names())
        self.cmb_win_fft.setToolTip("FFT window type.")
        qset_cmb_box(self.cmb_win_fft, self.window_name)

        self.cmb_win_fft_variant = QComboBox(self)
        self.cmb_win_fft_variant.setToolTip("FFT window variant.")
        self.cmb_win_fft_variant.setVisible(False)

        self.lblWinPar1 = QLabel("Param1")
        self.ledWinPar1 = QLineEdit(self)
        self.ledWinPar1.setText("1")
        self.ledWinPar1.setObjectName("ledWinPar1")

        self.lblWinPar2 = QLabel("Param2")
        self.ledWinPar2 = QLineEdit(self)
        self.ledWinPar2.setText("2")
        self.ledWinPar2.setObjectName("ledWinPar2")

        self.chk_Hf = QCheckBox(self)
        self.chk_Hf.setObjectName("chk_Hf")
        self.chk_Hf.setToolTip("<span>Show ideal frequency response, calculated "
                               "from the filter coefficients.</span>")
        self.chk_Hf.setChecked(False)
        self.chk_Hf_lbl = QLabel(to_html("H_id (f)", frmt="bi"), self)

        lbl_show_info_freq = QLabel(to_html("Info", frmt='b'), self)
        self.chk_show_info_freq = QCheckBox(self)
        self.chk_show_info_freq.setObjectName("chk_show_info_freq")
        self.chk_show_info_freq.setToolTip("<span>Show infos about signal power "
                                           "and window properties.</span>")
        self.chk_show_info_freq.setChecked(False)

        layH_ctrl_freq = QHBoxLayout()
        layH_ctrl_freq.addWidget(lbl_plt_freq_title)
        layH_ctrl_freq.addStretch(1)
        layH_ctrl_freq.addWidget(self.lbl_plt_freq_stim)
        layH_ctrl_freq.addWidget(self.cmb_plt_freq_stim)
        #
        layH_ctrl_freq.addWidget(self.lbl_plt_freq_stmq)
        layH_ctrl_freq.addWidget(self.cmb_plt_freq_stmq)
        #
        layH_ctrl_freq.addWidget(lbl_plt_freq_resp)
        layH_ctrl_freq.addWidget(self.cmb_plt_freq_resp)
        #
        layH_ctrl_freq.addWidget(self.chk_Hf_lbl)
        layH_ctrl_freq.addWidget(self.chk_Hf)
        layH_ctrl_freq.addStretch(1)
        layH_ctrl_freq.addWidget(lbl_log_freq)
        layH_ctrl_freq.addWidget(self.chk_log_freq)
        layH_ctrl_freq.addWidget(self.lbl_log_bottom_freq)
        layH_ctrl_freq.addWidget(self.led_log_bottom_freq)
        layH_ctrl_freq.addStretch(1)
        layH_ctrl_freq.addWidget(lbl_re_im_freq)
        layH_ctrl_freq.addWidget(self.chk_re_im_freq)
        layH_ctrl_freq.addStretch(2)
        layH_ctrl_freq.addWidget(self.lbl_win_fft)
        layH_ctrl_freq.addWidget(self.cmb_win_fft)
        layH_ctrl_freq.addWidget(self.cmb_win_fft_variant)
        layH_ctrl_freq.addWidget(self.lblWinPar1)
        layH_ctrl_freq.addWidget(self.ledWinPar1)
        layH_ctrl_freq.addWidget(self.lblWinPar2)
        layH_ctrl_freq.addWidget(self.ledWinPar2)
        layH_ctrl_freq.addStretch(1)
        layH_ctrl_freq.addWidget(lbl_show_info_freq)
        layH_ctrl_freq.addWidget(self.chk_show_info_freq)
        layH_ctrl_freq.addStretch(10)

        #layH_ctrl_freq.setContentsMargins(*params['wdg_margins'])

        self.wdg_ctrl_freq = QWidget(self)
        self.wdg_ctrl_freq.setLayout(layH_ctrl_freq)
        # ---- end Frequency Domain ------------------

        # ---------------------------------------------------------------
        # Controls for stimuli
        # ---------------------------------------------------------------

        lbl_title_stim = QLabel("<b>Stimulus:</b>", self)

        self.lblStimulus = QLabel(to_html("Type", frmt='bi'), self)
        self.cmbStimulus = QComboBox(self)
        self.cmbStimulus.addItems(["None","Impulse","Step","StepErr","Cos","Sine", "Chirp",
                                   "Triang","Saw","Rect","Comb","AM","PM / FM","Formula"])
        self.cmbStimulus.setToolTip("Stimulus type.")
        qset_cmb_box(self.cmbStimulus, self.stim)

        self.chk_stim_bl = QCheckBox("BL", self)
        self.chk_stim_bl.setToolTip("<span>The signal is bandlimited to the Nyquist frequency "
                                    "to avoid aliasing. However, it is much slower to generate "
                                    "than the regular version.</span>")
        self.chk_stim_bl.setChecked(True)
        self.chk_stim_bl.setObjectName("stim_bl")

        self.cmbChirpMethod = QComboBox(self)
        for t in [("Lin","Linear"),("Square","Quadratic"),("Log", "Logarithmic"), ("Hyper", "Hyperbolic")]:
            self.cmbChirpMethod.addItem(*t)
        qset_cmb_box(self.cmbChirpMethod, self.chirp_method, data=False)

        self.chk_scale_impz_f = QCheckBox("Scale", self)
        self.chk_scale_impz_f.setToolTip("<span>Scale the FFT of the impulse response with <i>N<sub>FFT</sub></i> "
                                    "so that it has the same magnitude as |H(f)|. DC and Noise need to be "
                                    "turned off.</span>")
        self.chk_scale_impz_f.setChecked(True)
        self.chk_scale_impz_f.setObjectName("scale_impz_f")

        self.lblDC = QLabel(to_html("DC =", frmt='bi'), self)
        self.ledDC = QLineEdit(self)
        self.ledDC.setText(str(self.DC))
        self.ledDC.setToolTip("DC Level")
        self.ledDC.setObjectName("stimDC")

        layHCmbStim = QHBoxLayout()
        layHCmbStim.addWidget(self.cmbStimulus)
        layHCmbStim.addWidget(self.chk_stim_bl)
        layHCmbStim.addWidget(self.chk_scale_impz_f)
        layHCmbStim.addWidget(self.cmbChirpMethod)

        #----------------------------------------------
        self.lblAmp1 = QLabel(to_html("&nbsp;A_1", frmt='bi') + " =", self)
        self.ledAmp1 = QLineEdit(self)
        self.ledAmp1.setText(str(self.A1))
        self.ledAmp1.setToolTip("Stimulus amplitude, complex values like 3j - 1 are allowed")
        self.ledAmp1.setObjectName("stimAmp1")

        self.lblAmp2 = QLabel(to_html("&nbsp;A_2", frmt='bi') + " =", self)
        self.ledAmp2 = QLineEdit(self)
        self.ledAmp2.setText(str(self.A2))
        self.ledAmp2.setToolTip("Stimulus amplitude 2, complex values like 3j - 1 are allowed")
        self.ledAmp2.setObjectName("stimAmp2")

        #----------------------------------------------
        self.lblPhi1 = QLabel(to_html("&nbsp;&phi;_1", frmt='bi') + " =", self)
        self.ledPhi1 = QLineEdit(self)
        self.ledPhi1.setText(str(self.phi1))
        self.ledPhi1.setToolTip("Stimulus phase")
        self.ledPhi1.setObjectName("stimPhi1")
        self.lblPhU1 = QLabel(to_html("&deg;", frmt='b'), self)

        self.lblPhi2 = QLabel(to_html("&nbsp;&phi;_2", frmt='bi') + " =", self)
        self.ledPhi2 = QLineEdit(self)
        self.ledPhi2.setText(str(self.phi2))
        self.ledPhi2.setToolTip("Stimulus phase 2")
        self.ledPhi2.setObjectName("stimPhi2")
        self.lblPhU2 = QLabel(to_html("&deg;", frmt='b'), self)

        #----------------------------------------------
        self.lblFreq1 = QLabel(to_html("&nbsp;f_1", frmt='bi') + " =", self)
        self.ledFreq1 = QLineEdit(self)
        self.ledFreq1.setText(str(self.f1))
        self.ledFreq1.setToolTip("Stimulus frequency 1")
        self.ledFreq1.setObjectName("stimFreq1")
        self.lblFreqUnit1 = QLabel("f_S", self)

        self.lblFreq2 = QLabel(to_html("&nbsp;f_2", frmt='bi') + " =", self)
        self.ledFreq2 = QLineEdit(self)
        self.ledFreq2.setText(str(self.f2))
        self.ledFreq2.setToolTip("Stimulus frequency 2")
        self.ledFreq2.setObjectName("stimFreq2")
        self.lblFreqUnit2 = QLabel("f_S", self)
        
        #----------------------------------------------
        self.lblNoise = QLabel(to_html("&nbsp;Noise", frmt='bi'), self)
        self.cmbNoise = QComboBox(self)
        self.cmbNoise.addItems(["None","Gauss","Uniform","PRBS"])
        self.cmbNoise.setToolTip("Type of additive noise.")
        qset_cmb_box(self.cmbNoise, self.noise)

        self.lblNoi = QLabel("not initialized", self)
        self.ledNoi = QLineEdit(self)
        self.ledNoi.setText(str(self.noi))
        self.ledNoi.setToolTip("not initialized")
        self.ledNoi.setObjectName("stimNoi")
        
        layGStim = QGridLayout()
        
        layGStim.addWidget(self.lblStimulus, 0, 0)
        layGStim.addWidget(self.lblDC, 1, 0)

        layGStim.addLayout(layHCmbStim, 0, 1)
        layGStim.addWidget(self.ledDC,  1, 1)

        layGStim.addWidget(self.lblAmp1, 0, 2)
        layGStim.addWidget(self.lblAmp2, 1, 2)

        layGStim.addWidget(self.ledAmp1, 0, 3)
        layGStim.addWidget(self.ledAmp2, 1, 3)
        
        layGStim.addWidget(self.lblPhi1, 0, 4)
        layGStim.addWidget(self.lblPhi2, 1, 4)

        layGStim.addWidget(self.ledPhi1, 0, 5)
        layGStim.addWidget(self.ledPhi2, 1, 5)

        layGStim.addWidget(self.lblPhU1, 0, 6)
        layGStim.addWidget(self.lblPhU2, 1, 6)

        layGStim.addWidget(self.lblFreq1, 0, 7)
        layGStim.addWidget(self.lblFreq2, 1, 7)

        layGStim.addWidget(self.ledFreq1, 0, 8)
        layGStim.addWidget(self.ledFreq2, 1, 8)

        layGStim.addWidget(self.lblFreqUnit1, 0, 9)
        layGStim.addWidget(self.lblFreqUnit2, 1, 9)
        
        layGStim.addWidget(self.lblNoise, 0, 10)
        layGStim.addWidget(self.lblNoi, 1, 10)

        layGStim.addWidget(self.cmbNoise, 0, 11)
        layGStim.addWidget(self.ledNoi, 1, 11)

        #----------------------------------------------
        self.lblStimFormula = QLabel(to_html("x =", frmt='bi'), self)
        self.ledStimFormula = QLineEdit(self)
        self.ledStimFormula.setText(str(self.stim_formula))
        self.ledStimFormula.setToolTip("<span>Enter formula for stimulus in numexpr syntax"
                                  "</span>")
        self.ledStimFormula.setObjectName("stimFormula")

        layH_ctrl_stim_formula = QHBoxLayout()
        layH_ctrl_stim_formula.addWidget(self.lblStimFormula)
        layH_ctrl_stim_formula.addWidget(self.ledStimFormula,10)

        #----------------------------------------------
        #layG_ctrl_stim = QGridLayout()
        layH_ctrl_stim_par = QHBoxLayout()

        layH_ctrl_stim_par.addLayout(layGStim)

        layV_ctrl_stim = QVBoxLayout()
        layV_ctrl_stim.addLayout(layH_ctrl_stim_par)
        layV_ctrl_stim.addLayout(layH_ctrl_stim_formula)

        layH_ctrl_stim = QHBoxLayout()
        layH_ctrl_stim.addWidget(lbl_title_stim)
        layH_ctrl_stim.addStretch(1)
        layH_ctrl_stim.addLayout(layV_ctrl_stim)
        layH_ctrl_stim.addStretch(10)

        self.wdg_ctrl_stim = QWidget(self)
        self.wdg_ctrl_stim.setLayout(layH_ctrl_stim)
        # --------- end stimuli ---------------------------------

        # frequency widgets require special handling as they are scaled with f_s
        self.ledFreq1.installEventFilter(self)
        self.ledFreq2.installEventFilter(self)

        #----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        #----------------------------------------------------------------------
        # --- run control ---
        self.led_N_start.editingFinished.connect(self.update_N)
        self.led_N_points.editingFinished.connect(self.update_N)

        # --- frequency control ---
        # careful! currentIndexChanged passes the current index to _update_win_fft
        self.cmb_win_fft.currentIndexChanged.connect(self._update_win_fft)
        self.ledWinPar1.editingFinished.connect(self._read_param1)
        self.ledWinPar2.editingFinished.connect(self._read_param2)

        # --- stimulus control ---
        self.chk_stim_options.clicked.connect(self._show_stim_options)

        self.chk_stim_bl.clicked.connect(self._enable_stim_widgets)
        self.cmbStimulus.currentIndexChanged.connect(self._enable_stim_widgets)

        self.cmbNoise.currentIndexChanged.connect(self._update_noi)
        self.ledNoi.editingFinished.connect(self._update_noi)
        self.ledAmp1.editingFinished.connect(self._update_amp1)
        self.ledAmp2.editingFinished.connect(self._update_amp2)
        self.ledPhi1.editingFinished.connect(self._update_phi1)
        self.ledPhi2.editingFinished.connect(self._update_phi2)
        self.cmbChirpMethod.currentIndexChanged.connect(self._update_chirp_method)
        self.ledDC.editingFinished.connect(self._update_DC)
        self.ledStimFormula.editingFinished.connect(self._update_stim_formula)
示例#15
0
class PlotImpz_UI(QWidget):
    """
    Create the UI for the PlotImpz class
    """
    # incoming: not implemented at the moment, update_N is triggered directly
    # by plot_impz
    # sig_rx = pyqtSignal(object)
    # outgoing: from various UI elements to PlotImpz ('ui_changed':'xxx')
    sig_tx = pyqtSignal(object)
    # outgoing to local fft window
    sig_tx_fft = pyqtSignal(object)


    def __init__(self, parent):
        """
        Pass instance `parent` of parent class (FilterCoeffs)
        """
        super(PlotImpz_UI, self).__init__(parent)

        """
        Intitialize the widget, consisting of:
        - top chkbox row
        - coefficient table
        - two bottom rows with action buttons
        """

        # initial settings
        self.N_start = 0
        self.N_user = 0
        self.N = 0

        # time
        self.plt_time_resp = "Stem"
        self.plt_time_stim = "None"
        self.plt_time_stmq = "None"
        self.plt_time_spgr = "None"

        self.bottom_t = -80 # initial value for log. scale (time)
        self.nfft_spgr_time = 256 # number of fft points per spectrogram segment
        self.ovlp_spgr_time = 128 # number of overlap points between spectrogram segments
        self.mode_spgr_time = "magnitude"

        # stimuli
        self.stim = "Impulse"
        self.chirp_method = 'Linear'
        self.noise = "None"

        self.f1 = 0.02
        self.f2 = 0.03
        self.A1 = 1.0
        self.A2 = 0.0
        self.phi1 = self.phi2 = 0
        self.noi = 0.1
        self.noise = 'none'
        self.DC = 0.0
        self.stim_formula = "A1 * abs(sin(2 * pi * f1 * n))"

        # frequency
        self.plt_freq_resp = "Line"
        self.plt_freq_stim = "None"
        self.plt_freq_stmq = "None"

        self.bottom_f = -120 # initial value for log. scale
        self.param = None


        # dictionary for fft window settings
        self.win_dict = fb.fil[0]['win_fft']
        self.fft_window = None # handle for FFT window pop-up widget
        self.window_name = "Rectangular"

        self._construct_UI()
        self._enable_stim_widgets()
        self.update_N(emit=False) # also updates window function
        self._update_noi()


    def _construct_UI(self):
        # ----------- ---------------------------------------------------
        # Run control widgets
        # ---------------------------------------------------------------
        self.chk_auto_run = QCheckBox("Auto", self)
        self.chk_auto_run.setObjectName("chk_auto_run")
        self.chk_auto_run.setToolTip("<span>Update response automatically when "
                                     "parameters have been changed.</span>")
        self.chk_auto_run.setChecked(True)

        self.but_run = QPushButton(self)
        self.but_run.setText("RUN")
        self.but_run.setToolTip("Run simulation")
        self.but_run.setEnabled(not self.chk_auto_run.isChecked())

        self.cmb_sim_select = QComboBox(self)
        self.cmb_sim_select.addItems(["Float","Fixpoint"])
        qset_cmb_box(self.cmb_sim_select, "Float")
        self.cmb_sim_select.setToolTip("<span>Simulate floating-point or fixpoint response."
                                 "</span>")

        self.lbl_N_points = QLabel(to_html("N", frmt='bi')  + " =", self)
        self.led_N_points = QLineEdit(self)
        self.led_N_points.setText(str(self.N))
        self.led_N_points.setToolTip("<span>Number of displayed data points. "
                                   "<i>N</i> = 0 tries to choose for you.</span>")

        self.lbl_N_start = QLabel(to_html("N_0", frmt='bi') + " =", self)
        self.led_N_start = QLineEdit(self)
        self.led_N_start.setText(str(self.N_start))
        self.led_N_start.setToolTip("<span>First point to plot.</span>")

        self.chk_fx_scale = QCheckBox("Int. scale", self)
        self.chk_fx_scale.setObjectName("chk_fx_scale")
        self.chk_fx_scale.setToolTip("<span>Display data with integer (fixpoint) scale.</span>")
        self.chk_fx_scale.setChecked(False)

        self.chk_stim_options = QCheckBox("Stim. Options", self)
        self.chk_stim_options.setObjectName("chk_stim_options")
        self.chk_stim_options.setToolTip("<span>Show stimulus options.</span>")
        self.chk_stim_options.setChecked(True)

        self.but_fft_win = QPushButton(self)
        self.but_fft_win.setText("WIN FFT")
        self.but_fft_win.setToolTip('<span> time and frequency response of FFT Window '
                                    '(can be modified in the "Frequency" tab)</span>')
        self.but_fft_win.setCheckable(True)
        self.but_fft_win.setChecked(False)

        layH_ctrl_run = QHBoxLayout()
        layH_ctrl_run.addWidget(self.but_run)
        #layH_ctrl_run.addWidget(self.lbl_sim_select)
        layH_ctrl_run.addWidget(self.cmb_sim_select)
        layH_ctrl_run.addWidget(self.chk_auto_run)
        layH_ctrl_run.addStretch(1)
        layH_ctrl_run.addWidget(self.lbl_N_start)
        layH_ctrl_run.addWidget(self.led_N_start)
        layH_ctrl_run.addStretch(1)
        layH_ctrl_run.addWidget(self.lbl_N_points)
        layH_ctrl_run.addWidget(self.led_N_points)
        layH_ctrl_run.addStretch(2)
        layH_ctrl_run.addWidget(self.chk_fx_scale)
        layH_ctrl_run.addStretch(2)
        layH_ctrl_run.addWidget(self.chk_stim_options)
        layH_ctrl_run.addStretch(2)
        layH_ctrl_run.addWidget(self.but_fft_win)
        layH_ctrl_run.addStretch(10)

        #layH_ctrl_run.setContentsMargins(*params['wdg_margins'])

        self.wdg_ctrl_run = QWidget(self)
        self.wdg_ctrl_run.setLayout(layH_ctrl_run)
        # --- end of run control ----------------------------------------

        # ----------- ---------------------------------------------------
        # Controls for time domain
        # ---------------------------------------------------------------
        plot_styles_list = ["None","Dots","Line","Line*","Stem","Stem*","Step","Step*"]

        lbl_plt_time_title = QLabel("<b>View:</b>", self)

        self.lbl_plt_time_stim = QLabel(to_html("Stimulus x", frmt='bi'), self)
        self.cmb_plt_time_stim = QComboBox(self)
        self.cmb_plt_time_stim.addItems(plot_styles_list)
        qset_cmb_box(self.cmb_plt_time_stim, self.plt_time_stim)
        self.cmb_plt_time_stim.setToolTip("<span>Plot style for stimulus.</span>")

        self.lbl_plt_time_stmq = QLabel(to_html("&nbsp;&nbsp;Fixp. Stim. x_Q", frmt='bi'), self)
        self.cmb_plt_time_stmq = QComboBox(self)
        self.cmb_plt_time_stmq.addItems(plot_styles_list)
        qset_cmb_box(self.cmb_plt_time_stmq, self.plt_time_stmq)
        self.cmb_plt_time_stmq.setToolTip("<span>Plot style for <em>fixpoint</em> (quantized) stimulus.</span>")

        lbl_plt_time_resp = QLabel(to_html("&nbsp;&nbsp;Response y", frmt='bi'), self)
        self.cmb_plt_time_resp = QComboBox(self)
        self.cmb_plt_time_resp.addItems(plot_styles_list)
        qset_cmb_box(self.cmb_plt_time_resp, self.plt_time_resp)
        self.cmb_plt_time_resp.setToolTip("<span>Plot style for response.</span>")

        lbl_win_time = QLabel(to_html("&nbsp;&nbsp;FFT Window", frmt='bi'), self)
        self.chk_win_time = QCheckBox(self)
        self.chk_win_time.setObjectName("chk_win_time")
        self.chk_win_time.setToolTip('<span>Show FFT windowing function (can be modified in the "Frequency" tab).</span>')
        self.chk_win_time.setChecked(False)

        lbl_log_time = QLabel(to_html("dB", frmt='b'), self)
        self.chk_log_time = QCheckBox(self)
        self.chk_log_time.setObjectName("chk_log_time")
        self.chk_log_time.setToolTip("<span>Logarithmic scale for y-axis.</span>")
        self.chk_log_time.setChecked(False)

        self.lbl_log_bottom_time = QLabel(to_html("min =", frmt='bi'), self)
        self.lbl_log_bottom_time.setVisible(True)
        self.led_log_bottom_time = QLineEdit(self)
        self.led_log_bottom_time.setText(str(self.bottom_t))
        self.led_log_bottom_time.setToolTip("<span>Minimum display value for time "
                                            "and spectrogram plots with log. scale.</span>")
        self.led_log_bottom_time.setVisible(True)

        lbl_plt_time_spgr = QLabel(to_html("&nbsp;&nbsp;Spectrogram", frmt='bi'), self)
        self.cmb_plt_time_spgr = QComboBox(self)
        self.cmb_plt_time_spgr.addItems(["None", "x[n]", "x_q[n]", "y[n]"])
        qset_cmb_box(self.cmb_plt_time_spgr, self.plt_time_spgr)
        self.cmb_plt_time_spgr.setToolTip("<span>Show Spectrogram for selected signal.</span>")
        spgr_en = self.plt_time_spgr != "None"

        self.lbl_log_spgr_time = QLabel(to_html("&nbsp;dB", frmt='b'), self)
        self.lbl_log_spgr_time.setVisible(spgr_en)
        self.chk_log_spgr_time = QCheckBox(self)
        self.chk_log_spgr_time.setObjectName("chk_log_spgr")
        self.chk_log_spgr_time.setToolTip("<span>Logarithmic scale for spectrogram.</span>")
        self.chk_log_spgr_time.setChecked(True)
        self.chk_log_spgr_time.setVisible(spgr_en)

        self.lbl_nfft_spgr_time = QLabel(to_html("&nbsp;N_FFT =", frmt='bi'), self)
        self.lbl_nfft_spgr_time.setVisible(spgr_en)
        self.led_nfft_spgr_time = QLineEdit(self)
        self.led_nfft_spgr_time.setText(str(self.nfft_spgr_time))
        self.led_nfft_spgr_time.setToolTip("<span>Number of FFT points per spectrogram segment.</span>")
        self.led_nfft_spgr_time.setVisible(spgr_en)

        self.lbl_ovlp_spgr_time = QLabel(to_html("&nbsp;N_OVLP =", frmt='bi'), self)
        self.lbl_ovlp_spgr_time.setVisible(spgr_en)
        self.led_ovlp_spgr_time = QLineEdit(self)
        self.led_ovlp_spgr_time.setText(str(self.ovlp_spgr_time))
        self.led_ovlp_spgr_time.setToolTip("<span>Number of overlap data points between spectrogram segments.</span>")
        self.led_ovlp_spgr_time.setVisible(spgr_en)

        self.lbl_mode_spgr_time = QLabel(to_html("&nbsp;Mode", frmt='bi'), self)
        self.lbl_mode_spgr_time.setVisible(spgr_en)
        self.cmb_mode_spgr_time = QComboBox(self)
        spgr_modes = [("PSD","psd"), ("Mag.","magnitude"),\
                      ("Angle","angle"), ("Phase","phase")]
        for i in spgr_modes:
            self.cmb_mode_spgr_time.addItem(*i)
        qset_cmb_box(self.cmb_mode_spgr_time, self.mode_spgr_time, data=True)
        self.cmb_mode_spgr_time.setToolTip("<span>Spectrogram display mode.</span>")
        self.cmb_mode_spgr_time.setVisible(spgr_en)

        self.lbl_byfs_spgr_time = QLabel(to_html("&nbsp;per f_S", frmt='b'), self)
        self.lbl_byfs_spgr_time.setVisible(spgr_en)
        self.chk_byfs_spgr_time = QCheckBox(self)
        self.chk_byfs_spgr_time.setObjectName("chk_log_spgr")
        self.chk_byfs_spgr_time.setToolTip("<span>Display spectral density i.e. scale by f_S</span>")
        self.chk_byfs_spgr_time.setChecked(True)
        self.chk_byfs_spgr_time.setVisible(spgr_en)


        # self.lbl_colorbar_time = QLabel(to_html("&nbsp;Col.bar", frmt='b'), self)
        # self.lbl_colorbar_time.setVisible(spgr_en)
        # self.chk_colorbar_time = QCheckBox(self)
        # self.chk_colorbar_time.setObjectName("chk_colorbar_time")
        # self.chk_colorbar_time.setToolTip("<span>Enable colorbar</span>")
        # self.chk_colorbar_time.setChecked(True)
        # self.chk_colorbar_time.setVisible(spgr_en)

        self.chk_fx_limits = QCheckBox("Min/max.", self)
        self.chk_fx_limits.setObjectName("chk_fx_limits")
        self.chk_fx_limits.setToolTip("<span>Display limits of fixpoint range.</span>")
        self.chk_fx_limits.setChecked(False)

        layH_ctrl_time = QHBoxLayout()
        layH_ctrl_time.addWidget(lbl_plt_time_title)
        layH_ctrl_time.addStretch(1)
        layH_ctrl_time.addWidget(self.lbl_plt_time_stim)
        layH_ctrl_time.addWidget(self.cmb_plt_time_stim)
        #
        layH_ctrl_time.addWidget(self.lbl_plt_time_stmq)
        layH_ctrl_time.addWidget(self.cmb_plt_time_stmq)
        #
        layH_ctrl_time.addWidget(lbl_plt_time_resp)
        layH_ctrl_time.addWidget(self.cmb_plt_time_resp)
        #
        layH_ctrl_time.addWidget(lbl_win_time)
        layH_ctrl_time.addWidget(self.chk_win_time)
        layH_ctrl_time.addStretch(1)
        layH_ctrl_time.addWidget(lbl_log_time)
        layH_ctrl_time.addWidget(self.chk_log_time)
        layH_ctrl_time.addWidget(self.lbl_log_bottom_time)
        layH_ctrl_time.addWidget(self.led_log_bottom_time)
        #
        layH_ctrl_time.addStretch(1)
        #
        layH_ctrl_time.addWidget(lbl_plt_time_spgr)
        layH_ctrl_time.addWidget(self.cmb_plt_time_spgr)
        layH_ctrl_time.addWidget(self.lbl_log_spgr_time)
        layH_ctrl_time.addWidget(self.chk_log_spgr_time)
        layH_ctrl_time.addWidget(self.lbl_nfft_spgr_time)
        layH_ctrl_time.addWidget(self.led_nfft_spgr_time)
        layH_ctrl_time.addWidget(self.lbl_ovlp_spgr_time)
        layH_ctrl_time.addWidget(self.led_ovlp_spgr_time)
        layH_ctrl_time.addWidget(self.lbl_mode_spgr_time)
        layH_ctrl_time.addWidget(self.cmb_mode_spgr_time)
        layH_ctrl_time.addWidget(self.lbl_byfs_spgr_time)
        layH_ctrl_time.addWidget(self.chk_byfs_spgr_time)

        layH_ctrl_time.addStretch(2)
        layH_ctrl_time.addWidget(self.chk_fx_limits)
        layH_ctrl_time.addStretch(10)

        #layH_ctrl_time.setContentsMargins(*params['wdg_margins'])

        self.wdg_ctrl_time = QWidget(self)
        self.wdg_ctrl_time.setLayout(layH_ctrl_time)
        # ---- end time domain ------------------

        # ---------------------------------------------------------------
        # Controls for frequency domain
        # ---------------------------------------------------------------
        lbl_plt_freq_title = QLabel("<b>View:</b>", self)

        self.lbl_plt_freq_stim = QLabel(to_html("Stimulus X", frmt='bi'), self)
        self.cmb_plt_freq_stim = QComboBox(self)
        self.cmb_plt_freq_stim.addItems(plot_styles_list)
        qset_cmb_box(self.cmb_plt_freq_stim, self.plt_freq_stim)
        self.cmb_plt_freq_stim.setToolTip("<span>Plot style for stimulus.</span>")

        self.lbl_plt_freq_stmq = QLabel(to_html("&nbsp;Fixp. Stim. X_Q", frmt='bi'), self)
        self.cmb_plt_freq_stmq = QComboBox(self)
        self.cmb_plt_freq_stmq.addItems(plot_styles_list)
        qset_cmb_box(self.cmb_plt_freq_stmq, self.plt_freq_stmq)
        self.cmb_plt_freq_stmq.setToolTip("<span>Plot style for <em>fixpoint</em> (quantized) stimulus.</span>")

        lbl_plt_freq_resp = QLabel(to_html("&nbsp;Response Y", frmt='bi'), self)
        self.cmb_plt_freq_resp = QComboBox(self)
        self.cmb_plt_freq_resp.addItems(plot_styles_list)
        qset_cmb_box(self.cmb_plt_freq_resp, self.plt_freq_resp)
        self.cmb_plt_freq_resp.setToolTip("<span>Plot style for response.</span>")

        lbl_log_freq = QLabel(to_html("dB", frmt='b'), self)
        self.chk_log_freq = QCheckBox(self)
        self.chk_log_freq.setObjectName("chk_log_freq")
        self.chk_log_freq.setToolTip("<span>Logarithmic scale for y-axis.</span>")
        self.chk_log_freq.setChecked(True)

        self.lbl_log_bottom_freq = QLabel(to_html("min =", frmt='bi'), self)
        self.lbl_log_bottom_freq.setVisible(self.chk_log_freq.isChecked())
        self.led_log_bottom_freq = QLineEdit(self)
        self.led_log_bottom_freq.setText(str(self.bottom_f))
        self.led_log_bottom_freq.setToolTip("<span>Minimum display value for log. scale.</span>")
        self.led_log_bottom_freq.setVisible(self.chk_log_freq.isChecked())

        if not self.chk_log_freq.isChecked():
            self.bottom_f = 0
            
        lbl_re_im_freq = QLabel(to_html("Re / Im", frmt='b'), self)
        self.chk_re_im_freq = QCheckBox(self)
        self.chk_re_im_freq.setObjectName("chk_re_im_freq")
        self.chk_re_im_freq.setToolTip("<span>Show real and imaginary part of spectrum</span>")
        self.chk_re_im_freq.setChecked(False)

        self.lbl_win_fft = QLabel(to_html("Window", frmt='bi'), self)
        self.cmb_win_fft = QComboBox(self)
        self.cmb_win_fft.addItems(get_window_names())
        self.cmb_win_fft.setToolTip("FFT window type.")
        qset_cmb_box(self.cmb_win_fft, self.window_name)

        self.cmb_win_fft_variant = QComboBox(self)
        self.cmb_win_fft_variant.setToolTip("FFT window variant.")
        self.cmb_win_fft_variant.setVisible(False)

        self.lblWinPar1 = QLabel("Param1")
        self.ledWinPar1 = QLineEdit(self)
        self.ledWinPar1.setText("1")
        self.ledWinPar1.setObjectName("ledWinPar1")

        self.lblWinPar2 = QLabel("Param2")
        self.ledWinPar2 = QLineEdit(self)
        self.ledWinPar2.setText("2")
        self.ledWinPar2.setObjectName("ledWinPar2")

        self.chk_Hf = QCheckBox(self)
        self.chk_Hf.setObjectName("chk_Hf")
        self.chk_Hf.setToolTip("<span>Show ideal frequency response, calculated "
                               "from the filter coefficients.</span>")
        self.chk_Hf.setChecked(False)
        self.chk_Hf_lbl = QLabel(to_html("H_id (f)", frmt="bi"), self)

        lbl_show_info_freq = QLabel(to_html("Info", frmt='b'), self)
        self.chk_show_info_freq = QCheckBox(self)
        self.chk_show_info_freq.setObjectName("chk_show_info_freq")
        self.chk_show_info_freq.setToolTip("<span>Show infos about signal power "
                                           "and window properties.</span>")
        self.chk_show_info_freq.setChecked(False)

        layH_ctrl_freq = QHBoxLayout()
        layH_ctrl_freq.addWidget(lbl_plt_freq_title)
        layH_ctrl_freq.addStretch(1)
        layH_ctrl_freq.addWidget(self.lbl_plt_freq_stim)
        layH_ctrl_freq.addWidget(self.cmb_plt_freq_stim)
        #
        layH_ctrl_freq.addWidget(self.lbl_plt_freq_stmq)
        layH_ctrl_freq.addWidget(self.cmb_plt_freq_stmq)
        #
        layH_ctrl_freq.addWidget(lbl_plt_freq_resp)
        layH_ctrl_freq.addWidget(self.cmb_plt_freq_resp)
        #
        layH_ctrl_freq.addWidget(self.chk_Hf_lbl)
        layH_ctrl_freq.addWidget(self.chk_Hf)
        layH_ctrl_freq.addStretch(1)
        layH_ctrl_freq.addWidget(lbl_log_freq)
        layH_ctrl_freq.addWidget(self.chk_log_freq)
        layH_ctrl_freq.addWidget(self.lbl_log_bottom_freq)
        layH_ctrl_freq.addWidget(self.led_log_bottom_freq)
        layH_ctrl_freq.addStretch(1)
        layH_ctrl_freq.addWidget(lbl_re_im_freq)
        layH_ctrl_freq.addWidget(self.chk_re_im_freq)
        layH_ctrl_freq.addStretch(2)
        layH_ctrl_freq.addWidget(self.lbl_win_fft)
        layH_ctrl_freq.addWidget(self.cmb_win_fft)
        layH_ctrl_freq.addWidget(self.cmb_win_fft_variant)
        layH_ctrl_freq.addWidget(self.lblWinPar1)
        layH_ctrl_freq.addWidget(self.ledWinPar1)
        layH_ctrl_freq.addWidget(self.lblWinPar2)
        layH_ctrl_freq.addWidget(self.ledWinPar2)
        layH_ctrl_freq.addStretch(1)
        layH_ctrl_freq.addWidget(lbl_show_info_freq)
        layH_ctrl_freq.addWidget(self.chk_show_info_freq)
        layH_ctrl_freq.addStretch(10)

        #layH_ctrl_freq.setContentsMargins(*params['wdg_margins'])

        self.wdg_ctrl_freq = QWidget(self)
        self.wdg_ctrl_freq.setLayout(layH_ctrl_freq)
        # ---- end Frequency Domain ------------------

        # ---------------------------------------------------------------
        # Controls for stimuli
        # ---------------------------------------------------------------

        lbl_title_stim = QLabel("<b>Stimulus:</b>", self)

        self.lblStimulus = QLabel(to_html("Type", frmt='bi'), self)
        self.cmbStimulus = QComboBox(self)
        self.cmbStimulus.addItems(["None","Impulse","Step","StepErr","Cos","Sine", "Chirp",
                                   "Triang","Saw","Rect","Comb","AM","PM / FM","Formula"])
        self.cmbStimulus.setToolTip("Stimulus type.")
        qset_cmb_box(self.cmbStimulus, self.stim)

        self.chk_stim_bl = QCheckBox("BL", self)
        self.chk_stim_bl.setToolTip("<span>The signal is bandlimited to the Nyquist frequency "
                                    "to avoid aliasing. However, it is much slower to generate "
                                    "than the regular version.</span>")
        self.chk_stim_bl.setChecked(True)
        self.chk_stim_bl.setObjectName("stim_bl")

        self.cmbChirpMethod = QComboBox(self)
        for t in [("Lin","Linear"),("Square","Quadratic"),("Log", "Logarithmic"), ("Hyper", "Hyperbolic")]:
            self.cmbChirpMethod.addItem(*t)
        qset_cmb_box(self.cmbChirpMethod, self.chirp_method, data=False)

        self.chk_scale_impz_f = QCheckBox("Scale", self)
        self.chk_scale_impz_f.setToolTip("<span>Scale the FFT of the impulse response with <i>N<sub>FFT</sub></i> "
                                    "so that it has the same magnitude as |H(f)|. DC and Noise need to be "
                                    "turned off.</span>")
        self.chk_scale_impz_f.setChecked(True)
        self.chk_scale_impz_f.setObjectName("scale_impz_f")

        self.lblDC = QLabel(to_html("DC =", frmt='bi'), self)
        self.ledDC = QLineEdit(self)
        self.ledDC.setText(str(self.DC))
        self.ledDC.setToolTip("DC Level")
        self.ledDC.setObjectName("stimDC")

        layHCmbStim = QHBoxLayout()
        layHCmbStim.addWidget(self.cmbStimulus)
        layHCmbStim.addWidget(self.chk_stim_bl)
        layHCmbStim.addWidget(self.chk_scale_impz_f)
        layHCmbStim.addWidget(self.cmbChirpMethod)

        #----------------------------------------------
        self.lblAmp1 = QLabel(to_html("&nbsp;A_1", frmt='bi') + " =", self)
        self.ledAmp1 = QLineEdit(self)
        self.ledAmp1.setText(str(self.A1))
        self.ledAmp1.setToolTip("Stimulus amplitude, complex values like 3j - 1 are allowed")
        self.ledAmp1.setObjectName("stimAmp1")

        self.lblAmp2 = QLabel(to_html("&nbsp;A_2", frmt='bi') + " =", self)
        self.ledAmp2 = QLineEdit(self)
        self.ledAmp2.setText(str(self.A2))
        self.ledAmp2.setToolTip("Stimulus amplitude 2, complex values like 3j - 1 are allowed")
        self.ledAmp2.setObjectName("stimAmp2")

        #----------------------------------------------
        self.lblPhi1 = QLabel(to_html("&nbsp;&phi;_1", frmt='bi') + " =", self)
        self.ledPhi1 = QLineEdit(self)
        self.ledPhi1.setText(str(self.phi1))
        self.ledPhi1.setToolTip("Stimulus phase")
        self.ledPhi1.setObjectName("stimPhi1")
        self.lblPhU1 = QLabel(to_html("&deg;", frmt='b'), self)

        self.lblPhi2 = QLabel(to_html("&nbsp;&phi;_2", frmt='bi') + " =", self)
        self.ledPhi2 = QLineEdit(self)
        self.ledPhi2.setText(str(self.phi2))
        self.ledPhi2.setToolTip("Stimulus phase 2")
        self.ledPhi2.setObjectName("stimPhi2")
        self.lblPhU2 = QLabel(to_html("&deg;", frmt='b'), self)

        #----------------------------------------------
        self.lblFreq1 = QLabel(to_html("&nbsp;f_1", frmt='bi') + " =", self)
        self.ledFreq1 = QLineEdit(self)
        self.ledFreq1.setText(str(self.f1))
        self.ledFreq1.setToolTip("Stimulus frequency 1")
        self.ledFreq1.setObjectName("stimFreq1")
        self.lblFreqUnit1 = QLabel("f_S", self)

        self.lblFreq2 = QLabel(to_html("&nbsp;f_2", frmt='bi') + " =", self)
        self.ledFreq2 = QLineEdit(self)
        self.ledFreq2.setText(str(self.f2))
        self.ledFreq2.setToolTip("Stimulus frequency 2")
        self.ledFreq2.setObjectName("stimFreq2")
        self.lblFreqUnit2 = QLabel("f_S", self)
        
        #----------------------------------------------
        self.lblNoise = QLabel(to_html("&nbsp;Noise", frmt='bi'), self)
        self.cmbNoise = QComboBox(self)
        self.cmbNoise.addItems(["None","Gauss","Uniform","PRBS"])
        self.cmbNoise.setToolTip("Type of additive noise.")
        qset_cmb_box(self.cmbNoise, self.noise)

        self.lblNoi = QLabel("not initialized", self)
        self.ledNoi = QLineEdit(self)
        self.ledNoi.setText(str(self.noi))
        self.ledNoi.setToolTip("not initialized")
        self.ledNoi.setObjectName("stimNoi")
        
        layGStim = QGridLayout()
        
        layGStim.addWidget(self.lblStimulus, 0, 0)
        layGStim.addWidget(self.lblDC, 1, 0)

        layGStim.addLayout(layHCmbStim, 0, 1)
        layGStim.addWidget(self.ledDC,  1, 1)

        layGStim.addWidget(self.lblAmp1, 0, 2)
        layGStim.addWidget(self.lblAmp2, 1, 2)

        layGStim.addWidget(self.ledAmp1, 0, 3)
        layGStim.addWidget(self.ledAmp2, 1, 3)
        
        layGStim.addWidget(self.lblPhi1, 0, 4)
        layGStim.addWidget(self.lblPhi2, 1, 4)

        layGStim.addWidget(self.ledPhi1, 0, 5)
        layGStim.addWidget(self.ledPhi2, 1, 5)

        layGStim.addWidget(self.lblPhU1, 0, 6)
        layGStim.addWidget(self.lblPhU2, 1, 6)

        layGStim.addWidget(self.lblFreq1, 0, 7)
        layGStim.addWidget(self.lblFreq2, 1, 7)

        layGStim.addWidget(self.ledFreq1, 0, 8)
        layGStim.addWidget(self.ledFreq2, 1, 8)

        layGStim.addWidget(self.lblFreqUnit1, 0, 9)
        layGStim.addWidget(self.lblFreqUnit2, 1, 9)
        
        layGStim.addWidget(self.lblNoise, 0, 10)
        layGStim.addWidget(self.lblNoi, 1, 10)

        layGStim.addWidget(self.cmbNoise, 0, 11)
        layGStim.addWidget(self.ledNoi, 1, 11)

        #----------------------------------------------
        self.lblStimFormula = QLabel(to_html("x =", frmt='bi'), self)
        self.ledStimFormula = QLineEdit(self)
        self.ledStimFormula.setText(str(self.stim_formula))
        self.ledStimFormula.setToolTip("<span>Enter formula for stimulus in numexpr syntax"
                                  "</span>")
        self.ledStimFormula.setObjectName("stimFormula")

        layH_ctrl_stim_formula = QHBoxLayout()
        layH_ctrl_stim_formula.addWidget(self.lblStimFormula)
        layH_ctrl_stim_formula.addWidget(self.ledStimFormula,10)

        #----------------------------------------------
        #layG_ctrl_stim = QGridLayout()
        layH_ctrl_stim_par = QHBoxLayout()

        layH_ctrl_stim_par.addLayout(layGStim)

        layV_ctrl_stim = QVBoxLayout()
        layV_ctrl_stim.addLayout(layH_ctrl_stim_par)
        layV_ctrl_stim.addLayout(layH_ctrl_stim_formula)

        layH_ctrl_stim = QHBoxLayout()
        layH_ctrl_stim.addWidget(lbl_title_stim)
        layH_ctrl_stim.addStretch(1)
        layH_ctrl_stim.addLayout(layV_ctrl_stim)
        layH_ctrl_stim.addStretch(10)

        self.wdg_ctrl_stim = QWidget(self)
        self.wdg_ctrl_stim.setLayout(layH_ctrl_stim)
        # --------- end stimuli ---------------------------------

        # frequency widgets require special handling as they are scaled with f_s
        self.ledFreq1.installEventFilter(self)
        self.ledFreq2.installEventFilter(self)

        #----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        #----------------------------------------------------------------------
        # --- run control ---
        self.led_N_start.editingFinished.connect(self.update_N)
        self.led_N_points.editingFinished.connect(self.update_N)

        # --- frequency control ---
        # careful! currentIndexChanged passes the current index to _update_win_fft
        self.cmb_win_fft.currentIndexChanged.connect(self._update_win_fft)
        self.ledWinPar1.editingFinished.connect(self._read_param1)
        self.ledWinPar2.editingFinished.connect(self._read_param2)

        # --- stimulus control ---
        self.chk_stim_options.clicked.connect(self._show_stim_options)

        self.chk_stim_bl.clicked.connect(self._enable_stim_widgets)
        self.cmbStimulus.currentIndexChanged.connect(self._enable_stim_widgets)

        self.cmbNoise.currentIndexChanged.connect(self._update_noi)
        self.ledNoi.editingFinished.connect(self._update_noi)
        self.ledAmp1.editingFinished.connect(self._update_amp1)
        self.ledAmp2.editingFinished.connect(self._update_amp2)
        self.ledPhi1.editingFinished.connect(self._update_phi1)
        self.ledPhi2.editingFinished.connect(self._update_phi2)
        self.cmbChirpMethod.currentIndexChanged.connect(self._update_chirp_method)
        self.ledDC.editingFinished.connect(self._update_DC)
        self.ledStimFormula.editingFinished.connect(self._update_stim_formula)

#------------------------------------------------------------------------------
    def eventFilter(self, source, event):
        """
        Filter all events generated by the monitored widgets. Source and type
        of all events generated by monitored objects are passed to this eventFilter,
        evaluated and passed on to the next hierarchy level.

        - When a QLineEdit widget gains input focus (``QEvent.FocusIn``), display
          the stored value from filter dict with full precision
        - When a key is pressed inside the text field, set the `spec_edited` flag
          to True.
        - When a QLineEdit widget loses input focus (``QEvent.FocusOut``), store
          current value normalized to f_S with full precision (only if
          ``spec_edited == True``) and display the stored value in selected format
        """

        def _store_entry(source):
            if self.spec_edited:
                if source.objectName() == "stimFreq1":
                   self.f1 = safe_eval(source.text(), self.f1 * fb.fil[0]['f_S'],
                                            return_type='float') / fb.fil[0]['f_S']
                   source.setText(str(params['FMT'].format(self.f1 * fb.fil[0]['f_S'])))

                elif source.objectName() == "stimFreq2":
                   self.f2 = safe_eval(source.text(), self.f2 * fb.fil[0]['f_S'],
                                            return_type='float') / fb.fil[0]['f_S']
                   source.setText(str(params['FMT'].format(self.f2 * fb.fil[0]['f_S'])))

                self.spec_edited = False # reset flag
                self.sig_tx.emit({'sender':__name__, 'ui_changed':'stim'})

#        if isinstance(source, QLineEdit):
#        if source.objectName() in {"stimFreq1","stimFreq2"}:
        if event.type() in {QEvent.FocusIn,QEvent.KeyPress, QEvent.FocusOut}:
            if event.type() == QEvent.FocusIn:
                self.spec_edited = False
                self.load_fs()
            elif event.type() == QEvent.KeyPress:
                self.spec_edited = True # entry has been changed
                key = event.key()
                if key in {Qt.Key_Return, Qt.Key_Enter}:
                    _store_entry(source)
                elif key == Qt.Key_Escape: # revert changes
                    self.spec_edited = False
                    if source.objectName() == "stimFreq1":
                        source.setText(str(params['FMT'].format(self.f1 * fb.fil[0]['f_S'])))
                    elif source.objectName() == "stimFreq2":
                        source.setText(str(params['FMT'].format(self.f2 * fb.fil[0]['f_S'])))

            elif event.type() == QEvent.FocusOut:
                _store_entry(source)

        # Call base class method to continue normal event processing:
        return super(PlotImpz_UI, self).eventFilter(source, event)

#-------------------------------------------------------------
    def _show_stim_options(self):
        """
        Hide / show panel with stimulus options
        """
        self.wdg_ctrl_stim.setVisible(self.chk_stim_options.isChecked())


    def _enable_stim_widgets(self):
        """ Enable / disable widgets depending on the selected stimulus"""
        self.stim = qget_cmb_box(self.cmbStimulus, data=False)
        f1_en = self.stim in {"Cos","Sine","Chirp","PM / FM","AM","Formula","Rect","Saw","Triang","Comb"}
        f2_en = self.stim in {"Cos","Sine","Chirp","PM / FM","AM","Formula"}
        dc_en = self.stim not in {"Step", "StepErr"}

        self.chk_stim_bl.setVisible(self.stim in {"Triang", "Saw", "Rect"})

        self.lblAmp1.setVisible(self.stim != "None")
        self.ledAmp1.setVisible(self.stim != "None")
        self.chk_scale_impz_f.setVisible(self.stim == 'Impulse')
        self.chk_scale_impz_f.setEnabled((self.noi == 0 or self.cmbNoise.currentText() == 'None')\
                                         and self.DC == 0)

        self.cmbChirpMethod.setVisible(self.stim == 'Chirp')

        self.lblPhi1.setVisible(f1_en)
        self.ledPhi1.setVisible(f1_en)
        self.lblPhU1.setVisible(f1_en)
        self.lblFreq1.setVisible(f1_en)
        self.ledFreq1.setVisible(f1_en)
        self.lblFreqUnit1.setVisible(f1_en)

        self.lblFreq2.setVisible(f2_en)
        self.ledFreq2.setVisible(f2_en)
        self.lblFreqUnit2.setVisible(f2_en)
        self.lblAmp2.setVisible(f2_en and self.stim != "Chirp")
        self.ledAmp2.setVisible(f2_en and self.stim != "Chirp")
        self.lblPhi2.setVisible(f2_en and self.stim != "Chirp")
        self.ledPhi2.setVisible(f2_en and self.stim != "Chirp")
        self.lblPhU2.setVisible(f2_en and self.stim != "Chirp")

        self.lblDC.setVisible(dc_en)
        self.ledDC.setVisible(dc_en)

        self.lblStimFormula.setVisible(self.stim == "Formula")
        self.ledStimFormula.setVisible(self.stim == "Formula")

        self.sig_tx.emit({'sender':__name__, 'ui_changed':'stim'})

#-------------------------------------------------------------
    def load_fs(self):
        """
        Reload sampling frequency from filter dictionary and transform
        the displayed frequency spec input fields according to the units
        setting (i.e. f_S). Spec entries are always stored normalized w.r.t. f_S
        in the dictionary; when f_S or the unit are changed, only the displayed values
        of the frequency entries are updated, not the dictionary!

        load_fs() is called during init and when the frequency unit or the
        sampling frequency have been changed.

        It should be called when sigSpecsChanged or sigFilterDesigned is emitted
        at another place, indicating that a reload is required.
        """

        # recalculate displayed freq spec values for (maybe) changed f_S
        if self.ledFreq1.hasFocus():
            # widget has focus, show full precision
            self.ledFreq1.setText(str(self.f1 * fb.fil[0]['f_S']))
        elif self.ledFreq2.hasFocus():
            # widget has focus, show full precision
            self.ledFreq2.setText(str(self.f2 * fb.fil[0]['f_S']))
        else:
            # widgets have no focus, round the display
            self.ledFreq1.setText(
                str(params['FMT'].format(self.f1 * fb.fil[0]['f_S'])))
            self.ledFreq2.setText(
                str(params['FMT'].format(self.f2 * fb.fil[0]['f_S'])))


    def _update_amp1(self):
        """ Update value for self.A1 from QLineEditWidget"""
        self.A1 = safe_eval(self.ledAmp1.text(), self.A1, return_type='cmplx')
        self.ledAmp1.setText(str(self.A1))
        self.sig_tx.emit({'sender':__name__, 'ui_changed':'a1'})

    def _update_amp2(self):
        """ Update value for self.A2 from the QLineEditWidget"""
        self.A2 = safe_eval(self.ledAmp2.text(), self.A2, return_type='cmplx')
        self.ledAmp2.setText(str(self.A2))
        self.sig_tx.emit({'sender':__name__, 'ui_changed':'a2'})

    def _update_phi1(self):
        """ Update value for self.phi1 from QLineEditWidget"""
        self.phi1 = safe_eval(self.ledPhi1.text(), self.phi1, return_type='float')
        self.ledPhi1.setText(str(self.phi1))
        self.sig_tx.emit({'sender':__name__, 'ui_changed':'phi1'})

    def _update_phi2(self):
        """ Update value for self.phi2 from the QLineEditWidget"""
        self.phi2 = safe_eval(self.ledPhi2.text(), self.phi2, return_type='float')
        self.ledPhi2.setText(str(self.phi2))
        self.sig_tx.emit({'sender':__name__, 'ui_changed':'phi2'})

    def _update_chirp_method(self):
        """ Update value for self.chirp_method from the QLineEditWidget"""
        self.chirp_method = qget_cmb_box(self.cmbChirpMethod) # read current data string
        self.sig_tx.emit({'sender':__name__, 'ui_changed':'chirp_method'})


    def _update_noi(self):
        """ Update type + value + label for self.noi for noise"""
        self.noise = qget_cmb_box(self.cmbNoise, data=False).lower()
        self.lblNoi.setVisible(self.noise!='none')
        self.ledNoi.setVisible(self.noise!='none')
        if self.noise!='none':
            self.noi = safe_eval(self.ledNoi.text(), 0, return_type='cmplx')
            self.ledNoi.setText(str(self.noi))
            if self.noise == 'gauss':
                self.lblNoi.setText(to_html("&nbsp;&sigma; =", frmt='bi'))
                self.ledNoi.setToolTip("<span>Standard deviation of statistical process,"
                                       "noise power is <i>P</i> = &sigma;<sup>2</sup></span>")
            elif self.noise == 'uniform':
                self.lblNoi.setText(to_html("&nbsp;&Delta; =", frmt='bi'))
                self.ledNoi.setToolTip("<span>Interval size for uniformly distributed process "
                                       "(e.g. quantization step size for quantization noise), "
                                       "centered around 0. Noise power is "
                                       "<i>P</i> = &Delta;<sup>2</sup>/12.</span>")
            elif self.noise == 'prbs':
                self.lblNoi.setText(to_html("&nbsp;A =", frmt='bi'))
                self.ledNoi.setToolTip("<span>Amplitude of bipolar Pseudorandom Binary Sequence. "
                                       "Noise power is <i>P</i> = A<sup>2</sup>.</span>")

        self.sig_tx.emit({'sender':__name__, 'ui_changed':'noi'})

    def _update_DC(self):
        """ Update value for self.DC from the QLineEditWidget"""
        self.DC = safe_eval(self.ledDC.text(), 0, return_type='cmplx')
        self.ledDC.setText(str(self.DC))
        self.sig_tx.emit({'sender':__name__, 'ui_changed':'dc'})

    def _update_stim_formula(self):
        """Update string with formula to be evaluated by numexpr"""
        self.stim_formula = self.ledStimFormula.text().strip()
        self.ledStimFormula.setText(str(self.stim_formula))
        self.sig_tx.emit({'sender':__name__, 'ui_changed':'stim_formula'})

    # -------------------------------------------------------------------------

    def update_N(self, emit=True):
        # called directly from impz or locally
        # between local triggering and updates upstream
        """
        Update values for self.N and self.N_start from the QLineEditWidget,
        update the window and fire "ui_changed"
        """
        if not isinstance(emit, bool):
            logger.error("update N: emit={0}".format(emit))
        self.N_start = safe_eval(self.led_N_start.text(), self.N_start, return_type='int', sign='poszero')
        self.led_N_start.setText(str(self.N_start)) # update widget
        self.N_user = safe_eval(self.led_N_points.text(), self.N_user, return_type='int', sign='poszero')

        if self.N_user == 0: # automatic calculation
            self.N = self.calc_n_points(self.N_user) # widget remains set to 0
            self.led_N_points.setText("0") # update widget
        else:
            self.N = self.N_user
            self.led_N_points.setText(str(self.N)) # update widget

        self.N_end = self.N + self.N_start # total number of points to be calculated: N + N_start

        # FFT window needs to be updated due to changed number of data points
        self._update_win_fft(emit=False) # don't emit anything here
        if emit:
            self.sig_tx.emit({'sender':__name__, 'ui_changed':'N'})


    def _read_param1(self):
        """Read out textbox when editing is finished and update dict and fft window"""
        param = safe_eval(self.ledWinPar1.text(), self.win_dict['par'][0]['val'],
                          return_type='float')
        if param < self.win_dict['par'][0]['min']:
            param = self.win_dict['par'][0]['min']
        elif param > self.win_dict['par'][0]['max']:
            param = self.win_dict['par'][0]['max']
        self.ledWinPar1.setText(str(param))
        self.win_dict['par'][0]['val'] = param
        self._update_win_fft()

    def _read_param2(self):
        """Read out textbox when editing is finished and update dict and fft window"""
        param = safe_eval(self.ledWinPar2.text(), self.win_dict['par'][1]['val'],
                          return_type='float')
        if param < self.win_dict['par'][1]['min']:
            param = self.win_dict['par'][1]['min']
        elif param > self.win_dict['par'][1]['max']:
            param = self.win_dict['par'][1]['max']
        self.ledWinPar2.setText(str(param))
        self.win_dict['par'][1]['val'] = param
        self._update_win_fft()

#------------------------------------------------------------------------------
    def _update_win_fft(self, arg=None, emit=True):
        """
        Update window type for FFT  with different arguments:

        - signal-slot connection to combo-box -> index (int), absorbed by `arg`
                                                 emit is not set -> emit=True
        - called by _read_param() -> empty -> emit=True
        - called by update_N(emit=False)

        """
        if not isinstance(emit, bool):
            logger.error("update win: emit={0}".format(emit))
        self.window_name = qget_cmb_box(self.cmb_win_fft, data=False)
        self.win = calc_window_function(self.win_dict, self.window_name,
                                        N=self.N, sym=False)

        n_par = self.win_dict['n_par']

        self.lblWinPar1.setVisible(n_par > 0)
        self.ledWinPar1.setVisible(n_par > 0)
        self.lblWinPar2.setVisible(n_par > 1)
        self.ledWinPar2.setVisible(n_par > 1)

        if n_par > 0:
            self.lblWinPar1.setText(to_html(self.win_dict['par'][0]['name'] + " =", frmt='bi'))
            self.ledWinPar1.setText(str(self.win_dict['par'][0]['val']))
            self.ledWinPar1.setToolTip(self.win_dict['par'][0]['tooltip'])

        if n_par > 1:
            self.lblWinPar2.setText(to_html(self.win_dict['par'][1]['name'] + " =", frmt='bi'))
            self.ledWinPar2.setText(str(self.win_dict['par'][1]['val']))
            self.ledWinPar2.setToolTip(self.win_dict['par'][1]['tooltip'])


        self.nenbw = self.N * np.sum(np.square(self.win)) / (np.square(np.sum(self.win)))

        self.cgain = np.sum(self.win) / self.N # coherent gain
        self.win /= self.cgain # correct gain for periodic signals

        # only emit a signal for local triggers to prevent infinite loop:
        # - signal-slot connection passes a bool or an integer
        # - local function calls don't pass anything
        if emit is True:
            self.sig_tx.emit({'sender':__name__, 'ui_changed':'win'})
        # ... but always notify the FFT widget via sig_tx_fft
        self.sig_tx_fft.emit({'sender':__name__, 'view_changed':'win'})

    #------------------------------------------------------------------------------
    def show_fft_win(self):
        """
        Pop-up FFT window
        """
        if self.but_fft_win.isChecked():
            qstyle_widget(self.but_fft_win, "changed")
        else:
            qstyle_widget(self.but_fft_win, "normal")

        if self.fft_window is None: # no handle to the window? Create a new instance
            if self.but_fft_win.isChecked():
                # Important: Handle to window must be class attribute otherwise it
                # (and the attached window) is deleted immediately when it goes out of scope
                self.fft_window = Plot_FFT_win(self, win_dict=self.win_dict, sym=False,
                                               title="pyFDA Spectral Window Viewer")
                self.sig_tx_fft.connect(self.fft_window.sig_rx)
                self.fft_window.sig_tx.connect(self.close_fft_win)
                self.fft_window.show() # modeless i.e. non-blocking popup window
        else:
            if not self.but_fft_win.isChecked():
                if self.fft_window is None:
                    logger.warning("FFT window is already closed!")
                else:
                    self.fft_window.close()

    def close_fft_win(self):
        self.fft_window = None
        self.but_fft_win.setChecked(False)
        qstyle_widget(self.but_fft_win, "normal")


#------------------------------------------------------------------------------
    def calc_n_points(self, N_user = 0):
        """
        Calculate number of points to be displayed, depending on type of filter
        (FIR, IIR) and user input. If the user selects 0 points, the number is
        calculated automatically.

        An improvement would be to calculate the dominant pole and the corresponding
        settling time.
        """
        if N_user == 0: # set number of data points automatically
            if fb.fil[0]['ft'] == 'IIR':
                N = 100
            else:
                N = min(len(fb.fil[0]['ba'][0]),100) # FIR: N = number of coefficients (max. 100)
        else:
            N = N_user

        return N
示例#16
0
class Plot_3D(QWidget):
    """
    Class for various 3D-plots:
    - lin / log line plot of H(f)
    - lin / log surf plot of H(z)
    - optional display of poles / zeros
    """

    # incoming, connected in sender widget (locally connected to self.process_sig_rx() )
    sig_rx = pyqtSignal(object)

    #    sig_tx = pyqtSignal(object) # outgoing from process_signals

    def __init__(self):
        super().__init__()
        self.zmin = 0
        self.zmax = 4
        self.zmin_dB = -80
        self.cmap_default = 'RdYlBu'
        self.data_changed = True  # flag whether data has changed
        self.tool_tip = "3D magnitude response |H(z)|"
        self.tab_label = "3D"

        self._construct_UI()

# ------------------------------------------------------------------------------

    def process_sig_rx(self, dict_sig=None):
        """
        Process signals coming from the navigation toolbar and from ``sig_rx``
        """
        # logger.debug("Processing {0} | data_changed = {1}, visible = {2}"\
        #              .format(dict_sig, self.data_changed, self.isVisible()))
        if self.isVisible():
            if 'data_changed' in dict_sig or 'home' in dict_sig or self.data_changed:
                self.draw()
                self.data_changed = False
        else:
            if 'data_changed' in dict_sig:
                self.data_changed = True

# ------------------------------------------------------------------------------

    def _construct_UI(self):
        self.but_log = PushButton("dB", checked=False)
        self.but_log.setObjectName("but_log")
        self.but_log.setToolTip("Logarithmic scale")

        self.but_plot_in_UC = PushButton("|z| < 1 ", checked=False)
        self.but_plot_in_UC.setObjectName("but_plot_in_UC")
        self.but_plot_in_UC.setToolTip("Only plot H(z) within the unit circle")

        self.lblBottom = QLabel(to_html("Bottom =", frmt='bi'), self)
        self.ledBottom = QLineEdit(self)
        self.ledBottom.setObjectName("ledBottom")
        self.ledBottom.setText(str(self.zmin))
        self.ledBottom.setToolTip("Minimum display value.")
        self.lblBottomdB = QLabel("dB", self)
        self.lblBottomdB.setVisible(self.but_log.isChecked())

        self.lblTop = QLabel(to_html("Top =", frmt='bi'), self)
        self.ledTop = QLineEdit(self)
        self.ledTop.setObjectName("ledTop")
        self.ledTop.setText(str(self.zmax))
        self.ledTop.setToolTip("Maximum display value.")
        self.lblTopdB = QLabel("dB", self)
        self.lblTopdB.setVisible(self.but_log.isChecked())

        self.plt_UC = PushButton("UC", checked=True)
        self.plt_UC.setObjectName("plt_UC")
        self.plt_UC.setToolTip("Plot unit circle")

        self.but_PZ = PushButton("P/Z ", checked=True)
        self.but_PZ.setObjectName("but_PZ")
        self.but_PZ.setToolTip("Plot poles and zeros")

        self.but_Hf = PushButton("H(f) ", checked=True)
        self.but_Hf.setObjectName("but_Hf")
        self.but_Hf.setToolTip("Plot H(f) along the unit circle")

        modes = ['None', 'Mesh', 'Surf', 'Contour']
        self.cmbMode3D = QComboBox(self)
        self.cmbMode3D.addItems(modes)
        self.cmbMode3D.setObjectName("cmbShow3D")
        self.cmbMode3D.setToolTip("Select 3D-plot mode.")
        self.cmbMode3D.setCurrentIndex(0)
        self.cmbMode3D.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        self.but_colormap_r = PushButton("reverse", checked=True)
        self.but_colormap_r.setObjectName("but_colormap_r")
        self.but_colormap_r.setToolTip("reverse colormap")

        self.cmbColormap = QComboBox(self)
        self._init_cmb_colormap(cmap_init=self.cmap_default)
        self.cmbColormap.setToolTip("Select colormap")

        self.but_colbar = PushButton("Colorbar ", checked=False)
        self.but_colbar.setObjectName("chkColBar")
        self.but_colbar.setToolTip("Show colorbar")

        self.but_lighting = PushButton("Lighting", checked=False)
        self.but_lighting.setObjectName("but_lighting")
        self.but_lighting.setToolTip("Enable light source")

        self.lblAlpha = QLabel(to_html("Alpha", frmt='bi'), self)
        self.diaAlpha = QDial(self)
        self.diaAlpha.setRange(0, 10)
        self.diaAlpha.setValue(10)
        self.diaAlpha.setTracking(False)  # produce less events when turning
        self.diaAlpha.setFixedHeight(30)
        self.diaAlpha.setFixedWidth(30)
        self.diaAlpha.setWrapping(False)
        self.diaAlpha.setToolTip(
            "<span>Set transparency for surf and contour plots.</span>")

        self.lblHatch = QLabel(to_html("Stride", frmt='bi'), self)
        self.diaHatch = QDial(self)
        self.diaHatch.setRange(0, 9)
        self.diaHatch.setValue(5)
        self.diaHatch.setTracking(False)  # produce less events when turning
        self.diaHatch.setFixedHeight(30)
        self.diaHatch.setFixedWidth(30)
        self.diaHatch.setWrapping(False)
        self.diaHatch.setToolTip("Set line density for various plots.")

        self.but_contour_2d = PushButton("Contour2D ", checked=False)
        self.but_contour_2d.setObjectName("chkContour2D")
        self.but_contour_2d.setToolTip("Plot 2D-contours at z =0")

        # ----------------------------------------------------------------------
        # LAYOUT for UI widgets
        # ----------------------------------------------------------------------
        layGControls = QGridLayout()
        layGControls.addWidget(self.but_log, 0, 0)
        layGControls.addWidget(self.but_plot_in_UC, 1, 0)
        layGControls.addWidget(self.lblTop, 0, 2)
        layGControls.addWidget(self.ledTop, 0, 4)
        layGControls.addWidget(self.lblTopdB, 0, 5)
        layGControls.addWidget(self.lblBottom, 1, 2)
        layGControls.addWidget(self.ledBottom, 1, 4)
        layGControls.addWidget(self.lblBottomdB, 1, 5)
        layGControls.setColumnStretch(5, 1)

        layGControls.addWidget(self.plt_UC, 0, 6)
        layGControls.addWidget(self.but_Hf, 1, 6)
        layGControls.addWidget(self.but_PZ, 0, 8)

        layGControls.addWidget(self.cmbMode3D, 0, 10)
        layGControls.addWidget(self.but_contour_2d, 1, 10)
        layGControls.addWidget(self.cmbColormap, 0, 12, 1, 1)
        layGControls.addWidget(self.but_colormap_r, 1, 12)

        layGControls.addWidget(self.but_lighting, 0, 14)
        layGControls.addWidget(self.but_colbar, 1, 14)

        layGControls.addWidget(self.lblAlpha, 0, 15)
        layGControls.addWidget(self.diaAlpha, 0, 16)

        layGControls.addWidget(self.lblHatch, 1, 15)
        layGControls.addWidget(self.diaHatch, 1, 16)

        # This widget encompasses all control subwidgets
        self.frmControls = QFrame(self)
        self.frmControls.setObjectName("frmControls")
        self.frmControls.setLayout(layGControls)

        # ----------------------------------------------------------------------
        # mplwidget
        # ----------------------------------------------------------------------
        # This is the plot pane widget, encompassing the other widgets
        self.mplwidget = MplWidget(self)
        self.mplwidget.layVMainMpl.addWidget(self.frmControls)
        self.mplwidget.layVMainMpl.setContentsMargins(*params['mpl_margins'])
        self.mplwidget.mplToolbar.a_he.setEnabled(True)
        self.mplwidget.mplToolbar.a_he.info = "manual/plot_3d.html"
        self.setLayout(self.mplwidget.layVMainMpl)

        self._init_grid()  # initialize grid and do initial plot

        # ----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.sig_rx.connect(self.process_sig_rx)
        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.but_log.clicked.connect(self._log_clicked)
        self.ledBottom.editingFinished.connect(self._log_clicked)
        self.ledTop.editingFinished.connect(self._log_clicked)

        self.but_plot_in_UC.clicked.connect(self._init_grid)
        self.plt_UC.clicked.connect(self.draw)
        self.but_Hf.clicked.connect(self.draw)
        self.but_PZ.clicked.connect(self.draw)
        self.cmbMode3D.currentIndexChanged.connect(self.draw)
        self.but_colbar.clicked.connect(self.draw)

        self.cmbColormap.currentIndexChanged.connect(self.draw)
        self.but_colormap_r.clicked.connect(self.draw)

        self.but_lighting.clicked.connect(self.draw)
        self.diaAlpha.valueChanged.connect(self.draw)
        self.diaHatch.valueChanged.connect(self.draw)
        self.but_contour_2d.clicked.connect(self.draw)

        self.mplwidget.mplToolbar.sig_tx.connect(self.process_sig_rx)
        # self.mplwidget.mplToolbar.enable_plot(state = False) # disable initially

# ------------------------------------------------------------------------------

    def _init_cmb_colormap(self, cmap_init):
        """
        Initialize combobox with available colormaps and try to set it to `cmap_init`

        Since matplotlib 3.2 the reversed "*_r" colormaps are no longer contained in
        `cm.datad`. They are now obtained by using the `reversed()` method (much simpler!)

        `cm.datad` doesn't return the "new" colormaps like viridis, instead the
        `colormaps()` method is used.
        """
        self.cmbColormap.addItems(
            [m for m in colormaps() if not m.endswith("_r")])

        idx = self.cmbColormap.findText(cmap_init)
        if idx == -1:
            idx = 0
        self.cmbColormap.setCurrentIndex(idx)

# ------------------------------------------------------------------------------

    def _init_grid(self):
        """ Initialize (x,y,z) coordinate grid + (re)draw plot."""
        phi_UC = np.linspace(0, 2 * pi, 400,
                             endpoint=True)  # angles for unit circle
        self.xy_UC = np.exp(1j * phi_UC)  # x,y coordinates of unity circle

        steps = 100  # number of steps for x, y, r, phi
        # cartesian range limits
        self.xmin = -1.5
        self.xmax = 1.5
        self.ymin = -1.5
        self.ymax = 1.5

        # Polar range limits
        rmin = 0
        rmax = 1

        # Calculate grids for 3D-Plots
        dr = rmax / steps * 2  # grid size for polar range
        dx = (self.xmax - self.xmin) / steps
        dy = (self.ymax - self.ymin) / steps  # grid size cartesian range

        if self.but_plot_in_UC.isChecked():  # Plot circular range in 3D-Plot
            [r,
             phi] = np.meshgrid(np.arange(rmin, rmax, dr),
                                np.linspace(0, 2 * pi, steps, endpoint=True))
            self.x = r * cos(phi)
            self.y = r * sin(phi)
        else:  # cartesian grid
            [self.x, self.y] = np.meshgrid(np.arange(self.xmin, self.xmax, dx),
                                           np.arange(self.ymin, self.ymax, dy))

        self.z = self.x + 1j * self.y  # create coordinate grid for complex plane

        self.draw()  # initial plot

# ------------------------------------------------------------------------------

    def init_axes(self):
        """
        Initialize and clear the axes to get rid of colorbar
        The azimuth / elevation / distance settings of the camera are restored
        after clearing the axes. See
        http://stackoverflow.com/questions/4575588/matplotlib-3d-plot-with-pyqt4-in-qtabwidget-mplwidget
        """

        self._save_axes()

        self.mplwidget.fig.clf()  # needed to get rid of colorbar
        self.ax3d = self.mplwidget.fig.add_subplot(111, projection='3d')
        # self.ax3d = self.mplwidget.fig.subplots(nrows=1, ncols=1, projection='3d')

        self._restore_axes()

# ------------------------------------------------------------------------------

    def _save_axes(self):
        """
        Store x/y/z - limits and camera position
        """

        try:
            self.azim = self.ax3d.azim
            self.elev = self.ax3d.elev
            self.dist = self.ax3d.dist
            self.xlim = self.ax3d.get_xlim3d()
            self.ylim = self.ax3d.get_ylim3d()
            self.zlim = self.ax3d.get_zlim3d()

        except AttributeError:  # not yet initialized, set standard values
            self.azim = -65
            self.elev = 30
            self.dist = 10
            self.xlim = (self.xmin, self.xmax)
            self.ylim = (self.ymin, self.ymax)
            self.zlim = (self.zmin, self.zmax)

# ------------------------------------------------------------------------------

    def _restore_axes(self):
        """
        Restore x/y/z - limits and camera position
        """
        if self.mplwidget.mplToolbar.a_lk.isChecked():
            self.ax3d.set_xlim3d(self.xlim)
            self.ax3d.set_ylim3d(self.ylim)
            self.ax3d.set_zlim3d(self.zlim)
        self.ax3d.azim = self.azim
        self.ax3d.elev = self.elev
        self.ax3d.dist = self.dist

# ------------------------------------------------------------------------------

    def _log_clicked(self):
        """
        Change scale and settings to log / lin when log setting is changed
        Update min / max settings when lineEdits have been edited
        """
        if self.sender().objectName(
        ) == 'but_log':  # clicking but_log triggered the slot
            if self.but_log.isChecked():
                self.ledBottom.setText(str(self.zmin_dB))
                self.zmax_dB = np.round(20 * log10(self.zmax), 2)
                self.ledTop.setText(str(self.zmax_dB))
                self.lblTopdB.setVisible(True)
                self.lblBottomdB.setVisible(True)
            else:
                self.ledBottom.setText(str(self.zmin))
                self.zmax = np.round(10**(self.zmax_dB / 20), 2)
                self.ledTop.setText(str(self.zmax))
                self.lblTopdB.setVisible(False)
                self.lblBottomdB.setVisible(False)

        else:  # finishing a lineEdit field triggered the slot
            if self.but_log.isChecked():
                self.zmin_dB = safe_eval(self.ledBottom.text(),
                                         self.zmin_dB,
                                         return_type='float')
                self.ledBottom.setText(str(self.zmin_dB))
                self.zmax_dB = safe_eval(self.ledTop.text(),
                                         self.zmax_dB,
                                         return_type='float')
                self.ledTop.setText(str(self.zmax_dB))
            else:
                self.zmin = safe_eval(self.ledBottom.text(),
                                      self.zmin,
                                      return_type='float')
                self.ledBottom.setText(str(self.zmin))
                self.zmax = safe_eval(self.ledTop.text(),
                                      self.zmax,
                                      return_type='float')
                self.ledTop.setText(str(self.zmax))

        self.draw()

# ------------------------------------------------------------------------------

    def draw(self):
        """
        Main drawing entry point: perform the actual plot
        """
        self.draw_3d()

# ------------------------------------------------------------------------------

    def draw_3d(self):
        """
        Draw various 3D plots
        """
        self.init_axes()

        bb = fb.fil[0]['ba'][0]
        aa = fb.fil[0]['ba'][1]

        zz = np.array(fb.fil[0]['zpk'][0])
        pp = np.array(fb.fil[0]['zpk'][1])

        wholeF = fb.fil[0]['freqSpecsRangeType'] != 'half'  # not used
        f_S = fb.fil[0]['f_S']
        N_FFT = params['N_FFT']

        alpha = self.diaAlpha.value() / 10.

        cmap = cm.get_cmap(str(self.cmbColormap.currentText()))
        if self.but_colormap_r.isChecked():
            cmap = cmap.reversed()  # use reversed colormap

        # Number of Lines /step size for H(f) stride, mesh, contour3d:
        stride = 10 - self.diaHatch.value()
        NL = 3 * self.diaHatch.value() + 5

        surf_enabled = qget_cmb_box(self.cmbMode3D, data=False) in {'Surf', 'Contour'}\
            or self.but_contour_2d.isChecked()
        self.cmbColormap.setEnabled(surf_enabled)
        self.but_colormap_r.setEnabled(surf_enabled)
        self.but_lighting.setEnabled(surf_enabled)
        self.but_colbar.setEnabled(surf_enabled)
        self.diaAlpha.setEnabled(surf_enabled
                                 or self.but_contour_2d.isChecked())

        # cNorm  = colors.Normalize(vmin=0, vmax=values[-1])
        # scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)

        # -----------------------------------------------------------------------------
        # Calculate H(w) along the upper half of unity circle
        # -----------------------------------------------------------------------------

        [w, H] = sig.freqz(bb, aa, worN=N_FFT, whole=True)
        H = np.nan_to_num(H)  # replace nans and inf by finite numbers

        H_abs = abs(H)
        H_max = max(H_abs)
        H_min = min(H_abs)
        # f = w / (2 * pi) * f_S                  # translate w to absolute frequencies
        # F_min = f[np.argmin(H_abs)]

        plevel_rel = 1.05  # height of plotted pole position relative to zmax
        zlevel_rel = 0.1  # height of plotted zero position relative to zmax

        if self.but_log.isChecked():  # logarithmic scale
            # suppress "divide by zero in log10" warnings
            old_settings_seterr = np.seterr()
            np.seterr(divide='ignore')

            bottom = np.floor(max(self.zmin_dB, 20 * log10(H_min)) / 10) * 10
            top = self.zmax_dB
            top_bottom = top - bottom

            zlevel = bottom - top_bottom * zlevel_rel

            if self.cmbMode3D.currentText(
            ) == 'None':  # "Poleposition": H(f) plot only
                plevel_top = 2 * bottom - zlevel  # height of displayed pole position
                plevel_btm = bottom
            else:
                plevel_top = top + top_bottom * (plevel_rel - 1)
                plevel_btm = top

            np.seterr(**old_settings_seterr)

        else:  # linear scale
            bottom = max(self.zmin, H_min)  # min. display value
            top = self.zmax  # max. display value
            top_bottom = top - bottom
            #   top = zmax_rel * H_max # calculate display top from max. of H(f)

            zlevel = bottom + top_bottom * zlevel_rel  # height of displayed zero position

            if self.cmbMode3D.currentText(
            ) == 'None':  # "Poleposition": H(f) plot only
                #H_max = np.clip(max(H_abs), 0, self.zmax)
                # make height of displayed poles same to zeros
                plevel_top = bottom + top_bottom * zlevel_rel
                plevel_btm = bottom
            else:
                plevel_top = plevel_rel * top
                plevel_btm = top

        # calculate H(jw)| along the unity circle and |H(z)|, each clipped
        # between bottom and top
        H_UC = H_mag(bb,
                     aa,
                     self.xy_UC,
                     top,
                     H_min=bottom,
                     log=self.but_log.isChecked())
        Hmag = H_mag(bb,
                     aa,
                     self.z,
                     top,
                     H_min=bottom,
                     log=self.but_log.isChecked())

        # ===============================================================
        # Plot Unit Circle (UC)
        # ===============================================================
        if self.plt_UC.isChecked():
            #  Plot unit circle and marker at (1,0):
            self.ax3d.plot(self.xy_UC.real,
                           self.xy_UC.imag,
                           ones(len(self.xy_UC)) * bottom,
                           lw=2,
                           color='k')
            self.ax3d.plot([0.97, 1.03], [0, 0], [bottom, bottom],
                           lw=2,
                           color='k')

        # ===============================================================
        # Plot ||H(f)| along unit circle as 3D-lineplot
        # ===============================================================
        if self.but_Hf.isChecked():
            self.ax3d.plot(self.xy_UC.real,
                           self.xy_UC.imag,
                           H_UC,
                           alpha=0.8,
                           lw=4)
            # draw once more as dashed white line to improve visibility
            self.ax3d.plot(self.xy_UC.real, self.xy_UC.imag, H_UC, 'w--', lw=4)

            if stride < 10:  # plot thin vertical line every stride points on the UC
                for k in range(len(self.xy_UC[::stride])):
                    self.ax3d.plot([
                        self.xy_UC.real[::stride][k],
                        self.xy_UC.real[::stride][k]
                    ], [
                        self.xy_UC.imag[::stride][k],
                        self.xy_UC.imag[::stride][k]
                    ], [
                        np.ones(len(self.xy_UC[::stride]))[k] * bottom,
                        H_UC[::stride][k]
                    ],
                                   linewidth=1,
                                   color=(0.5, 0.5, 0.5))

        # ===============================================================
        # Plot Poles and Zeros
        # ===============================================================
        if self.but_PZ.isChecked():

            PN_SIZE = 8  # size of P/N symbols

            # Plot zero markers at |H(z_i)| = zlevel with "stems":
            self.ax3d.plot(zz.real,
                           zz.imag,
                           ones(len(zz)) * zlevel,
                           'o',
                           markersize=PN_SIZE,
                           markeredgecolor='blue',
                           markeredgewidth=2.0,
                           markerfacecolor='none')
            for k in range(len(zz)):  # plot zero "stems"
                self.ax3d.plot([zz[k].real, zz[k].real],
                               [zz[k].imag, zz[k].imag], [bottom, zlevel],
                               linewidth=1,
                               color='b')

            # Plot the poles at |H(z_p)| = plevel with "stems":
            self.ax3d.plot(np.real(pp),
                           np.imag(pp),
                           plevel_top,
                           'x',
                           markersize=PN_SIZE,
                           markeredgewidth=2.0,
                           markeredgecolor='red')
            for k in range(len(pp)):  # plot pole "stems"
                self.ax3d.plot([pp[k].real, pp[k].real],
                               [pp[k].imag, pp[k].imag],
                               [plevel_btm, plevel_top],
                               linewidth=1,
                               color='r')

        # ===============================================================
        # 3D-Plots of |H(z)| clipped between |H(z)| = top
        # ===============================================================

        m_cb = cm.ScalarMappable(
            cmap=cmap)  # normalized proxy object that is mappable
        m_cb.set_array(Hmag)  # for colorbar

        # ---------------------------------------------------------------
        # 3D-mesh plot
        # ---------------------------------------------------------------
        if self.cmbMode3D.currentText() == 'Mesh':
            # fig_mlab = mlab.figure(fgcolor=(0., 0., 0.), bgcolor=(1, 1, 1))
            # self.ax3d.set_zlim(0,2)
            self.ax3d.plot_wireframe(self.x,
                                     self.y,
                                     Hmag,
                                     rstride=5,
                                     cstride=stride,
                                     linewidth=1,
                                     color='gray')

        # ---------------------------------------------------------------
        # 3D-surface plot
        # ---------------------------------------------------------------
        # http://stackoverflow.com/questions/28232879/phong-shading-for-shiny-python-3d-surface-plots
        elif self.cmbMode3D.currentText() == 'Surf':
            if MLAB:
                # Mayavi
                surf = mlab.surf(self.x,
                                 self.y,
                                 H_mag,
                                 colormap='RdYlBu',
                                 warp_scale='auto')
                # Change the visualization parameters.
                surf.actor.property.interpolation = 'phong'
                surf.actor.property.specular = 0.1
                surf.actor.property.specular_power = 5
                #                s = mlab.contour_surf(self.x, self.y, Hmag, contour_z=0)
                mlab.show()

            else:
                if self.but_lighting.isChecked():
                    ls = LightSource(azdeg=0,
                                     altdeg=65)  # Create light source object
                    rgb = ls.shade(
                        Hmag, cmap=cmap)  # Shade data, creating an rgb array
                    cmap_surf = None
                else:
                    rgb = None
                    cmap_surf = cmap

    #            s = self.ax3d.plot_surface(self.x, self.y, Hmag,
    #                    alpha=OPT_3D_ALPHA, rstride=1, cstride=1, cmap=cmap,
    #                    linewidth=0, antialiased=False, shade=True, facecolors = rgb)
    #            s.set_edgecolor('gray')
                s = self.ax3d.plot_surface(self.x,
                                           self.y,
                                           Hmag,
                                           alpha=alpha,
                                           rstride=1,
                                           cstride=1,
                                           linewidth=0,
                                           antialiased=False,
                                           facecolors=rgb,
                                           cmap=cmap_surf,
                                           shade=True)
                s.set_edgecolor(None)
        # ---------------------------------------------------------------
        # 3D-Contour plot
        # ---------------------------------------------------------------
        elif self.cmbMode3D.currentText() == 'Contour':
            s = self.ax3d.contourf3D(self.x,
                                     self.y,
                                     Hmag,
                                     NL,
                                     alpha=alpha,
                                     cmap=cmap)

        # ---------------------------------------------------------------
        # 2D-Contour plot
        # TODO: 2D contour plots do not plot correctly together with 3D plots in
        #       current matplotlib 1.4.3 -> disable them for now
        # TODO: zdir = x / y delivers unexpected results -> rather plot max(H)
        #       along the other axis?
        # TODO: colormap is created depending on the zdir = 'z' contour plot
        #       -> set limits of (all) other plots manually?
        if self.but_contour_2d.isChecked():
            #            self.ax3d.contourf(x, y, Hmag, 20, zdir='x', offset=xmin,
            #                         cmap=cmap, alpha = alpha)#, vmin = bottom)#, vmax = top, vmin = bottom)
            #            self.ax3d.contourf(x, y, Hmag, 20, zdir='y', offset=ymax,
            #                         cmap=cmap, alpha = alpha)#, vmin = bottom)#, vmax = top, vmin = bottom)
            s = self.ax3d.contourf(self.x,
                                   self.y,
                                   Hmag,
                                   NL,
                                   zdir='z',
                                   offset=bottom - (top - bottom) * 0.05,
                                   cmap=cmap,
                                   alpha=alpha)

        # plot colorbar for suitable plot modes
        if self.but_colbar.isChecked() and (
                self.but_contour_2d.isChecked()
                or str(self.cmbMode3D.currentText()) in {'Contour', 'Surf'}):
            self.colb = self.mplwidget.fig.colorbar(m_cb,
                                                    ax=self.ax3d,
                                                    shrink=0.8,
                                                    aspect=20,
                                                    pad=0.02,
                                                    fraction=0.08)

        # ----------------------------------------------------------------------
        # Set view limits and labels
        # ----------------------------------------------------------------------
        if not self.mplwidget.mplToolbar.a_lk.isChecked():
            self.ax3d.set_xlim3d(self.xmin, self.xmax)
            self.ax3d.set_ylim3d(self.ymin, self.ymax)
            self.ax3d.set_zlim3d(bottom, top)
        else:
            self._restore_axes()

        self.ax3d.set_xlabel('Re')  #(fb.fil[0]['plt_fLabel'])
        self.ax3d.set_ylabel(
            'Im'
        )  #(r'$ \tau_g(\mathrm{e}^{\mathrm{j} \Omega}) / T_S \; \rightarrow $')
        #        self.ax3d.set_zlabel(r'$|H(z)|\; \rightarrow $')
        self.ax3d.set_title(
            r'3D-Plot of $|H(\mathrm{e}^{\mathrm{j} \Omega})|$ and $|H(z)|$')

        self.redraw()

# ------------------------------------------------------------------------------

    def redraw(self):
        """
        Redraw the canvas when e.g. the canvas size has changed
        """
        self.mplwidget.redraw()
示例#17
0
文件: plot_pz.py 项目: zstechly/pyfda
    def _construct_UI(self):
        """
        Intitialize the widget, consisting of:
        - Matplotlib widget with NavigationToolbar
        - Frame with control elements
        """
        self.chkHf = QCheckBox("Show |H(f)|", self)
        self.chkHf.setToolTip(
            "<span>Display |H(f)| around unit circle.</span>")
        self.chkHf.setEnabled(True)

        self.chkHfLog = QCheckBox("Log. Scale", self)
        self.chkHfLog.setToolTip("<span>Log. scale for |H(f)|.</span>")
        self.chkHfLog.setEnabled(True)

        self.diaRad_Hf = QDial(self)
        self.diaRad_Hf.setRange(2., 10.)
        self.diaRad_Hf.setValue(2)
        self.diaRad_Hf.setTracking(False)  # produce less events when turning
        self.diaRad_Hf.setFixedHeight(30)
        self.diaRad_Hf.setFixedWidth(30)
        self.diaRad_Hf.setWrapping(False)
        self.diaRad_Hf.setToolTip(
            "<span>Set max. radius for |H(f)| plot.</span>")

        self.lblRad_Hf = QLabel("Radius", self)

        self.chkFIR_P = QCheckBox("Plot FIR Poles", self)
        self.chkFIR_P.setToolTip("<span>Show FIR poles at the origin.</span>")
        self.chkFIR_P.setChecked(True)

        layHControls = QHBoxLayout()
        layHControls.addWidget(self.chkHf)
        layHControls.addWidget(self.chkHfLog)
        layHControls.addWidget(self.diaRad_Hf)
        layHControls.addWidget(self.lblRad_Hf)
        layHControls.addStretch(10)
        layHControls.addWidget(self.chkFIR_P)

        #----------------------------------------------------------------------
        #               ### frmControls ###
        #
        # This widget encompasses all control subwidgets
        #----------------------------------------------------------------------
        self.frmControls = QFrame(self)
        self.frmControls.setObjectName("frmControls")
        self.frmControls.setLayout(layHControls)

        #----------------------------------------------------------------------
        #               ### mplwidget ###
        #
        # main widget, encompassing the other widgets
        #----------------------------------------------------------------------
        self.mplwidget = MplWidget(self)
        self.mplwidget.layVMainMpl.addWidget(self.frmControls)
        self.mplwidget.layVMainMpl.setContentsMargins(*params['wdg_margins'])
        self.setLayout(self.mplwidget.layVMainMpl)

        self.init_axes()

        self.draw()  # calculate and draw poles and zeros

        #----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.sig_rx.connect(self.process_sig_rx)
        #----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.mplwidget.mplToolbar.sig_tx.connect(self.process_sig_rx)
        self.chkHf.clicked.connect(self.draw)
        self.chkHfLog.clicked.connect(self.draw)
        self.diaRad_Hf.valueChanged.connect(self.draw)
        self.chkFIR_P.clicked.connect(self.draw)
示例#18
0
    def _construct_UI(self, **kwargs):
        """
        Construct widget from quantization dict, individual settings and
        the default dict below """

        # default settings
        dict_ui = {
            'wdg_name': 'ui_w',
            'label': 'WI.WF',
            'lbl_sep': '.',
            'max_led_width': 30,
            'WI': 0,
            'WI_len': 2,
            'tip_WI': 'Number of integer bits',
            'WF': 15,
            'WF_len': 2,
            'tip_WF': 'Number of fractional bits',
            'enabled': True,
            'visible': True,
            'fractional': True,
            'combo_visible': False,
            'combo_items': ['auto', 'full', 'man'],
            'tip_combo': 'Calculate Acc. width.',
            'lock_visible': False,
            'tip_lock': 'Lock input/output quantization.'
        }  #: default values

        if self.q_dict:
            dict_ui.update(self.q_dict)

        for k, v in kwargs.items():
            if k not in dict_ui:
                logger.warning("Unknown key {0}".format(k))
            else:
                dict_ui.update({k: v})

        self.wdg_name = dict_ui['wdg_name']

        if not dict_ui['fractional']:
            dict_ui['WF'] = 0
        self.WI = dict_ui['WI']
        self.WF = dict_ui['WF']
        self.W = int(self.WI + self.WF + 1)
        if self.q_dict:
            self.q_dict.update({'WI': self.WI, 'WF': self.WF, 'W': self.W})
        else:
            self.q_dict = {'WI': self.WI, 'WF': self.WF, 'W': self.W}

        lblW = QLabel(to_html(dict_ui['label'], frmt='bi'), self)

        self.cmbW = QComboBox(self)
        self.cmbW.addItems(dict_ui['combo_items'])
        self.cmbW.setVisible(dict_ui['combo_visible'])
        self.cmbW.setToolTip(dict_ui['tip_combo'])
        self.cmbW.setObjectName("cmbW")

        self.butLock = QPushButton(self)
        self.butLock.setCheckable(True)
        self.butLock.setChecked(False)
        self.butLock.setVisible(dict_ui['lock_visible'])
        self.butLock.setToolTip(dict_ui['tip_lock'])

        self.ledWI = QLineEdit(self)
        self.ledWI.setToolTip(dict_ui['tip_WI'])
        self.ledWI.setMaxLength(dict_ui['WI_len'])  # maximum of 2 digits
        self.ledWI.setFixedWidth(
            dict_ui['max_led_width'])  # width of lineedit in points
        self.ledWI.setObjectName("WI")

        lblDot = QLabel(dict_ui['lbl_sep'], self)
        lblDot.setVisible(dict_ui['fractional'])

        self.ledWF = QLineEdit(self)
        self.ledWF.setToolTip(dict_ui['tip_WF'])
        self.ledWF.setMaxLength(dict_ui['WI_len'])  # maximum of 2 digits
        self.ledWF.setFixedWidth(
            dict_ui['max_led_width'])  # width of lineedit in points
        self.ledWF.setVisible(dict_ui['fractional'])
        self.ledWF.setObjectName("WF")

        layH = QHBoxLayout()
        layH.addWidget(lblW)
        layH.addStretch()
        layH.addWidget(self.cmbW)
        layH.addWidget(self.butLock)
        layH.addWidget(self.ledWI)
        layH.addWidget(lblDot)
        layH.addWidget(self.ledWF)
        layH.setContentsMargins(0, 0, 0, 0)

        frmMain = QFrame(self)
        frmMain.setLayout(layH)

        layVMain = QVBoxLayout()  # Widget main layout
        layVMain.addWidget(frmMain)
        layVMain.setContentsMargins(0, 5, 0, 0)  # *params['wdg_margins'])

        self.setLayout(layVMain)

        # ----------------------------------------------------------------------
        # INITIAL SETTINGS
        # ----------------------------------------------------------------------
        self.ledWI.setText(qstr(dict_ui['WI']))
        self.ledWF.setText(qstr(dict_ui['WF']))

        frmMain.setEnabled(dict_ui['enabled'])
        frmMain.setVisible(dict_ui['visible'])

        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.ledWI.editingFinished.connect(self.ui2dict)
        self.ledWF.editingFinished.connect(self.ui2dict)
        self.butLock.clicked.connect(self.butLock_clicked)
        self.cmbW.currentIndexChanged.connect(self.ui2dict)

        # initialize button icon
        self.butLock_clicked(self.butLock.isChecked())
示例#19
0
class Input_Specs(QWidget):
    """
    Build widget for entering all filter specs
    """
    # class variables (shared between instances if more than one exists)
    sig_rx_local = pyqtSignal(
        object)  # incoming from subwidgets -> process_sig_rx_local

    sig_rx = pyqtSignal(object)  # incoming from subwidgets -> process_sig_rx
    sig_tx = pyqtSignal(object)  # from process_sig_rx: propagate local signals
    from pyfda.libs.pyfda_qt_lib import emit

    def __init__(self, parent=None):
        super(Input_Specs, self).__init__(parent)
        self.tab_label = "Specs"
        self.tool_tip = "Enter and view filter specifications."

        self._construct_UI()

    def process_sig_rx_local(self, dict_sig=None):
        """
        Flag signals coming in from local subwidgets with `propagate=True` before
        proceeding with processing in `process_sig_rx`.
        """
        self.process_sig_rx(dict_sig, propagate=True)

    def process_sig_rx(self, dict_sig=None, propagate=False):
        """
        Process signals coming in via subwidgets and sig_rx

        All signals terminate here unless the flag `propagate=True`.

        The sender name of signals coming in from local subwidgets is changed to
        its parent widget (`input_specs`) to prevent infinite loops.

        """
        # logger.debug(f"SIG_RX: {pprint_log(dict_sig)}")
        if dict_sig['id'] == id(self):
            # logger.warning(f"Stopped infinite loop:\n\tPropagate = {propagate}\
            #               \n{pprint_log(dict_sig)}")
            return
        elif 'view_changed' in dict_sig:
            self.f_specs.load_dict()
            self.t_specs.load_dict()
        elif 'specs_changed' in dict_sig:
            self.f_specs.sort_dict_freqs()
            self.t_specs.f_specs.sort_dict_freqs()
            self.color_design_button("changed")
        elif 'filt_changed' in dict_sig:
            # Changing the filter design requires updating UI because number or
            # kind of input fields changes -> call update_UI
            self.update_UI(dict_sig)
        elif 'data_changed' in dict_sig:
            if dict_sig['data_changed'] == 'filter_loaded':
                """
                Called when a new filter has been LOADED:
                Pass new filter data from the global filter dict by
                specifically calling SelectFilter.load_dict()
                """
                self.sel_fil.load_dict()  # update select_filter widget
            # Pass new filter data from the global filter dict & set button = "ok"
            self.load_dict()

        if propagate:
            # local signals are propagated with the name of this widget,
            # global signals terminate here
            dict_sig.update({'class': self.__class__.__name__})
            self.emit(dict_sig)

    def _construct_UI(self):
        """
        Construct User Interface from all input subwidgets
        """
        self.butLoadFilt = QPushButton("LOAD FILTER", self)
        self.butLoadFilt.setToolTip("Load filter from disk")
        self.butSaveFilt = QPushButton("SAVE FILTER", self)
        self.butSaveFilt.setToolTip("Save filter todisk")
        layHButtons1 = QHBoxLayout()
        layHButtons1.addWidget(self.butLoadFilt)  # <Load Filter> button
        layHButtons1.addWidget(self.butSaveFilt)  # <Save Filter> button
        layHButtons1.setContentsMargins(*params['wdg_margins_spc'])

        self.butDesignFilt = QPushButton("DESIGN FILTER", self)
        self.butDesignFilt.setToolTip("Design filter with chosen specs")
        self.butQuit = QPushButton("Quit", self)
        self.butQuit.setToolTip("Exit pyfda tool")
        layHButtons2 = QHBoxLayout()
        layHButtons2.addWidget(self.butDesignFilt)  # <Design Filter> button
        layHButtons2.addWidget(self.butQuit)  # <Quit> button
        layHButtons2.setContentsMargins(*params['wdg_margins'])

        # Subwidget for selecting filter with response type rt (LP, ...),
        #    filter type ft (IIR, ...) and filter class fc (cheby1, ...)
        self.sel_fil = select_filter.SelectFilter(self)
        self.sel_fil.setObjectName("select_filter")
        self.sel_fil.sig_tx.connect(self.sig_rx_local)

        # Subwidget for selecting the frequency unit and range
        self.f_units = freq_units.FreqUnits(self)
        self.f_units.setObjectName("freq_units")
        self.f_units.sig_tx.connect(self.sig_rx_local)

        # Changing the frequency unit requires re-display of frequency specs
        # but it does not influence the actual specs (no specsChanged )
        # Activating the "Sort" button emits 'view_changed'?specs_changed'?, requiring
        # sorting and storing the frequency entries

        # Changing filter parameters / specs requires reloading of parameters
        # in other hierarchy levels, e.g. in the plot tabs

        # Subwidget for Frequency Specs
        self.f_specs = freq_specs.FreqSpecs(self)
        self.f_specs.setObjectName("freq_specs")
        self.f_specs.sig_tx.connect(self.sig_rx_local)
        self.sig_tx.connect(self.f_specs.sig_rx)
        # Subwidget for Amplitude Specs
        self.a_specs = amplitude_specs.AmplitudeSpecs(self)
        self.a_specs.setObjectName("amplitude_specs")
        self.a_specs.sig_tx.connect(self.sig_rx_local)
        # Subwidget for Weight Specs
        self.w_specs = weight_specs.WeightSpecs(self)
        self.w_specs.setObjectName("weight_specs")
        self.w_specs.sig_tx.connect(self.sig_rx_local)
        # Subwidget for target specs (frequency and amplitude)
        self.t_specs = target_specs.TargetSpecs(self,
                                                title="Target Specifications")
        self.t_specs.setObjectName("target_specs")
        self.t_specs.sig_tx.connect(self.sig_rx_local)
        self.sig_tx.connect(self.t_specs.sig_rx)
        # Subwidget for displaying infos on the design method
        self.lblMsg = QLabel(self)
        self.lblMsg.setWordWrap(True)
        layVMsg = QVBoxLayout()
        layVMsg.addWidget(self.lblMsg)

        self.frmMsg = QFrame(self)
        self.frmMsg.setLayout(layVMsg)
        layVFrm = QVBoxLayout()
        layVFrm.addWidget(self.frmMsg)
        layVFrm.setContentsMargins(*params['wdg_margins'])

        # ----------------------------------------------------------------------
        # LAYOUT for input specifications and buttons
        # ----------------------------------------------------------------------
        layVMain = QVBoxLayout(self)
        layVMain.addLayout(layHButtons1)  # <Load> & <Save> buttons
        layVMain.addWidget(self.sel_fil)  # Design method (IIR - ellip, ...)
        layVMain.addLayout(layHButtons2)  # <Design> & <Quit> buttons
        layVMain.addWidget(self.f_units)  # Frequency units
        layVMain.addWidget(self.t_specs)  # Target specs
        layVMain.addWidget(self.f_specs)  # Freq. specifications
        layVMain.addWidget(self.a_specs)  # Amplitude specs
        layVMain.addWidget(self.w_specs)  # Weight specs
        layVMain.addLayout(layVFrm)  # Text message

        layVMain.addStretch()

        layVMain.setContentsMargins(*params['wdg_margins'])

        self.setLayout(layVMain)  # main layout of widget

        # ----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.sig_rx.connect(self.process_sig_rx)
        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.sig_rx_local.connect(self.process_sig_rx_local)
        self.butLoadFilt.clicked.connect(lambda: load_filter(self))
        self.butSaveFilt.clicked.connect(lambda: save_filter(self))
        self.butDesignFilt.clicked.connect(self.start_design_filt)
        self.butQuit.clicked.connect(self.quit_program)  # emit 'quit_program'
        # ----------------------------------------------------------------------

        self.update_UI()  # first time initialization
        self.start_design_filt()  # design first filter using default values

# ------------------------------------------------------------------------------

    def update_UI(self, dict_sig={}):
        """
        update_UI is called every time the filter design method or order
        (min / man) has been changed as this usually requires a different set of
        frequency and amplitude specs.

        At this time, the actual filter object instance has been created from
        the name of the design method (e.g. 'cheby1') in select_filter.py.
        Its handle has been stored in fb.fil_inst.

        fb.fil[0] (currently selected filter) is read, then general information
        for the selected filter type and order (min/man) is gathered from
        the filter tree [fb.fil_tree], i.e. which parameters are needed, which
        widgets are visible and which message shall be displayed.

        Then, the UIs of all subwidgets are updated using their "update_UI" method.
        """
        rt = fb.fil[0]['rt']  # e.g. 'LP'
        ft = fb.fil[0]['ft']  # e.g. 'FIR'
        fc = fb.fil[0]['fc']  # e.g. 'equiripple'
        fo = fb.fil[0]['fo']  # e.g. 'man'

        # the keys of the all_widgets dict are the names of the subwidgets,
        # the values are a tuple with the corresponding parameters
        all_widgets = fb.fil_tree[rt][ft][fc][fo]

        # logger.debug("rt: {0} - ft: {1} - fc: {2} - fo: {3}".format(rt, ft, fc, fo))
        # logger.debug("fb.fil_tree[rt][ft][fc][fo]:\n{0}".format(fb.fil_tree[rt][ft][fc][fo]))

        # update filter order subwidget, called by select_filter:
        # self.sel_fil.load_filter_order()

        # TARGET SPECS: is widget in the dict and is it visible (marker != 'i')?
        if ('tspecs' in all_widgets and len(all_widgets['tspecs']) > 1
                and all_widgets['tspecs'][0] != 'i'):
            self.t_specs.setVisible(True)
            # disable all subwidgets with marker 'd':
            self.t_specs.setEnabled(all_widgets['tspecs'][0] != 'd')
            self.t_specs.update_UI(new_labels=all_widgets['tspecs'][1])
        else:
            self.t_specs.hide()

        # FREQUENCY SPECS
        if ('fspecs' in all_widgets and len(all_widgets['fspecs']) > 1
                and all_widgets['fspecs'][0] != 'i'):
            self.f_specs.setVisible(True)
            self.f_specs.setEnabled(all_widgets['fspecs'][0] != 'd')
            self.f_specs.update_UI(new_labels=all_widgets['fspecs'])
        else:
            self.f_specs.hide()

        # AMPLITUDE SPECS
        if ('aspecs' in all_widgets and len(all_widgets['aspecs']) > 1
                and all_widgets['aspecs'][0] != 'i'):
            self.a_specs.setVisible(True)
            self.a_specs.setEnabled(all_widgets['aspecs'][0] != 'd')
            self.a_specs.update_UI(new_labels=all_widgets['aspecs'])
        else:
            self.a_specs.hide()

        # WEIGHT SPECS
        if ('wspecs' in all_widgets and len(all_widgets['wspecs']) > 1
                and all_widgets['wspecs'][0] != 'i'):
            self.w_specs.setVisible(True)
            self.w_specs.setEnabled(all_widgets['wspecs'][0] != 'd')
            self.w_specs.update_UI(new_labels=all_widgets['wspecs'])
        else:
            self.w_specs.hide()

        # MESSAGE PANE
        if ('msg' in all_widgets and len(all_widgets['msg']) > 1
                and all_widgets['msg'][0] != 'i'):
            self.frmMsg.setVisible(True)
            self.frmMsg.setEnabled(all_widgets['msg'][0] != 'd')
            self.lblMsg.setText(all_widgets['msg'][1:][0])
        else:
            self.frmMsg.hide()

        # Update state of "DESIGN FILTER" button
        # It is disabled for "Manual_IIR" and "Manual_FIR" filter classes
        self.color_design_button("changed")

# ------------------------------------------------------------------------------

    def load_dict(self):
        """
        Reload all specs/parameters entries from global dict fb.fil[0],
        using the "load_dict" methods of the individual classes
        """
        self.sel_fil.load_dict()  # select filter widget
        self.f_units.load_dict()  # frequency units widget
        self.f_specs.load_dict()  # frequency specification widget
        self.a_specs.load_dict()  # magnitude specs with unit
        self.w_specs.load_dict()  # weight specification
        self.t_specs.load_dict()  # target specs

        self.color_design_button("ok")

# ------------------------------------------------------------------------------

    def start_design_filt(self):
        """
        Start the actual filter design process:

        - store the entries of all input widgets in the global filter dict.
        - call the design method, passing the whole dictionary as the
          argument: let the design method pick the needed specs
        - update the input widgets in case weights, corner frequencies etc.
          have been changed by the filter design method
        - the plots are updated via signal-slot connection
        """

        try:
            logger.info(
                "Start filter design using method\n\t'{0}.{1}{2}'".format(
                    str(fb.fil[0]['fc']), str(fb.fil[0]['rt']),
                    str(fb.fil[0]['fo'])))

            # ----------------------------------------------------------------------
            # A globally accessible instance fb.fil_inst of selected filter class fc
            # has been instantiated in InputFilter.set_design_method, now
            # call the method specified in the filter dict fil[0].

            # The name of the instance method is constructed from the response
            # type (e.g. 'LP') and the filter order (e.g. 'man'), giving e.g. 'LPman'.
            # The filter is designed by passing the specs in fil[0] to the method,
            # resulting in e.g. cheby1.LPman(fb.fil[0]) and writing back coefficients,
            # P/Z etc. back to fil[0].

            err = ff.fil_factory.call_fil_method(
                fb.fil[0]['rt'] + fb.fil[0]['fo'], fb.fil[0])
            # this is the same as e.g.
            # from pyfda.filter_design import ellip
            # inst = ellip.ellip()
            # inst.LPmin(fb.fil[0])
            # -----------------------------------------------------------------------

            if err > 0:
                self.color_design_button("error")
            elif err == -1:  # filter design cancelled by user
                return
            else:
                # Update filter order. weights and freq display in case they
                # have been changed by the design algorithm
                self.sel_fil.load_filter_order()
                self.w_specs.load_dict()
                self.f_specs.load_dict()
                self.color_design_button("ok")

                self.emit({'data_changed': 'filter_designed'})
                logger.info('Designed filter with order = {0}'.format(
                    str(fb.fil[0]['N'])))
# =============================================================================
#                 logger.debug("Results:\n"
#                     "F_PB = %s, F_SB = %s "
#                     "Filter order N = %s\n"
#                     "NDim fil[0]['ba'] = %s\n\n"
#                     "b,a = %s\n\n"
#                     "zpk = %s\n",
#                     str(fb.fil[0]['F_PB']), str(fb.fil[0]['F_SB']), str(fb.fil[0]['N']),
#                     str(np.ndim(fb.fil[0]['ba'])), pformat(fb.fil[0]['ba']),
#                     pformat(fb.fil[0]['zpk']))
#
# =============================================================================
        except Exception as e:
            if ('__doc__' in str(e)):
                logger.warning("Filter design:\n %s\n %s\n", e.__doc__, e)
            else:
                logger.warning("{0}".format(e))
            self.color_design_button("error")

    def color_design_button(self, state):
        man = "manual" in fb.fil[0]['fc'].lower()
        self.butDesignFilt.setDisabled(man)
        if man:
            state = 'ok'
        fb.design_filt_state = state
        qstyle_widget(self.butDesignFilt, state)

# ------------------------------------------------------------------------------

    def quit_program(self):
        """
        When <QUIT> button is pressed, send 'quit_program'
        """
        self.emit({'quit_program': ''})
示例#20
0
    def __init__(self, canv, mpl_widget, *args, **kwargs):
        NavigationToolbar.__init__(self, canv, mpl_widget, *args, **kwargs)

        #self.canvas = canv
        self.mpl_widget = mpl_widget


#------------------------------------------------------------------------------

        #---------------- Construct Toolbar using QRC icons -------------------
        # ENABLE:
#        self.a_en = self.addAction(QIcon(':/circle-x.svg'), 'Enable Update', self.enable_plot)
#        self.a_en.setToolTip('Enable / disable plot')
#        self.a_en.setCheckable(True)
#        self.a_en.setChecked(True)
##        self.a.setEnabled(False)

 #       self.addSeparator() #---------------------------------------------


        #---------------------------------------------
        # HOME:
        #---------------------------------------------
        self.a_ho = self.addAction(QIcon(':/home.svg'), 'Home', self.home)
        self.a_ho.setToolTip('Reset zoom')
        # BACK:
        self.a_ba = self.addAction(QIcon(':/action-undo.svg'), 'Back', self.back)
        self.a_ba.setToolTip('Back to previous zoom')

        #---------------------------------------------
        # FORWARD:
        #---------------------------------------------
        self.a_fw = self.addAction(QIcon(':/action-redo.svg'), 'Forward', self.forward)
        self.a_fw.setToolTip('Forward to next zoom')

        #---------------------------------------------
        self.addSeparator()
        #---------------------------------------------

        #---------------------------------------------
        # PAN:
        #---------------------------------------------
        self.a_pa = self.addAction(QIcon(':/move.svg'), 'Pan', self.pan)
        self.a_pa.setToolTip("Pan axes with left mouse button, zoom with right,\n"
        "pressing x / y / CTRL keys constrains to horizontal / vertical / diagonal movements.")
        self._actions['pan'] = self.a_pa
        self.a_pa.setCheckable(True)

        #---------------------------------------------
        # ZOOM RECTANGLE:
        #---------------------------------------------
        self.a_zo = self.addAction(QIcon(':/magnifying-glass.svg'), 'Zoom', self.zoom)
        self.a_zo.setToolTip("Zoom in / out to rectangle with left / right mouse button,\n"
        "pressing x / y keys constrains zoom to horizontal / vertical direction.")
        self._actions['zoom'] = self.a_zo
        self.a_zo.setCheckable(True)

        #---------------------------------------------
        # FULL VIEW:
        #---------------------------------------------
        self.a_fv = self.addAction(QIcon(':/fullscreen-enter.svg'), \
            'Zoom full extent', self.mpl_widget.plt_full_view)
        self.a_fv.setToolTip('Zoom to full extent')

        #---------------------------------------------
        # LOCK ZOOM:
        #---------------------------------------------
        self.a_lk = self.addAction(QIcon(':/lock-unlocked.svg'), \
                                   'Lock zoom', self.toggle_lock_zoom)
        self.a_lk.setCheckable(True)
        self.a_lk.setChecked(False)
        self.a_lk.setToolTip('Lock / unlock current zoom setting')

        #---------------------------------------------
        # TRACKING CURSOR:
        #---------------------------------------------
        if MPL_CURS:
            self.a_cr = self.addAction(QIcon(':/map-marker.svg'), \
                                       'Cursor', self.mpl_widget.toggle_cursor)
            self.a_cr.setCheckable(True)
            self.a_cr.setChecked(False)
            self.a_cr.setToolTip('Tracking Cursor')

        # --------------------------------------
        self.addSeparator()
        # --------------------------------------

        #---------------------------------------------
        # GRID:
        #---------------------------------------------
        self.a_gr = self.addAction(QIcon(':/grid_coarse.svg'), 'Grid', self.cycle_draw_grid)
        self.a_gr.setToolTip('Cycle grid: Off / coarse / fine')
        self.a_gr_state = 2  # 0: off, 1: major, 2: minor

        #---------------------------------------------
        # REDRAW:
        #---------------------------------------------
        #self.a_rd = self.addAction(QIcon(':/brush.svg'), 'Redraw', self.mpl_widget.redraw)
        #self.a_rd.setToolTip('Redraw Plot')

        # --------------------------------------
        # SAVE:
        # --------------------------------------
        self.a_sv = self.addAction(QIcon(':/save.svg'), 'Save', self.save_figure)
        self.a_sv.setToolTip('Save the figure')

        self.cb = fb.clipboard

        self.a_cb = self.addAction(QIcon(':/clipboard.svg'), 'To Clipboard', self.mpl2Clip)
        self.a_cb.setToolTip('Copy to clipboard in png format.')
        self.a_cb.setShortcut("Ctrl+C")

        # --------------------------------------
        self.addSeparator()
        # --------------------------------------

        # --------------------------------------
        # SETTINGS:
        # --------------------------------------
        if figureoptions is not None:
            self.a_op = self.addAction(QIcon(':/settings.svg'), 'Customize', self.edit_parameters)
            self.a_op.setToolTip('Edit curves line and axes parameters')

#        self.buttons = {}

        # --------------------------------------
        # PRINT COORDINATES (only when mplcursors is not available):
        # --------------------------------------
        # Add the x,y location widget at the right side of the toolbar
        # The stretch factor is 1 which means any resizing of the toolbar
        # will resize this label instead of the buttons.
        # --------------------------------------
        if not MPL_CURS and self.coordinates:
            self.addSeparator()
            self.locLabel = QLabel("", self)
            self.locLabel.setAlignment(
                    QtCore.Qt.AlignRight | QtCore.Qt.AlignTop)
            self.locLabel.setSizePolicy(
                QSizePolicy(QSizePolicy.Expanding,
                                  QSizePolicy.Ignored))
            labelAction = self.addWidget(self.locLabel)
            labelAction.setVisible(True)

        #---------------------------------------------
        # HELP:
        #---------------------------------------------
        self.a_he = self.addAction(QIcon(':/help.svg'), 'help', self.help)
        self.a_he.setToolTip('Open help page from https://pyfda.rtfd.org in browser')
        self.a_he.setDisabled(True)
示例#21
0
    def _construct_UI(self):
        """
        Intitialize the widget, consisting of:
        - top chkbox row
        - coefficient table
        - two bottom rows with action buttons
        """
        self.bfont = QFont()
        self.bfont.setBold(True)
        self.bifont = QFont()
        self.bifont.setBold(True)
        self.bifont.setItalic(True)
#        q_icon_size = QSize(20, 20) # optional, size is derived from butEnable

        #######################################################################
        # frmMain
        #
        # This frame contains all the buttons
        #######################################################################
        # ---------------------------------------------
        # layHDisplay
        #
        # UI Elements for controlling the display
        # ---------------------------------------------
        self.butEnable = PushButton(self, icon=QIcon(':/circle-check.svg'), checked=True)
        q_icon_size = self.butEnable.iconSize()  # <- uncomment this for manual sizing
        self.butEnable.setToolTip(
            "<span>Show / hide filter coefficients in an editable table."
            " For high order systems, table display might be slow.</span>")

        fix_formats = ['Dec', 'Hex', 'Bin', 'CSD']
        self.cmbFormat = QComboBox(self)
        model = self.cmbFormat.model()
        item = QtGui.QStandardItem('Float')
        item.setData('child', Qt.AccessibleDescriptionRole)
        model.appendRow(item)

        item = QtGui.QStandardItem('Fixp.:')
        item.setData('parent', Qt.AccessibleDescriptionRole)
        item.setData(0, QtGui.QFont.Bold)
        item.setFlags(item.flags() & ~Qt.ItemIsEnabled)  # | Qt.ItemIsSelectable))
        model.appendRow(item)

        for idx in range(len(fix_formats)):
            item = QtGui.QStandardItem(fix_formats[idx])
#            item.setForeground(QtGui.QColor('red'))
            model.appendRow(item)

        self.cmbFormat.insertSeparator(1)
        qset_cmb_box(self.cmbFormat, 'float')
        self.cmbFormat.setToolTip('Set the display format.')
        self.cmbFormat.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        self.spnDigits = QSpinBox(self)
        self.spnDigits.setRange(0, 16)
        self.spnDigits.setValue(params['FMT_ba'])
        self.spnDigits.setToolTip("Number of digits to display.")
        self.lblDigits = QLabel("Digits", self)
        self.lblDigits.setFont(self.bifont)

        self.cmbQFrmt = QComboBox(self)
        q_formats = [('Norm. Frac.', 'qnfrac'), ('Integer', 'qint'),
                     ('Fractional', 'qfrac')]
        for q in q_formats:
            self.cmbQFrmt.addItem(*q)

        self.lbl_W = QLabel("W = ", self)
        self.lbl_W.setFont(self.bifont)

        self.ledW = QLineEdit(self)
        self.ledW.setToolTip("Specify total wordlength.")
        self.ledW.setText("16")
        self.ledW.setMaxLength(2)  # maximum of 2 digits
        self.ledW.setFixedWidth(30)  # width of lineedit in points(?)

        layHDisplay = QHBoxLayout()
        layHDisplay.setAlignment(Qt.AlignLeft)
        layHDisplay.addWidget(self.butEnable)
        layHDisplay.addWidget(self.cmbFormat)
        layHDisplay.addWidget(self.spnDigits)
        layHDisplay.addWidget(self.lblDigits)
        layHDisplay.addWidget(self.cmbQFrmt)
        layHDisplay.addWidget(self.lbl_W)
        layHDisplay.addWidget(self.ledW)
        layHDisplay.addStretch()

        #######################################################################
        # frmButtonsCoeffs
        #
        # This frame contains all buttons for manipulating coefficients
        #######################################################################
        # -----------------------------------------------------------------
        # layHButtonsCoeffs1
        #
        # UI Elements for loading / storing / manipulating cells and rows
        # -----------------------------------------------------------------
        self.cmbFilterType = QComboBox(self)
        self.cmbFilterType.setObjectName("comboFilterType")
        self.cmbFilterType.setToolTip(
            "<span>Select between IIR and FIR filter for manual entry."
            "Changing the type reloads the filter from the filter dict.</span>")
        self.cmbFilterType.addItems(["FIR", "IIR"])
        self.cmbFilterType.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        self.butAddCells = QPushButton(self)
        self.butAddCells.setIcon(QIcon(':/row_insert_above.svg'))
        self.butAddCells.setIconSize(q_icon_size)
        self.butAddCells.setToolTip(
            "<span>Select cells to insert a new cell above each selected cell. "
            "Use &lt;SHIFT&gt; or &lt;CTRL&gt; to select multiple cells. "
            "When nothing is selected, add a row at the end.</span>")

        self.butDelCells = QPushButton(self)
        self.butDelCells.setIcon(QIcon(':/row_delete.svg'))
        self.butDelCells.setIconSize(q_icon_size)
        self.butDelCells.setToolTip(
            "<span>Delete selected cell(s) from the table. "
            "Use &lt;SHIFT&gt; or &lt;CTRL&gt; to select multiple cells. "
            "When nothing is selected, delete the last row.</span>")

        self.butSave = QPushButton(self)
        self.butSave.setIcon(QIcon(':/upload.svg'))
        self.butSave.setIconSize(q_icon_size)
        self.butSave.setToolTip(
            "<span>Copy coefficient table to filter dict and update all plots"
            "and widgets.</span>")

        self.butLoad = QPushButton(self)
        self.butLoad.setIcon(QIcon(':/download.svg'))
        self.butLoad.setIconSize(q_icon_size)
        self.butLoad.setToolTip("Reload coefficient table from filter dict.")

        self.butClear = QPushButton(self)
        self.butClear.setIcon(QIcon(':/trash.svg'))
        self.butClear.setIconSize(q_icon_size)
        self.butClear.setToolTip("Clear all table entries.")

        self.butFromTable = QPushButton(self)
        self.butFromTable.setIconSize(q_icon_size)

        self.butToTable = QPushButton(self)
        self.butToTable.setIconSize(q_icon_size)

        self.but_csv_options = PushButton(self, icon=QIcon(':/settings.svg'),
                                          checked=False)
        self.but_csv_options.setIconSize(q_icon_size)
        self.but_csv_options.setToolTip(
            "<span>Select CSV format and whether "
            "to copy to/from clipboard or file.</span>")

        self._set_load_save_icons()  # initialize icon / button settings

        layHButtonsCoeffs1 = QHBoxLayout()
        layHButtonsCoeffs1.addWidget(self.cmbFilterType)
        layHButtonsCoeffs1.addWidget(self.butAddCells)
        layHButtonsCoeffs1.addWidget(self.butDelCells)
        layHButtonsCoeffs1.addWidget(self.butClear)
        layHButtonsCoeffs1.addWidget(self.butSave)
        layHButtonsCoeffs1.addWidget(self.butLoad)
        layHButtonsCoeffs1.addWidget(self.butFromTable)
        layHButtonsCoeffs1.addWidget(self.butToTable)
        layHButtonsCoeffs1.addWidget(self.but_csv_options)
        layHButtonsCoeffs1.addStretch()

        # ----------------------------------------------------------------------
        # layHButtonsCoeffs2
        #
        # Eps / set zero settings
        # ---------------------------------------------------------------------
        self.butSetZero = QPushButton("= 0", self)
        self.butSetZero.setToolTip(
            "<span>Set selected coefficients = 0 with a magnitude &lt; &epsilon;. "
            "When nothing is selected, test the whole table.</span>")
        self.butSetZero.setIconSize(q_icon_size)

        lblEps = QLabel(self)
        lblEps.setText("<b><i>for b, a</i> &lt;</b>")

        self.ledEps = QLineEdit(self)
        self.ledEps.setToolTip("Specify tolerance value.")

        layHButtonsCoeffs2 = QHBoxLayout()
        layHButtonsCoeffs2.addWidget(self.butSetZero)
        layHButtonsCoeffs2.addWidget(lblEps)
        layHButtonsCoeffs2.addWidget(self.ledEps)
        layHButtonsCoeffs2.addStretch()

        # -------------------------------------------------------------------
        # Now put the ButtonsCoeffs HBoxes into frmButtonsCoeffs
        # ---------------------------------------------------------------------
        layVButtonsCoeffs = QVBoxLayout()
        layVButtonsCoeffs.addLayout(layHButtonsCoeffs1)
        layVButtonsCoeffs.addLayout(layHButtonsCoeffs2)
        layVButtonsCoeffs.setContentsMargins(0, 5, 0, 0)
        # This frame encompasses all Quantization Settings
        self.frmButtonsCoeffs = QFrame(self)
        self.frmButtonsCoeffs.setLayout(layVButtonsCoeffs)

        # ######################################################################
        # frmQSettings
        #
        # This frame contains all quantization settings
        # ######################################################################
        # -------------------------------------------------------------------
        # layHW_Scale
        #
        # QFormat and scale settings
        # ---------------------------------------------------------------------
        lbl_Q = QLabel("Q =", self)
        lbl_Q.setFont(self.bifont)

        self.ledWI = QLineEdit(self)
        self.ledWI.setToolTip("Specify number of integer bits.")
        self.ledWI.setText("0")
        self.ledWI.setMaxLength(2)  # maximum of 2 digits
        self.ledWI.setFixedWidth(30)  # width of lineedit in points(?)

        self.lblDot = QLabel(".", self)  # class attribute, visibility is toggled
        self.lblDot.setFont(self.bfont)

        self.ledWF = QLineEdit(self)
        self.ledWF.setToolTip("Specify number of fractional bits.")
        self.ledWF.setText("15")
        self.ledWF.setMaxLength(2)  # maximum of 2 digits
#        self.ledWF.setFixedWidth(30) # width of lineedit in points(?)
        self.ledWF.setMaximumWidth(30)

        self.lblScale = QLabel("<b><i>Scale</i> =</b>", self)
        self.ledScale = QLineEdit(self)
        self.ledScale.setToolTip(
            "Set the scale for converting float to fixpoint representation.")
        self.ledScale.setText(str(1))
        self.ledScale.setEnabled(False)

        layHWI_WF = QHBoxLayout()
        layHWI_WF.addWidget(lbl_Q)
        layHWI_WF.addWidget(self.ledWI)
        layHWI_WF.addWidget(self.lblDot)
        layHWI_WF.addWidget(self.ledWF)
        layHWI_WF.addStretch()

        layHScale = QHBoxLayout()
        layHScale.addWidget(self.lblScale)
        layHScale.addWidget(self.ledScale)
        layHScale.addStretch()

        layHW_Scale = QHBoxLayout()
        layHW_Scale.addLayout(layHWI_WF)
        layHW_Scale.addLayout(layHScale)

        # -------------------------------------------------------------------
        # layGQOpt
        #
        # Quantization / Overflow / MSB / LSB settings
        # ---------------------------------------------------------------------
        lblQOvfl = QLabel("Ovfl.:", self)
        lblQOvfl.setFont(self.bifont)
        lblQuant = QLabel("Quant.:", self)
        lblQuant.setFont(self.bifont)

        self.cmbQOvfl = QComboBox(self)
        qOvfl = ['wrap', 'sat']
        self.cmbQOvfl.addItems(qOvfl)
        qset_cmb_box(self.cmbQOvfl, 'sat')
        self.cmbQOvfl.setToolTip("Select overflow behaviour.")
        # ComboBox size is adjusted automatically to fit the longest element
        self.cmbQOvfl.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        layHQOvflOpt = QHBoxLayout()
        layHQOvflOpt.addWidget(lblQOvfl)
        layHQOvflOpt.addWidget(self.cmbQOvfl)
        layHQOvflOpt.addStretch()

        self.cmbQuant = QComboBox(self)
        qQuant = ['none', 'round', 'fix', 'floor']
        self.cmbQuant.addItems(qQuant)
        qset_cmb_box(self.cmbQuant, 'round')
        self.cmbQuant.setToolTip("Select the kind of quantization.")
        self.cmbQuant.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        layHQuantOpt = QHBoxLayout()
        layHQuantOpt.addWidget(lblQuant)
        layHQuantOpt.addWidget(self.cmbQuant)
        layHQuantOpt.addStretch()

        self.butQuant = QPushButton(self)
        self.butQuant.setToolTip(
            "<span>Quantize selected coefficients / "
            "whole table with specified settings.</span>")
        self.butQuant.setIcon(QIcon(':/quantize.svg'))
        self.butQuant.setIconSize(q_icon_size)
        self.butQuant.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed)

        lblMSBtxt = QLabel(self)
        lblMSBtxt.setText("<b><i>MSB</i><sub>10</sub> =</b>")
        self.lblMSB = QLabel(self)
        layHMSB = QHBoxLayout()
        layHMSB.addWidget(lblMSBtxt)
        layHMSB.addWidget(self.lblMSB)
        layHMSB.addStretch()

        lblLSBtxt = QLabel(self)
        lblLSBtxt.setText("<b><i>LSB</i><sub>10</sub> =</b>")
        self.lblLSB = QLabel(self)
        layHLSB = QHBoxLayout()
        layHLSB.addWidget(lblLSBtxt)
        layHLSB.addWidget(self.lblLSB)
        layHLSB.addStretch()

        layGQOpt = QGridLayout()
        layGQOpt.addLayout(layHQOvflOpt, 0, 0)
        layGQOpt.addLayout(layHQuantOpt, 0, 1)
        layGQOpt.addWidget(self.butQuant, 0, 2, Qt.AlignCenter)
        layGQOpt.addLayout(layHMSB, 1, 0)
        layGQOpt.addLayout(layHLSB, 1, 1)

        # -------------------------------------------------------------------
        #   Display MAX
        # ---------------------------------------------------------------------
        lblMAXtxt = QLabel(self)
        lblMAXtxt.setText("<b><i>Max =</i></b>")
        self.lblMAX = QLabel(self)

        layHCoeffs_MAX = QHBoxLayout()
        layHCoeffs_MAX.addWidget(lblMAXtxt)
        layHCoeffs_MAX.addWidget(self.lblMAX)
        layHCoeffs_MAX.addStretch()

        #######################################################################
        # Now put all the coefficient HBoxes into frmQSettings
        # ---------------------------------------------------------------------
        layVButtonsQ = QVBoxLayout()
        layVButtonsQ.addLayout(layHW_Scale)
        layVButtonsQ.addLayout(layGQOpt)
        layVButtonsQ.addLayout(layHCoeffs_MAX)
        layVButtonsQ.setContentsMargins(0, 0, 0, 0)
        # This frame encompasses all Quantization Settings
        self.frmQSettings = QFrame(self)
        self.frmQSettings.setLayout(layVButtonsQ)

        #######################################################################
        # ########################  Main UI Layout ############################
        #######################################################################
        # layout for frame (UI widget)
        layVMainF = QVBoxLayout()
        layVMainF.addLayout(layHDisplay)
        layVMainF.addWidget(self.frmQSettings)
        layVMainF.addWidget(QHLine())
        layVMainF.addWidget(self.frmButtonsCoeffs)

        # This frame encompasses all UI elements
        frmMain = QFrame(self)
        frmMain.setLayout(layVMainF)

        layVMain = QVBoxLayout()
        # the following affects only the first widget (intended here)
        layVMain.setAlignment(Qt.AlignTop)
        layVMain.addWidget(frmMain)
        layVMain.setContentsMargins(*params['wdg_margins'])
        self.setLayout(layVMain)
        #######################################################################

        # --- set initial values from dict ------------
        self.spnDigits.setValue(params['FMT_ba'])
        self.ledEps.setText(str(self.eps))

        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.but_csv_options.clicked.connect(self._open_csv_win)
示例#22
0
class Input_Coeffs_UI(QWidget):
    """
    Create the UI for the FilterCoeffs class
    """
    sig_rx = pyqtSignal(dict)  # incoming
    sig_tx = pyqtSignal(dict)  # outgoing
    from pyfda.libs.pyfda_qt_lib import emit

    def __init__(self, parent=None):
        super(Input_Coeffs_UI, self).__init__(parent)
        self.eps = 1.e-6  # initialize tolerance value
        self._construct_UI()

# ------------------------------------------------------------------------------
    def process_sig_rx(self, dict_sig=None):
        """
        Process signals coming from the CSV pop-up window
        """
        # logger.debug("PROCESS_SIG_RX:\n{0}".format(pprint_log(dict_sig)))

        if 'closeEvent' in dict_sig:
            self._close_csv_win()
            self.emit({'ui_changed': 'csv'})
            return
        elif 'ui_changed' in dict_sig:
            self._set_load_save_icons()  # update icons file <-> clipboard
            # inform e.g. the p/z input widget about changes in CSV options
            self.emit({'ui_changed': 'csv'})

# ------------------------------------------------------------------------------
    def _construct_UI(self):
        """
        Intitialize the widget, consisting of:
        - top chkbox row
        - coefficient table
        - two bottom rows with action buttons
        """
        self.bfont = QFont()
        self.bfont.setBold(True)
        self.bifont = QFont()
        self.bifont.setBold(True)
        self.bifont.setItalic(True)
#        q_icon_size = QSize(20, 20) # optional, size is derived from butEnable

        #######################################################################
        # frmMain
        #
        # This frame contains all the buttons
        #######################################################################
        # ---------------------------------------------
        # layHDisplay
        #
        # UI Elements for controlling the display
        # ---------------------------------------------
        self.butEnable = PushButton(self, icon=QIcon(':/circle-check.svg'), checked=True)
        q_icon_size = self.butEnable.iconSize()  # <- uncomment this for manual sizing
        self.butEnable.setToolTip(
            "<span>Show / hide filter coefficients in an editable table."
            " For high order systems, table display might be slow.</span>")

        fix_formats = ['Dec', 'Hex', 'Bin', 'CSD']
        self.cmbFormat = QComboBox(self)
        model = self.cmbFormat.model()
        item = QtGui.QStandardItem('Float')
        item.setData('child', Qt.AccessibleDescriptionRole)
        model.appendRow(item)

        item = QtGui.QStandardItem('Fixp.:')
        item.setData('parent', Qt.AccessibleDescriptionRole)
        item.setData(0, QtGui.QFont.Bold)
        item.setFlags(item.flags() & ~Qt.ItemIsEnabled)  # | Qt.ItemIsSelectable))
        model.appendRow(item)

        for idx in range(len(fix_formats)):
            item = QtGui.QStandardItem(fix_formats[idx])
#            item.setForeground(QtGui.QColor('red'))
            model.appendRow(item)

        self.cmbFormat.insertSeparator(1)
        qset_cmb_box(self.cmbFormat, 'float')
        self.cmbFormat.setToolTip('Set the display format.')
        self.cmbFormat.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        self.spnDigits = QSpinBox(self)
        self.spnDigits.setRange(0, 16)
        self.spnDigits.setValue(params['FMT_ba'])
        self.spnDigits.setToolTip("Number of digits to display.")
        self.lblDigits = QLabel("Digits", self)
        self.lblDigits.setFont(self.bifont)

        self.cmbQFrmt = QComboBox(self)
        q_formats = [('Norm. Frac.', 'qnfrac'), ('Integer', 'qint'),
                     ('Fractional', 'qfrac')]
        for q in q_formats:
            self.cmbQFrmt.addItem(*q)

        self.lbl_W = QLabel("W = ", self)
        self.lbl_W.setFont(self.bifont)

        self.ledW = QLineEdit(self)
        self.ledW.setToolTip("Specify total wordlength.")
        self.ledW.setText("16")
        self.ledW.setMaxLength(2)  # maximum of 2 digits
        self.ledW.setFixedWidth(30)  # width of lineedit in points(?)

        layHDisplay = QHBoxLayout()
        layHDisplay.setAlignment(Qt.AlignLeft)
        layHDisplay.addWidget(self.butEnable)
        layHDisplay.addWidget(self.cmbFormat)
        layHDisplay.addWidget(self.spnDigits)
        layHDisplay.addWidget(self.lblDigits)
        layHDisplay.addWidget(self.cmbQFrmt)
        layHDisplay.addWidget(self.lbl_W)
        layHDisplay.addWidget(self.ledW)
        layHDisplay.addStretch()

        #######################################################################
        # frmButtonsCoeffs
        #
        # This frame contains all buttons for manipulating coefficients
        #######################################################################
        # -----------------------------------------------------------------
        # layHButtonsCoeffs1
        #
        # UI Elements for loading / storing / manipulating cells and rows
        # -----------------------------------------------------------------
        self.cmbFilterType = QComboBox(self)
        self.cmbFilterType.setObjectName("comboFilterType")
        self.cmbFilterType.setToolTip(
            "<span>Select between IIR and FIR filter for manual entry."
            "Changing the type reloads the filter from the filter dict.</span>")
        self.cmbFilterType.addItems(["FIR", "IIR"])
        self.cmbFilterType.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        self.butAddCells = QPushButton(self)
        self.butAddCells.setIcon(QIcon(':/row_insert_above.svg'))
        self.butAddCells.setIconSize(q_icon_size)
        self.butAddCells.setToolTip(
            "<span>Select cells to insert a new cell above each selected cell. "
            "Use &lt;SHIFT&gt; or &lt;CTRL&gt; to select multiple cells. "
            "When nothing is selected, add a row at the end.</span>")

        self.butDelCells = QPushButton(self)
        self.butDelCells.setIcon(QIcon(':/row_delete.svg'))
        self.butDelCells.setIconSize(q_icon_size)
        self.butDelCells.setToolTip(
            "<span>Delete selected cell(s) from the table. "
            "Use &lt;SHIFT&gt; or &lt;CTRL&gt; to select multiple cells. "
            "When nothing is selected, delete the last row.</span>")

        self.butSave = QPushButton(self)
        self.butSave.setIcon(QIcon(':/upload.svg'))
        self.butSave.setIconSize(q_icon_size)
        self.butSave.setToolTip(
            "<span>Copy coefficient table to filter dict and update all plots"
            "and widgets.</span>")

        self.butLoad = QPushButton(self)
        self.butLoad.setIcon(QIcon(':/download.svg'))
        self.butLoad.setIconSize(q_icon_size)
        self.butLoad.setToolTip("Reload coefficient table from filter dict.")

        self.butClear = QPushButton(self)
        self.butClear.setIcon(QIcon(':/trash.svg'))
        self.butClear.setIconSize(q_icon_size)
        self.butClear.setToolTip("Clear all table entries.")

        self.butFromTable = QPushButton(self)
        self.butFromTable.setIconSize(q_icon_size)

        self.butToTable = QPushButton(self)
        self.butToTable.setIconSize(q_icon_size)

        self.but_csv_options = PushButton(self, icon=QIcon(':/settings.svg'),
                                          checked=False)
        self.but_csv_options.setIconSize(q_icon_size)
        self.but_csv_options.setToolTip(
            "<span>Select CSV format and whether "
            "to copy to/from clipboard or file.</span>")

        self._set_load_save_icons()  # initialize icon / button settings

        layHButtonsCoeffs1 = QHBoxLayout()
        layHButtonsCoeffs1.addWidget(self.cmbFilterType)
        layHButtonsCoeffs1.addWidget(self.butAddCells)
        layHButtonsCoeffs1.addWidget(self.butDelCells)
        layHButtonsCoeffs1.addWidget(self.butClear)
        layHButtonsCoeffs1.addWidget(self.butSave)
        layHButtonsCoeffs1.addWidget(self.butLoad)
        layHButtonsCoeffs1.addWidget(self.butFromTable)
        layHButtonsCoeffs1.addWidget(self.butToTable)
        layHButtonsCoeffs1.addWidget(self.but_csv_options)
        layHButtonsCoeffs1.addStretch()

        # ----------------------------------------------------------------------
        # layHButtonsCoeffs2
        #
        # Eps / set zero settings
        # ---------------------------------------------------------------------
        self.butSetZero = QPushButton("= 0", self)
        self.butSetZero.setToolTip(
            "<span>Set selected coefficients = 0 with a magnitude &lt; &epsilon;. "
            "When nothing is selected, test the whole table.</span>")
        self.butSetZero.setIconSize(q_icon_size)

        lblEps = QLabel(self)
        lblEps.setText("<b><i>for b, a</i> &lt;</b>")

        self.ledEps = QLineEdit(self)
        self.ledEps.setToolTip("Specify tolerance value.")

        layHButtonsCoeffs2 = QHBoxLayout()
        layHButtonsCoeffs2.addWidget(self.butSetZero)
        layHButtonsCoeffs2.addWidget(lblEps)
        layHButtonsCoeffs2.addWidget(self.ledEps)
        layHButtonsCoeffs2.addStretch()

        # -------------------------------------------------------------------
        # Now put the ButtonsCoeffs HBoxes into frmButtonsCoeffs
        # ---------------------------------------------------------------------
        layVButtonsCoeffs = QVBoxLayout()
        layVButtonsCoeffs.addLayout(layHButtonsCoeffs1)
        layVButtonsCoeffs.addLayout(layHButtonsCoeffs2)
        layVButtonsCoeffs.setContentsMargins(0, 5, 0, 0)
        # This frame encompasses all Quantization Settings
        self.frmButtonsCoeffs = QFrame(self)
        self.frmButtonsCoeffs.setLayout(layVButtonsCoeffs)

        # ######################################################################
        # frmQSettings
        #
        # This frame contains all quantization settings
        # ######################################################################
        # -------------------------------------------------------------------
        # layHW_Scale
        #
        # QFormat and scale settings
        # ---------------------------------------------------------------------
        lbl_Q = QLabel("Q =", self)
        lbl_Q.setFont(self.bifont)

        self.ledWI = QLineEdit(self)
        self.ledWI.setToolTip("Specify number of integer bits.")
        self.ledWI.setText("0")
        self.ledWI.setMaxLength(2)  # maximum of 2 digits
        self.ledWI.setFixedWidth(30)  # width of lineedit in points(?)

        self.lblDot = QLabel(".", self)  # class attribute, visibility is toggled
        self.lblDot.setFont(self.bfont)

        self.ledWF = QLineEdit(self)
        self.ledWF.setToolTip("Specify number of fractional bits.")
        self.ledWF.setText("15")
        self.ledWF.setMaxLength(2)  # maximum of 2 digits
#        self.ledWF.setFixedWidth(30) # width of lineedit in points(?)
        self.ledWF.setMaximumWidth(30)

        self.lblScale = QLabel("<b><i>Scale</i> =</b>", self)
        self.ledScale = QLineEdit(self)
        self.ledScale.setToolTip(
            "Set the scale for converting float to fixpoint representation.")
        self.ledScale.setText(str(1))
        self.ledScale.setEnabled(False)

        layHWI_WF = QHBoxLayout()
        layHWI_WF.addWidget(lbl_Q)
        layHWI_WF.addWidget(self.ledWI)
        layHWI_WF.addWidget(self.lblDot)
        layHWI_WF.addWidget(self.ledWF)
        layHWI_WF.addStretch()

        layHScale = QHBoxLayout()
        layHScale.addWidget(self.lblScale)
        layHScale.addWidget(self.ledScale)
        layHScale.addStretch()

        layHW_Scale = QHBoxLayout()
        layHW_Scale.addLayout(layHWI_WF)
        layHW_Scale.addLayout(layHScale)

        # -------------------------------------------------------------------
        # layGQOpt
        #
        # Quantization / Overflow / MSB / LSB settings
        # ---------------------------------------------------------------------
        lblQOvfl = QLabel("Ovfl.:", self)
        lblQOvfl.setFont(self.bifont)
        lblQuant = QLabel("Quant.:", self)
        lblQuant.setFont(self.bifont)

        self.cmbQOvfl = QComboBox(self)
        qOvfl = ['wrap', 'sat']
        self.cmbQOvfl.addItems(qOvfl)
        qset_cmb_box(self.cmbQOvfl, 'sat')
        self.cmbQOvfl.setToolTip("Select overflow behaviour.")
        # ComboBox size is adjusted automatically to fit the longest element
        self.cmbQOvfl.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        layHQOvflOpt = QHBoxLayout()
        layHQOvflOpt.addWidget(lblQOvfl)
        layHQOvflOpt.addWidget(self.cmbQOvfl)
        layHQOvflOpt.addStretch()

        self.cmbQuant = QComboBox(self)
        qQuant = ['none', 'round', 'fix', 'floor']
        self.cmbQuant.addItems(qQuant)
        qset_cmb_box(self.cmbQuant, 'round')
        self.cmbQuant.setToolTip("Select the kind of quantization.")
        self.cmbQuant.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        layHQuantOpt = QHBoxLayout()
        layHQuantOpt.addWidget(lblQuant)
        layHQuantOpt.addWidget(self.cmbQuant)
        layHQuantOpt.addStretch()

        self.butQuant = QPushButton(self)
        self.butQuant.setToolTip(
            "<span>Quantize selected coefficients / "
            "whole table with specified settings.</span>")
        self.butQuant.setIcon(QIcon(':/quantize.svg'))
        self.butQuant.setIconSize(q_icon_size)
        self.butQuant.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed)

        lblMSBtxt = QLabel(self)
        lblMSBtxt.setText("<b><i>MSB</i><sub>10</sub> =</b>")
        self.lblMSB = QLabel(self)
        layHMSB = QHBoxLayout()
        layHMSB.addWidget(lblMSBtxt)
        layHMSB.addWidget(self.lblMSB)
        layHMSB.addStretch()

        lblLSBtxt = QLabel(self)
        lblLSBtxt.setText("<b><i>LSB</i><sub>10</sub> =</b>")
        self.lblLSB = QLabel(self)
        layHLSB = QHBoxLayout()
        layHLSB.addWidget(lblLSBtxt)
        layHLSB.addWidget(self.lblLSB)
        layHLSB.addStretch()

        layGQOpt = QGridLayout()
        layGQOpt.addLayout(layHQOvflOpt, 0, 0)
        layGQOpt.addLayout(layHQuantOpt, 0, 1)
        layGQOpt.addWidget(self.butQuant, 0, 2, Qt.AlignCenter)
        layGQOpt.addLayout(layHMSB, 1, 0)
        layGQOpt.addLayout(layHLSB, 1, 1)

        # -------------------------------------------------------------------
        #   Display MAX
        # ---------------------------------------------------------------------
        lblMAXtxt = QLabel(self)
        lblMAXtxt.setText("<b><i>Max =</i></b>")
        self.lblMAX = QLabel(self)

        layHCoeffs_MAX = QHBoxLayout()
        layHCoeffs_MAX.addWidget(lblMAXtxt)
        layHCoeffs_MAX.addWidget(self.lblMAX)
        layHCoeffs_MAX.addStretch()

        #######################################################################
        # Now put all the coefficient HBoxes into frmQSettings
        # ---------------------------------------------------------------------
        layVButtonsQ = QVBoxLayout()
        layVButtonsQ.addLayout(layHW_Scale)
        layVButtonsQ.addLayout(layGQOpt)
        layVButtonsQ.addLayout(layHCoeffs_MAX)
        layVButtonsQ.setContentsMargins(0, 0, 0, 0)
        # This frame encompasses all Quantization Settings
        self.frmQSettings = QFrame(self)
        self.frmQSettings.setLayout(layVButtonsQ)

        #######################################################################
        # ########################  Main UI Layout ############################
        #######################################################################
        # layout for frame (UI widget)
        layVMainF = QVBoxLayout()
        layVMainF.addLayout(layHDisplay)
        layVMainF.addWidget(self.frmQSettings)
        layVMainF.addWidget(QHLine())
        layVMainF.addWidget(self.frmButtonsCoeffs)

        # This frame encompasses all UI elements
        frmMain = QFrame(self)
        frmMain.setLayout(layVMainF)

        layVMain = QVBoxLayout()
        # the following affects only the first widget (intended here)
        layVMain.setAlignment(Qt.AlignTop)
        layVMain.addWidget(frmMain)
        layVMain.setContentsMargins(*params['wdg_margins'])
        self.setLayout(layVMain)
        #######################################################################

        # --- set initial values from dict ------------
        self.spnDigits.setValue(params['FMT_ba'])
        self.ledEps.setText(str(self.eps))

        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.but_csv_options.clicked.connect(self._open_csv_win)

    # --------------------------------------------------------------------------
    def _open_csv_win(self):
        """
        Pop-up window for CSV options
        """
        if self.but_csv_options.isChecked():
            qstyle_widget(self.but_csv_options, "changed")
        else:
            qstyle_widget(self.but_csv_options, "normal")

        if dirs.csv_options_handle is None:
            # no handle to the window? Create a new instance
            if self.but_csv_options.isChecked():
                # Important: Handle to window must be class attribute, otherwise it
                # (and the attached window) is deleted immediately when it goes
                # out of scope
                dirs.csv_options_handle = CSV_option_box(self)
                dirs.csv_options_handle.sig_tx.connect(self.process_sig_rx)
                dirs.csv_options_handle.show()  # modeless i.e. non-blocking popup window
        else:
            if not self.but_csv_options.isChecked():  # this should not happen
                if dirs.csv_options_handle is None:
                    logger.warning("CSV options window is already closed!")
                else:
                    dirs.csv_options_handle.close()

        self.emit({'ui_changed': 'csv'})

    # ------------------------------------------------------------------------------

    def _close_csv_win(self):
        dirs.csv_options_handle = None
        self.but_csv_options.setChecked(False)
        qstyle_widget(self.but_csv_options, "normal")

    # ------------------------------------------------------------------------------
    def _set_load_save_icons(self):
        """
        Set icons / tooltipps for loading and saving data to / from file or
        clipboard depending on selected options.
        """
        if params['CSV']['clipboard']:
            self.butFromTable.setIcon(QIcon(':/to_clipboard.svg'))
            self.butFromTable.setToolTip(
                "<span>Copy table to clipboard, SELECTED items are copied as "
                "displayed. When nothing is selected, the whole table "
                "is copied with full precision in decimal format.</span>")

            self.butToTable.setIcon(QIcon(':/from_clipboard.svg'))
            self.butToTable.setToolTip("<span>Copy clipboard to table.</span>")
        else:
            self.butFromTable.setIcon(QIcon(':/save.svg'))
            self.butFromTable.setToolTip(
                "<span>"
                "Save table to file, SELECTED items are copied as "
                "displayed. When nothing is selected, the whole table "
                "is copied with full precision in decimal format.</span>")

            self.butToTable.setIcon(QIcon(':/file.svg'))
            self.butToTable.setToolTip("<span>Load table from file.</span>")

        if dirs.csv_options_handle is None:
            qstyle_widget(self.but_csv_options, "normal")
            self.but_csv_options.setChecked(False)
        else:
            qstyle_widget(self.but_csv_options, "changed")
            self.but_csv_options.setChecked(True)
示例#23
0
    def _construct_UI(self):
        """ initialize the User Interface """

        butClipboard = QPushButton(self)
        butClipboard.setIcon(QIcon(':/clipboard.svg'))
        butClipboard.setToolTip("Copy text to clipboard.")

        butAbout = QPushButton(self)
        butAbout.setText("About")
        butAbout.setToolTip("Display 'About' info")

        butChangelog = QPushButton(self)
        butChangelog.setText("Changelog")
        butChangelog.setToolTip("Display changelog")

        butLicMIT = QPushButton(self)
        butLicMIT.setText("MIT License")
        butLicMIT.setToolTip("MIT License for pyFDA source code")

        butLicGPLv3 = QPushButton(self)
        butLicGPLv3.setText("GPLv3 License")
        butLicGPLv3.setToolTip("GPLv3 License for bundled distribution")

        butClose = QPushButton(self)
        butClose.setIcon(QIcon(':/circle-x.svg'))
        butClose.setToolTip("Close Window.")

        layGButtons = QGridLayout()
        layGButtons.addWidget(butClipboard, 0, 0)
        layGButtons.addWidget(butAbout, 0, 1)
        layGButtons.addWidget(butChangelog, 0, 2)
        layGButtons.addWidget(butLicMIT, 0, 3)
        layGButtons.addWidget(butLicGPLv3, 0, 4)
        layGButtons.addWidget(butClose, 0, 5)

        lblInfo = QLabel(self)
        lblInfo.setText(self.info_str)
        lblInfo.setFixedHeight(lblInfo.height() * 1.2)
        #lblInfo.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed)
        lblInfo.setOpenExternalLinks(True)

        lblIcon = QLabel(self)
        lblIcon.setPixmap(
            QPixmap(':/pyfda_icon.svg').scaledToHeight(
                lblInfo.height(), Qt.SmoothTransformation))
        butClipboard.setFixedWidth(lblInfo.height())
        butClose.setFixedWidth(lblInfo.height())

        layHInfo = QHBoxLayout()
        layHInfo.addWidget(lblIcon)
        layHInfo.addWidget(lblInfo)

        self.txtDisplay = QTextBrowser(self)
        self.txtDisplay.setOpenExternalLinks(True)
        self.display_about_str()
        self.txtDisplay.setSizePolicy(QSizePolicy.Expanding,
                                      QSizePolicy.Expanding)
        #self.txtDisplay.setFixedHeight(self.txtDisplay.width() * 2)

        layVMain = QVBoxLayout()
        # layVMain.setAlignment(Qt.AlignTop) # this affects only the first widget (intended here)
        layVMain.addLayout(layGButtons)
        layVMain.addLayout(layHInfo)
        layVMain.addWidget(self.txtDisplay)

        layVMain.setContentsMargins(*params['wdg_margins_spc'])
        self.setLayout(layVMain)
        #self.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding)
        #self.resize(0,0)
        #self.adjustSize()
        #QApplication.processEvents()

        butClipboard.clicked.connect(
            lambda: self.to_clipboard(self.info_str + self.about_str))
        butAbout.clicked.connect(self.display_about_str)
        butChangelog.clicked.connect(self.display_changelog)
        butLicMIT.clicked.connect(self.display_MIT_lic)
        butLicGPLv3.clicked.connect(self.display_GPL_lic)
        butClose.clicked.connect(self.close)
示例#24
0
    def _construct_UI(self):
        self.but_log = PushButton("dB", checked=False)
        self.but_log.setObjectName("but_log")
        self.but_log.setToolTip("Logarithmic scale")

        self.but_plot_in_UC = PushButton("|z| < 1 ", checked=False)
        self.but_plot_in_UC.setObjectName("but_plot_in_UC")
        self.but_plot_in_UC.setToolTip("Only plot H(z) within the unit circle")

        self.lblBottom = QLabel(to_html("Bottom =", frmt='bi'), self)
        self.ledBottom = QLineEdit(self)
        self.ledBottom.setObjectName("ledBottom")
        self.ledBottom.setText(str(self.zmin))
        self.ledBottom.setToolTip("Minimum display value.")
        self.lblBottomdB = QLabel("dB", self)
        self.lblBottomdB.setVisible(self.but_log.isChecked())

        self.lblTop = QLabel(to_html("Top =", frmt='bi'), self)
        self.ledTop = QLineEdit(self)
        self.ledTop.setObjectName("ledTop")
        self.ledTop.setText(str(self.zmax))
        self.ledTop.setToolTip("Maximum display value.")
        self.lblTopdB = QLabel("dB", self)
        self.lblTopdB.setVisible(self.but_log.isChecked())

        self.plt_UC = PushButton("UC", checked=True)
        self.plt_UC.setObjectName("plt_UC")
        self.plt_UC.setToolTip("Plot unit circle")

        self.but_PZ = PushButton("P/Z ", checked=True)
        self.but_PZ.setObjectName("but_PZ")
        self.but_PZ.setToolTip("Plot poles and zeros")

        self.but_Hf = PushButton("H(f) ", checked=True)
        self.but_Hf.setObjectName("but_Hf")
        self.but_Hf.setToolTip("Plot H(f) along the unit circle")

        modes = ['None', 'Mesh', 'Surf', 'Contour']
        self.cmbMode3D = QComboBox(self)
        self.cmbMode3D.addItems(modes)
        self.cmbMode3D.setObjectName("cmbShow3D")
        self.cmbMode3D.setToolTip("Select 3D-plot mode.")
        self.cmbMode3D.setCurrentIndex(0)
        self.cmbMode3D.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        self.but_colormap_r = PushButton("reverse", checked=True)
        self.but_colormap_r.setObjectName("but_colormap_r")
        self.but_colormap_r.setToolTip("reverse colormap")

        self.cmbColormap = QComboBox(self)
        self._init_cmb_colormap(cmap_init=self.cmap_default)
        self.cmbColormap.setToolTip("Select colormap")

        self.but_colbar = PushButton("Colorbar ", checked=False)
        self.but_colbar.setObjectName("chkColBar")
        self.but_colbar.setToolTip("Show colorbar")

        self.but_lighting = PushButton("Lighting", checked=False)
        self.but_lighting.setObjectName("but_lighting")
        self.but_lighting.setToolTip("Enable light source")

        self.lblAlpha = QLabel(to_html("Alpha", frmt='bi'), self)
        self.diaAlpha = QDial(self)
        self.diaAlpha.setRange(0, 10)
        self.diaAlpha.setValue(10)
        self.diaAlpha.setTracking(False)  # produce less events when turning
        self.diaAlpha.setFixedHeight(30)
        self.diaAlpha.setFixedWidth(30)
        self.diaAlpha.setWrapping(False)
        self.diaAlpha.setToolTip(
            "<span>Set transparency for surf and contour plots.</span>")

        self.lblHatch = QLabel(to_html("Stride", frmt='bi'), self)
        self.diaHatch = QDial(self)
        self.diaHatch.setRange(0, 9)
        self.diaHatch.setValue(5)
        self.diaHatch.setTracking(False)  # produce less events when turning
        self.diaHatch.setFixedHeight(30)
        self.diaHatch.setFixedWidth(30)
        self.diaHatch.setWrapping(False)
        self.diaHatch.setToolTip("Set line density for various plots.")

        self.but_contour_2d = PushButton("Contour2D ", checked=False)
        self.but_contour_2d.setObjectName("chkContour2D")
        self.but_contour_2d.setToolTip("Plot 2D-contours at z =0")

        # ----------------------------------------------------------------------
        # LAYOUT for UI widgets
        # ----------------------------------------------------------------------
        layGControls = QGridLayout()
        layGControls.addWidget(self.but_log, 0, 0)
        layGControls.addWidget(self.but_plot_in_UC, 1, 0)
        layGControls.addWidget(self.lblTop, 0, 2)
        layGControls.addWidget(self.ledTop, 0, 4)
        layGControls.addWidget(self.lblTopdB, 0, 5)
        layGControls.addWidget(self.lblBottom, 1, 2)
        layGControls.addWidget(self.ledBottom, 1, 4)
        layGControls.addWidget(self.lblBottomdB, 1, 5)
        layGControls.setColumnStretch(5, 1)

        layGControls.addWidget(self.plt_UC, 0, 6)
        layGControls.addWidget(self.but_Hf, 1, 6)
        layGControls.addWidget(self.but_PZ, 0, 8)

        layGControls.addWidget(self.cmbMode3D, 0, 10)
        layGControls.addWidget(self.but_contour_2d, 1, 10)
        layGControls.addWidget(self.cmbColormap, 0, 12, 1, 1)
        layGControls.addWidget(self.but_colormap_r, 1, 12)

        layGControls.addWidget(self.but_lighting, 0, 14)
        layGControls.addWidget(self.but_colbar, 1, 14)

        layGControls.addWidget(self.lblAlpha, 0, 15)
        layGControls.addWidget(self.diaAlpha, 0, 16)

        layGControls.addWidget(self.lblHatch, 1, 15)
        layGControls.addWidget(self.diaHatch, 1, 16)

        # This widget encompasses all control subwidgets
        self.frmControls = QFrame(self)
        self.frmControls.setObjectName("frmControls")
        self.frmControls.setLayout(layGControls)

        # ----------------------------------------------------------------------
        # mplwidget
        # ----------------------------------------------------------------------
        # This is the plot pane widget, encompassing the other widgets
        self.mplwidget = MplWidget(self)
        self.mplwidget.layVMainMpl.addWidget(self.frmControls)
        self.mplwidget.layVMainMpl.setContentsMargins(*params['mpl_margins'])
        self.mplwidget.mplToolbar.a_he.setEnabled(True)
        self.mplwidget.mplToolbar.a_he.info = "manual/plot_3d.html"
        self.setLayout(self.mplwidget.layVMainMpl)

        self._init_grid()  # initialize grid and do initial plot

        # ----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.sig_rx.connect(self.process_sig_rx)
        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.but_log.clicked.connect(self._log_clicked)
        self.ledBottom.editingFinished.connect(self._log_clicked)
        self.ledTop.editingFinished.connect(self._log_clicked)

        self.but_plot_in_UC.clicked.connect(self._init_grid)
        self.plt_UC.clicked.connect(self.draw)
        self.but_Hf.clicked.connect(self.draw)
        self.but_PZ.clicked.connect(self.draw)
        self.cmbMode3D.currentIndexChanged.connect(self.draw)
        self.but_colbar.clicked.connect(self.draw)

        self.cmbColormap.currentIndexChanged.connect(self.draw)
        self.but_colormap_r.clicked.connect(self.draw)

        self.but_lighting.clicked.connect(self.draw)
        self.diaAlpha.valueChanged.connect(self.draw)
        self.diaHatch.valueChanged.connect(self.draw)
        self.but_contour_2d.clicked.connect(self.draw)

        self.mplwidget.mplToolbar.sig_tx.connect(self.process_sig_rx)
示例#25
0
    def _construct_UI(self, **kwargs):
        """ Construct widget """

        dict_ui = {
            'wdg_name': 'ui_q',
            'label': '',
            'label_q': 'Quant.',
            'tip_q': 'Select the kind of quantization.',
            'cmb_q': ['round', 'fix', 'floor'],
            'cur_q': 'round',
            'label_ov': 'Ovfl.',
            'tip_ov': 'Select overflow behaviour.',
            'cmb_ov': ['wrap', 'sat'],
            'cur_ov': 'wrap',
            'enabled': True,
            'visible': True
        }  #: default widget settings

        if 'quant' in self.q_dict and self.q_dict['quant'] in dict_ui['cmb_q']:
            dict_ui['cur_q'] = self.q_dict['quant']
        if 'ovfl' in self.q_dict and self.q_dict['ovfl'] in dict_ui['cmb_ov']:
            dict_ui['cur_ov'] = self.q_dict['ovfl']

        for key, val in kwargs.items():
            dict_ui.update({key: val})
        # dict_ui.update(map(kwargs)) # same as above?

        self.wdg_name = dict_ui['wdg_name']

        lblQuant = QLabel(dict_ui['label_q'], self)
        self.cmbQuant = QComboBox(self)
        self.cmbQuant.addItems(dict_ui['cmb_q'])
        qset_cmb_box(self.cmbQuant, dict_ui['cur_q'])
        self.cmbQuant.setToolTip(dict_ui['tip_q'])
        self.cmbQuant.setObjectName('quant')

        lblOvfl = QLabel(dict_ui['label_ov'], self)
        self.cmbOvfl = QComboBox(self)
        self.cmbOvfl.addItems(dict_ui['cmb_ov'])
        qset_cmb_box(self.cmbOvfl, dict_ui['cur_ov'])
        self.cmbOvfl.setToolTip(dict_ui['tip_ov'])
        self.cmbOvfl.setObjectName('ovfl')

        # ComboBox size is adjusted automatically to fit the longest element
        self.cmbQuant.setSizeAdjustPolicy(QComboBox.AdjustToContents)
        self.cmbOvfl.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        layH = QHBoxLayout()
        if dict_ui['label'] != "":
            lblW = QLabel(to_html(dict_ui['label'], frmt='bi'), self)
            layH.addWidget(lblW)
        layH.addStretch()
        layH.addWidget(lblOvfl)
        layH.addWidget(self.cmbOvfl)
        # layH.addStretch(1)
        layH.addWidget(lblQuant)
        layH.addWidget(self.cmbQuant)
        layH.setContentsMargins(0, 0, 0, 0)

        frmMain = QFrame(self)
        frmMain.setLayout(layH)

        layVMain = QVBoxLayout()  # Widget main layout
        layVMain.addWidget(frmMain)
        layVMain.setContentsMargins(0, 0, 0, 0)  # *params['wdg_margins'])

        self.setLayout(layVMain)

        # ----------------------------------------------------------------------
        # INITIAL SETTINGS
        # ----------------------------------------------------------------------
        self.ovfl = qget_cmb_box(self.cmbOvfl, data=False)
        self.quant = qget_cmb_box(self.cmbQuant, data=False)
        frmMain.setEnabled(dict_ui['enabled'])
        frmMain.setVisible(dict_ui['visible'])

        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.cmbOvfl.currentIndexChanged.connect(self.ui2dict)
        self.cmbQuant.currentIndexChanged.connect(self.ui2dict)
示例#26
0
文件: firwin.py 项目: mfkiwl/pyfda
    def construct_UI(self):
        """
        Create additional subwidget(s) needed for filter design:
        These subwidgets are instantiated dynamically when needed in 
        select_filter.py using the handle to the filter object, fb.filObj .
        """

        # Combobox for selecting the algorithm to estimate minimum filter order
        self.cmb_firwin_alg = QComboBox(self)
        self.cmb_firwin_alg.setObjectName('wdg_cmb_firwin_alg')
        self.cmb_firwin_alg.addItems(['ichige', 'kaiser', 'herrmann'])
        # Minimum size, can be changed in the upper hierarchy levels using layouts:
        self.cmb_firwin_alg.setSizeAdjustPolicy(QComboBox.AdjustToContents)
        self.cmb_firwin_alg.hide()

        # Combobox for selecting the window used for filter design
        self.cmb_firwin_win = QComboBox(self)
        self.cmb_firwin_win.addItems(get_window_names())
        self.cmb_firwin_win.setObjectName('wdg_cmb_firwin_win')

        # Minimum size, can be changed in the upper hierarchy levels using layouts:
        self.cmb_firwin_win.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        self.but_fft_win = QPushButton(self)
        self.but_fft_win.setText("WIN FFT")
        self.but_fft_win.setToolTip(
            "Show time and frequency response of FFT Window")
        self.but_fft_win.setCheckable(True)
        self.but_fft_win.setChecked(False)

        self.lblWinPar1 = QLabel("a", self)
        self.lblWinPar1.setObjectName('wdg_lbl_firwin_1')
        self.ledWinPar1 = QLineEdit(self)
        self.ledWinPar1.setText("0.5")
        self.ledWinPar1.setObjectName('wdg_led_firwin_1')
        self.lblWinPar1.setVisible(False)
        self.ledWinPar1.setVisible(False)

        self.lblWinPar2 = QLabel("b", self)
        self.lblWinPar2.setObjectName('wdg_lbl_firwin_2')
        self.ledWinPar2 = QLineEdit(self)
        self.ledWinPar2.setText("0.5")
        self.ledWinPar2.setObjectName('wdg_led_firwin_2')
        self.ledWinPar2.setVisible(False)
        self.lblWinPar2.setVisible(False)

        self.layHWin1 = QHBoxLayout()
        self.layHWin1.addWidget(self.cmb_firwin_win)
        self.layHWin1.addWidget(self.but_fft_win)
        self.layHWin1.addWidget(self.cmb_firwin_alg)
        self.layHWin2 = QHBoxLayout()
        self.layHWin2.addWidget(self.lblWinPar1)
        self.layHWin2.addWidget(self.ledWinPar1)
        self.layHWin2.addWidget(self.lblWinPar2)
        self.layHWin2.addWidget(self.ledWinPar2)

        self.layVWin = QVBoxLayout()
        self.layVWin.addLayout(self.layHWin1)
        self.layVWin.addLayout(self.layHWin2)
        self.layVWin.setContentsMargins(0, 0, 0, 0)

        # Widget containing all subwidgets (cmbBoxes, Labels, lineEdits)
        self.wdg_fil = QWidget(self)
        self.wdg_fil.setObjectName('wdg_fil')
        self.wdg_fil.setLayout(self.layVWin)

        #----------------------------------------------------------------------
        # SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.cmb_firwin_alg.activated.connect(self._update_win_fft)
        self.cmb_firwin_win.activated.connect(self._update_win_fft)
        self.ledWinPar1.editingFinished.connect(self._read_param1)
        self.ledWinPar2.editingFinished.connect(self._read_param2)

        self.but_fft_win.clicked.connect(self.show_fft_win)
        #----------------------------------------------------------------------

        self._load_dict()  # get initial / last setting from dictionary
        self._update_win_fft()
示例#27
0
    def _construct_UI(self):
        """
        Construct User Interface from all input subwidgets
        """
        self.butLoadFilt = QPushButton("LOAD FILTER", self)
        self.butLoadFilt.setToolTip("Load filter from disk")
        self.butSaveFilt = QPushButton("SAVE FILTER", self)
        self.butSaveFilt.setToolTip("Save filter todisk")
        layHButtons1 = QHBoxLayout()
        layHButtons1.addWidget(self.butLoadFilt)  # <Load Filter> button
        layHButtons1.addWidget(self.butSaveFilt)  # <Save Filter> button
        layHButtons1.setContentsMargins(*params['wdg_margins_spc'])

        self.butDesignFilt = QPushButton("DESIGN FILTER", self)
        self.butDesignFilt.setToolTip("Design filter with chosen specs")
        self.butQuit = QPushButton("Quit", self)
        self.butQuit.setToolTip("Exit pyfda tool")
        layHButtons2 = QHBoxLayout()
        layHButtons2.addWidget(self.butDesignFilt)  # <Design Filter> button
        layHButtons2.addWidget(self.butQuit)  # <Quit> button
        layHButtons2.setContentsMargins(*params['wdg_margins'])

        # Subwidget for selecting filter with response type rt (LP, ...),
        #    filter type ft (IIR, ...) and filter class fc (cheby1, ...)
        self.sel_fil = select_filter.SelectFilter(self)
        self.sel_fil.setObjectName("select_filter")
        self.sel_fil.sig_tx.connect(self.sig_rx_local)

        # Subwidget for selecting the frequency unit and range
        self.f_units = freq_units.FreqUnits(self)
        self.f_units.setObjectName("freq_units")
        self.f_units.sig_tx.connect(self.sig_rx_local)

        # Changing the frequency unit requires re-display of frequency specs
        # but it does not influence the actual specs (no specsChanged )
        # Activating the "Sort" button emits 'view_changed'?specs_changed'?, requiring
        # sorting and storing the frequency entries

        # Changing filter parameters / specs requires reloading of parameters
        # in other hierarchy levels, e.g. in the plot tabs

        # Subwidget for Frequency Specs
        self.f_specs = freq_specs.FreqSpecs(self)
        self.f_specs.setObjectName("freq_specs")
        self.f_specs.sig_tx.connect(self.sig_rx_local)
        self.sig_tx.connect(self.f_specs.sig_rx)
        # Subwidget for Amplitude Specs
        self.a_specs = amplitude_specs.AmplitudeSpecs(self)
        self.a_specs.setObjectName("amplitude_specs")
        self.a_specs.sig_tx.connect(self.sig_rx_local)
        # Subwidget for Weight Specs
        self.w_specs = weight_specs.WeightSpecs(self)
        self.w_specs.setObjectName("weight_specs")
        self.w_specs.sig_tx.connect(self.sig_rx_local)
        # Subwidget for target specs (frequency and amplitude)
        self.t_specs = target_specs.TargetSpecs(self,
                                                title="Target Specifications")
        self.t_specs.setObjectName("target_specs")
        self.t_specs.sig_tx.connect(self.sig_rx_local)
        self.sig_tx.connect(self.t_specs.sig_rx)
        # Subwidget for displaying infos on the design method
        self.lblMsg = QLabel(self)
        self.lblMsg.setWordWrap(True)
        layVMsg = QVBoxLayout()
        layVMsg.addWidget(self.lblMsg)

        self.frmMsg = QFrame(self)
        self.frmMsg.setLayout(layVMsg)
        layVFrm = QVBoxLayout()
        layVFrm.addWidget(self.frmMsg)
        layVFrm.setContentsMargins(*params['wdg_margins'])

        # ----------------------------------------------------------------------
        # LAYOUT for input specifications and buttons
        # ----------------------------------------------------------------------
        layVMain = QVBoxLayout(self)
        layVMain.addLayout(layHButtons1)  # <Load> & <Save> buttons
        layVMain.addWidget(self.sel_fil)  # Design method (IIR - ellip, ...)
        layVMain.addLayout(layHButtons2)  # <Design> & <Quit> buttons
        layVMain.addWidget(self.f_units)  # Frequency units
        layVMain.addWidget(self.t_specs)  # Target specs
        layVMain.addWidget(self.f_specs)  # Freq. specifications
        layVMain.addWidget(self.a_specs)  # Amplitude specs
        layVMain.addWidget(self.w_specs)  # Weight specs
        layVMain.addLayout(layVFrm)  # Text message

        layVMain.addStretch()

        layVMain.setContentsMargins(*params['wdg_margins'])

        self.setLayout(layVMain)  # main layout of widget

        # ----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.sig_rx.connect(self.process_sig_rx)
        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.sig_rx_local.connect(self.process_sig_rx_local)
        self.butLoadFilt.clicked.connect(lambda: load_filter(self))
        self.butSaveFilt.clicked.connect(lambda: save_filter(self))
        self.butDesignFilt.clicked.connect(self.start_design_filt)
        self.butQuit.clicked.connect(self.quit_program)  # emit 'quit_program'
        # ----------------------------------------------------------------------

        self.update_UI()  # first time initialization
        self.start_design_filt()  # design first filter using default values
示例#28
0
文件: firwin.py 项目: mfkiwl/pyfda
class Firwin(QWidget):

    FRMT = 'ba'  # output format(s) of filter design routines 'zpk' / 'ba' / 'sos'
    # currently, only 'ba' is supported for firwin routines

    sig_tx = pyqtSignal(object)

    def __init__(self):
        QWidget.__init__(self)

        self.ft = 'FIR'
        self.fft_window = None
        # dictionary for firwin window settings
        self.win_dict = fb.fil[0]['win_fir']

        c = Common()
        self.rt_dict = c.rt_base_iir

        self.rt_dict_add = {
            'COM': {
                'min': {
                    'msg':
                    ('a',
                     r"<br /><b>Note:</b> Filter order is only a rough approximation "
                     "and most likely far too low!")
                },
                'man': {
                    'msg':
                    ('a', r"Enter desired filter order <b><i>N</i></b> and "
                     "<b>-6 dB</b> pass band corner "
                     "frequency(ies) <b><i>F<sub>C</sub></i></b> .")
                },
            },
            'LP': {
                'man': {},
                'min': {}
            },
            'HP': {
                'man': {
                    'msg': ('a', r"<br /><b>Note:</b> Order needs to be odd!")
                },
                'min': {}
            },
            'BS': {
                'man': {
                    'msg': ('a', r"<br /><b>Note:</b> Order needs to be odd!")
                },
                'min': {}
            },
            'BP': {
                'man': {},
                'min': {}
            },
        }

        self.info = """**Windowed FIR filters**
        
        are designed by truncating the
        infinite impulse response of an ideal filter with a window function.
        The kind of used window has strong influence on ripple etc. of the
        resulting filter.
        
        **Design routines:**

        ``scipy.signal.firwin()``

        """
        #self.info_doc = [] is set in self._update_UI()

        #------------------- end of static info for filter tree ---------------

        #----------------------------------------------------------------------
    def construct_UI(self):
        """
        Create additional subwidget(s) needed for filter design:
        These subwidgets are instantiated dynamically when needed in 
        select_filter.py using the handle to the filter object, fb.filObj .
        """

        # Combobox for selecting the algorithm to estimate minimum filter order
        self.cmb_firwin_alg = QComboBox(self)
        self.cmb_firwin_alg.setObjectName('wdg_cmb_firwin_alg')
        self.cmb_firwin_alg.addItems(['ichige', 'kaiser', 'herrmann'])
        # Minimum size, can be changed in the upper hierarchy levels using layouts:
        self.cmb_firwin_alg.setSizeAdjustPolicy(QComboBox.AdjustToContents)
        self.cmb_firwin_alg.hide()

        # Combobox for selecting the window used for filter design
        self.cmb_firwin_win = QComboBox(self)
        self.cmb_firwin_win.addItems(get_window_names())
        self.cmb_firwin_win.setObjectName('wdg_cmb_firwin_win')

        # Minimum size, can be changed in the upper hierarchy levels using layouts:
        self.cmb_firwin_win.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        self.but_fft_win = QPushButton(self)
        self.but_fft_win.setText("WIN FFT")
        self.but_fft_win.setToolTip(
            "Show time and frequency response of FFT Window")
        self.but_fft_win.setCheckable(True)
        self.but_fft_win.setChecked(False)

        self.lblWinPar1 = QLabel("a", self)
        self.lblWinPar1.setObjectName('wdg_lbl_firwin_1')
        self.ledWinPar1 = QLineEdit(self)
        self.ledWinPar1.setText("0.5")
        self.ledWinPar1.setObjectName('wdg_led_firwin_1')
        self.lblWinPar1.setVisible(False)
        self.ledWinPar1.setVisible(False)

        self.lblWinPar2 = QLabel("b", self)
        self.lblWinPar2.setObjectName('wdg_lbl_firwin_2')
        self.ledWinPar2 = QLineEdit(self)
        self.ledWinPar2.setText("0.5")
        self.ledWinPar2.setObjectName('wdg_led_firwin_2')
        self.ledWinPar2.setVisible(False)
        self.lblWinPar2.setVisible(False)

        self.layHWin1 = QHBoxLayout()
        self.layHWin1.addWidget(self.cmb_firwin_win)
        self.layHWin1.addWidget(self.but_fft_win)
        self.layHWin1.addWidget(self.cmb_firwin_alg)
        self.layHWin2 = QHBoxLayout()
        self.layHWin2.addWidget(self.lblWinPar1)
        self.layHWin2.addWidget(self.ledWinPar1)
        self.layHWin2.addWidget(self.lblWinPar2)
        self.layHWin2.addWidget(self.ledWinPar2)

        self.layVWin = QVBoxLayout()
        self.layVWin.addLayout(self.layHWin1)
        self.layVWin.addLayout(self.layHWin2)
        self.layVWin.setContentsMargins(0, 0, 0, 0)

        # Widget containing all subwidgets (cmbBoxes, Labels, lineEdits)
        self.wdg_fil = QWidget(self)
        self.wdg_fil.setObjectName('wdg_fil')
        self.wdg_fil.setLayout(self.layVWin)

        #----------------------------------------------------------------------
        # SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.cmb_firwin_alg.activated.connect(self._update_win_fft)
        self.cmb_firwin_win.activated.connect(self._update_win_fft)
        self.ledWinPar1.editingFinished.connect(self._read_param1)
        self.ledWinPar2.editingFinished.connect(self._read_param2)

        self.but_fft_win.clicked.connect(self.show_fft_win)
        #----------------------------------------------------------------------

        self._load_dict()  # get initial / last setting from dictionary
        self._update_win_fft()

#=============================================================================
# Copied from impz()
#==============================================================================

    def _read_param1(self):
        """Read out textbox when editing is finished and update dict and fft window"""
        param = safe_eval(self.ledWinPar1.text(),
                          self.win_dict['par'][0]['val'],
                          sign='pos',
                          return_type='float')
        if param < self.win_dict['par'][0]['min']:
            param = self.win_dict['par'][0]['min']
        elif param > self.win_dict['par'][0]['max']:
            param = self.win_dict['par'][0]['max']
        self.ledWinPar1.setText(str(param))
        self.win_dict['par'][0]['val'] = param
        self._update_win_fft()

    def _read_param2(self):
        """Read out textbox when editing is finished and update dict and fft window"""
        param = safe_eval(self.ledWinPar2.text(),
                          self.win_dict['par'][1]['val'],
                          return_type='float')
        if param < self.win_dict['par'][1]['min']:
            param = self.win_dict['par'][1]['min']
        elif param > self.win_dict['par'][1]['max']:
            param = self.win_dict['par'][1]['max']
        self.ledWinPar2.setText(str(param))
        self.win_dict['par'][1]['val'] = param
        self._update_win_fft()

    def _update_win_fft(self):
        """ Update window type for FirWin """
        self.alg = str(self.cmb_firwin_alg.currentText())
        self.fir_window_name = qget_cmb_box(self.cmb_firwin_win, data=False)
        self.win = calc_window_function(self.win_dict,
                                        self.fir_window_name,
                                        N=self.N,
                                        sym=True)
        n_par = self.win_dict['n_par']

        self.lblWinPar1.setVisible(n_par > 0)
        self.ledWinPar1.setVisible(n_par > 0)
        self.lblWinPar2.setVisible(n_par > 1)
        self.ledWinPar2.setVisible(n_par > 1)

        if n_par > 0:
            self.lblWinPar1.setText(
                to_html(self.win_dict['par'][0]['name'] + " =", frmt='bi'))
            self.ledWinPar1.setText(str(self.win_dict['par'][0]['val']))
            self.ledWinPar1.setToolTip(self.win_dict['par'][0]['tooltip'])

        if n_par > 1:
            self.lblWinPar2.setText(
                to_html(self.win_dict['par'][1]['name'] + " =", frmt='bi'))
            self.ledWinPar2.setText(str(self.win_dict['par'][1]['val']))
            self.ledWinPar2.setToolTip(self.win_dict['par'][1]['tooltip'])

        # sig_tx -> select_filter -> filter_specs
        self.sig_tx.emit({'sender': __name__, 'filt_changed': 'firwin'})

#=============================================================================

    def _load_dict(self):
        """
        Reload window selection and parameters from filter dictionary
        and set UI elements accordingly. load_dict() is called upon 
        initialization and when the filter is loaded from disk.
        """
        self.N = fb.fil[0]['N']
        win_idx = 0
        alg_idx = 0
        if 'wdg_fil' in fb.fil[0] and 'firwin' in fb.fil[0]['wdg_fil']:
            wdg_fil_par = fb.fil[0]['wdg_fil']['firwin']

            if 'win' in wdg_fil_par:
                if np.isscalar(
                        wdg_fil_par['win']):  # true for strings (non-vectors)
                    window = wdg_fil_par['win']
                else:
                    window = wdg_fil_par['win'][0]
                    self.ledWinPar1.setText(str(wdg_fil_par['win'][1]))
                    if len(wdg_fil_par['win']) > 2:
                        self.ledWinPar2.setText(str(wdg_fil_par['win'][2]))

                # find index for window string
                win_idx = self.cmb_firwin_win.findText(
                    window, Qt.MatchFixedString)  # case insensitive flag
                if win_idx == -1:  # Key does not exist, use first entry instead
                    win_idx = 0

            if 'alg' in wdg_fil_par:
                alg_idx = self.cmb_firwin_alg.findText(wdg_fil_par['alg'],
                                                       Qt.MatchFixedString)
                if alg_idx == -1:  # Key does not exist, use first entry instead
                    alg_idx = 0

        self.cmb_firwin_win.setCurrentIndex(
            win_idx)  # set index for window and
        self.cmb_firwin_alg.setCurrentIndex(alg_idx)  # and algorithm cmbBox

    def _store_entries(self):
        """
        Store window and alg. selection and parameter settings (part of 
        self.firWindow, if any) in filter dictionary.
        """
        if not 'wdg_fil' in fb.fil[0]:
            fb.fil[0].update({'wdg_fil': {}})
        fb.fil[0]['wdg_fil'].update(
            {'firwin': {
                'win': self.firWindow,
                'alg': self.alg
            }})

    def _get_params(self, fil_dict):
        """
        Translate parameters from the passed dictionary to instance
        parameters, scaling / transforming them if needed.
        """
        self.N = fil_dict['N']
        self.F_PB = fil_dict['F_PB']
        self.F_SB = fil_dict['F_SB']
        self.F_PB2 = fil_dict['F_PB2']
        self.F_SB2 = fil_dict['F_SB2']
        self.F_C = fil_dict['F_C']
        self.F_C2 = fil_dict['F_C2']

        # firwin amplitude specs are linear (not in dBs)
        self.A_PB = fil_dict['A_PB']
        self.A_PB2 = fil_dict['A_PB2']
        self.A_SB = fil_dict['A_SB']
        self.A_SB2 = fil_dict['A_SB2']

#        self.alg = 'ichige' # algorithm for determining the minimum order
#        self.alg = self.cmb_firwin_alg.currentText()

    def _test_N(self):
        """
        Warn the user if the calculated order is too high for a reasonable filter
        design.
        """
        if self.N > 1000:
            return qfilter_warning(self, self.N, "FirWin")
        else:
            return True

    def _save(self, fil_dict, arg):
        """
        Convert between poles / zeros / gain, filter coefficients (polynomes)
        and second-order sections and store all available formats in the passed
        dictionary 'fil_dict'.
        """
        fil_save(fil_dict, arg, self.FRMT, __name__)

        try:  # has the order been calculated by a "min" filter design?
            fil_dict['N'] = self.N  # yes, update filterbroker
        except AttributeError:
            pass
#        self._store_entries()

#------------------------------------------------------------------------------

    def firwin(self,
               numtaps,
               cutoff,
               window=None,
               pass_zero=True,
               scale=True,
               nyq=1.0,
               fs=None):
        """
        FIR filter design using the window method. This is more or less the 
        same as `scipy.signal.firwin` with the exception that an ndarray with 
        the window values can be passed as an alternative to the window name.
        
        The parameters "width" (specifying a Kaiser window) and "fs" have been
        omitted, they are not needed here.

        This function computes the coefficients of a finite impulse response
        filter.  The filter will have linear phase; it will be Type I if
        `numtaps` is odd and Type II if `numtaps` is even.
        Type II filters always have zero response at the Nyquist rate, so a
        ValueError exception is raised if firwin is called with `numtaps` even and
        having a passband whose right end is at the Nyquist rate.
        
        Parameters
        ----------
        numtaps : int
            Length of the filter (number of coefficients, i.e. the filter
            order + 1).  `numtaps` must be even if a passband includes the
            Nyquist frequency.
        cutoff : float or 1D array_like
            Cutoff frequency of filter (expressed in the same units as `nyq`)
            OR an array of cutoff frequencies (that is, band edges). In the
            latter case, the frequencies in `cutoff` should be positive and
            monotonically increasing between 0 and `nyq`.  The values 0 and
            `nyq` must not be included in `cutoff`.
        window : ndarray or string
            string: use the window with the passed name from scipy.signal.windows
            
            ndarray: The window values - this is an addition to the original 
            firwin routine.
        pass_zero : bool, optional
            If True, the gain at the frequency 0 (i.e. the "DC gain") is 1.
            Otherwise the DC gain is 0.
        scale : bool, optional
            Set to True to scale the coefficients so that the frequency
            response is exactly unity at a certain frequency.
            That frequency is either:
            - 0 (DC) if the first passband starts at 0 (i.e. pass_zero
              is True)
            - `nyq` (the Nyquist rate) if the first passband ends at
              `nyq` (i.e the filter is a single band highpass filter);
              center of first passband otherwise
        nyq : float, optional
            Nyquist frequency.  Each frequency in `cutoff` must be between 0
            and `nyq`.
        Returns
        -------
        h : (numtaps,) ndarray
            Coefficients of length `numtaps` FIR filter.
        Raises
        ------
        ValueError
            If any value in `cutoff` is less than or equal to 0 or greater
            than or equal to `nyq`, if the values in `cutoff` are not strictly
            monotonically increasing, or if `numtaps` is even but a passband
            includes the Nyquist frequency.
        See also
        --------
        scipy.firwin
        """
        cutoff = np.atleast_1d(cutoff) / float(nyq)

        # Check for invalid input.
        if cutoff.ndim > 1:
            raise ValueError("The cutoff argument must be at most "
                             "one-dimensional.")
        if cutoff.size == 0:
            raise ValueError("At least one cutoff frequency must be given.")
        if cutoff.min() <= 0 or cutoff.max() >= 1:
            raise ValueError(
                "Invalid cutoff frequency {0}: frequencies must be "
                "greater than 0 and less than nyq.".format(cutoff))
        if np.any(np.diff(cutoff) <= 0):
            raise ValueError("Invalid cutoff frequencies: the frequencies "
                             "must be strictly increasing.")

        pass_nyquist = bool(cutoff.size & 1) ^ pass_zero
        if pass_nyquist and numtaps % 2 == 0:
            raise ValueError(
                "A filter with an even number of coefficients must "
                "have zero response at the Nyquist rate.")

        # Insert 0 and/or 1 at the ends of cutoff so that the length of cutoff
        # is even, and each pair in cutoff corresponds to passband.
        cutoff = np.hstack(([0.0] * pass_zero, cutoff, [1.0] * pass_nyquist))

        # `bands` is a 2D array; each row gives the left and right edges of
        # a passband.
        bands = cutoff.reshape(-1, 2)

        # Build up the coefficients.
        alpha = 0.5 * (numtaps - 1)
        m = np.arange(0, numtaps) - alpha
        h = 0
        for left, right in bands:
            h += right * sinc(right * m)
            h -= left * sinc(left * m)

        if type(window) == str:
            # Get and apply the window function.
            from scipy.signal.signaltools import get_window
            win = get_window(window, numtaps, fftbins=False)
        elif type(window) == np.ndarray:
            win = window
        else:
            logger.error(
                "The 'window' was neither a string nor a numpy array, it could not be evaluated."
            )
            return None
        # apply the window function.
        h *= win

        # Now handle scaling if desired.
        if scale:
            # Get the first passband.
            left, right = bands[0]
            if left == 0:
                scale_frequency = 0.0
            elif right == 1:
                scale_frequency = 1.0
            else:
                scale_frequency = 0.5 * (left + right)
            c = np.cos(np.pi * m * scale_frequency)
            s = np.sum(h * c)
            h /= s

        return h

    def _firwin_ord(self, F, W, A, alg):
        #http://www.mikroe.com/chapters/view/72/chapter-2-fir-filters/
        delta_f = abs(F[1] - F[0]) * 2  # referred to f_Ny
        delta_A = np.sqrt(A[0] * A[1])
        if self.fir_window_name == 'kaiser':
            N, beta = sig.kaiserord(20 * np.log10(np.abs(fb.fil[0]['A_SB'])),
                                    delta_f)
            self.ledWinPar1.setText(str(beta))
            fb.fil[0]['wdg_fil'][1] = beta
            self._update_UI()
        else:
            N = remezord(F, W, A, fs=1, alg=alg)[0]

        return N

    def LPmin(self, fil_dict):
        self._get_params(fil_dict)
        self.N = self._firwin_ord([self.F_PB, self.F_SB], [1, 0],
                                  [self.A_PB, self.A_SB],
                                  alg=self.alg)
        if not self._test_N():
            return -1
        self.fir_window = calc_window_function(self.win_dict,
                                               self.fir_window_name,
                                               N=self.N,
                                               sym=True)
        fil_dict['F_C'] = (self.F_SB + self.F_PB
                           ) / 2  # use average of calculated F_PB and F_SB
        self._save(
            fil_dict,
            self.firwin(self.N,
                        fil_dict['F_C'],
                        window=self.fir_window,
                        nyq=0.5))

    def LPman(self, fil_dict):
        self._get_params(fil_dict)
        if not self._test_N():
            return -1
        self.fir_window = calc_window_function(self.win_dict,
                                               self.fir_window_name,
                                               N=self.N,
                                               sym=True)
        self._save(
            fil_dict,
            self.firwin(self.N,
                        fil_dict['F_C'],
                        window=self.fir_window,
                        nyq=0.5))

    def HPmin(self, fil_dict):
        self._get_params(fil_dict)
        N = self._firwin_ord([self.F_SB, self.F_PB], [0, 1],
                             [self.A_SB, self.A_PB],
                             alg=self.alg)
        self.N = round_odd(N)  # enforce odd order
        if not self._test_N():
            return -1
        self.fir_window = calc_window_function(self.win_dict,
                                               self.fir_window_name,
                                               N=self.N,
                                               sym=True)
        fil_dict['F_C'] = (self.F_SB + self.F_PB
                           ) / 2  # use average of calculated F_PB and F_SB
        self._save(
            fil_dict,
            self.firwin(self.N,
                        fil_dict['F_C'],
                        window=self.fir_window,
                        pass_zero=False,
                        nyq=0.5))

    def HPman(self, fil_dict):
        self._get_params(fil_dict)
        self.N = round_odd(self.N)  # enforce odd order
        if not self._test_N():
            return -1
        self.fir_window = calc_window_function(self.win_dict,
                                               self.fir_window_name,
                                               N=self.N,
                                               sym=True)
        self._save(
            fil_dict,
            self.firwin(self.N,
                        fil_dict['F_C'],
                        window=self.fir_window,
                        pass_zero=False,
                        nyq=0.5))

    # For BP and BS, F_PB and F_SB have two elements each
    def BPmin(self, fil_dict):
        self._get_params(fil_dict)
        self.N = remezord([self.F_SB, self.F_PB, self.F_PB2, self.F_SB2],
                          [0, 1, 0], [self.A_SB, self.A_PB, self.A_SB2],
                          fs=1,
                          alg=self.alg)[0]
        if not self._test_N():
            return -1
        self.fir_window = calc_window_function(self.win_dict,
                                               self.fir_window_name,
                                               N=self.N,
                                               sym=True)

        fil_dict['F_C'] = (self.F_SB + self.F_PB
                           ) / 2  # use average of calculated F_PB and F_SB
        fil_dict['F_C2'] = (self.F_SB2 + self.F_PB2
                            ) / 2  # use average of calculated F_PB and F_SB
        self._save(
            fil_dict,
            self.firwin(self.N, [fil_dict['F_C'], fil_dict['F_C2']],
                        window=self.fir_window,
                        pass_zero=False,
                        nyq=0.5))

    def BPman(self, fil_dict):
        self._get_params(fil_dict)
        if not self._test_N():
            return -1
        self.fir_window = calc_window_function(self.win_dict,
                                               self.fir_window_name,
                                               N=self.N,
                                               sym=True)
        self._save(
            fil_dict,
            self.firwin(self.N, [fil_dict['F_C'], fil_dict['F_C2']],
                        window=self.fir_window,
                        pass_zero=False,
                        nyq=0.5))

    def BSmin(self, fil_dict):
        self._get_params(fil_dict)
        N = remezord([self.F_PB, self.F_SB, self.F_SB2, self.F_PB2], [1, 0, 1],
                     [self.A_PB, self.A_SB, self.A_PB2],
                     fs=1,
                     alg=self.alg)[0]
        self.N = round_odd(N)  # enforce odd order
        if not self._test_N():
            return -1
        self.fir_window = calc_window_function(self.win_dict,
                                               self.fir_window_name,
                                               N=self.N,
                                               sym=True)
        fil_dict['F_C'] = (self.F_SB + self.F_PB
                           ) / 2  # use average of calculated F_PB and F_SB
        fil_dict['F_C2'] = (self.F_SB2 + self.F_PB2
                            ) / 2  # use average of calculated F_PB and F_SB
        self._save(
            fil_dict,
            self.firwin(self.N, [fil_dict['F_C'], fil_dict['F_C2']],
                        window=self.fir_window,
                        pass_zero=True,
                        nyq=0.5))

    def BSman(self, fil_dict):
        self._get_params(fil_dict)
        self.N = round_odd(self.N)  # enforce odd order
        if not self._test_N():
            return -1
        self.fir_window = calc_window_function(self.win_dict,
                                               self.fir_window_name,
                                               N=self.N,
                                               sym=True)
        self._save(
            fil_dict,
            self.firwin(self.N, [fil_dict['F_C'], fil_dict['F_C2']],
                        window=self.fir_window,
                        pass_zero=True,
                        nyq=0.5))

    #------------------------------------------------------------------------------
    def show_fft_win(self):
        """
        Pop-up FFT window
        """
        if self.but_fft_win.isChecked():
            qstyle_widget(self.but_fft_win, "changed")
        else:
            qstyle_widget(self.but_fft_win, "normal")

        if self.fft_window is None:  # no handle to the window? Create a new instance
            if self.but_fft_win.isChecked():
                # important: Handle to window must be class attribute
                # pass the name of the dictionary where parameters are stored and
                # whether a symmetric window or one that can be continued periodically
                # will be constructed
                self.fft_window = Plot_FFT_win(self,
                                               win_dict=self.win_dict,
                                               sym=True,
                                               title="pyFDA FIR Window Viewer")
                self.sig_tx.connect(self.fft_window.sig_rx)
                self.fft_window.sig_tx.connect(self.close_fft_win)
                self.fft_window.show(
                )  # modeless i.e. non-blocking popup window
        else:
            if not self.but_fft_win.isChecked():
                if self.fft_window is None:
                    logger.warning("FFT window is already closed!")
                else:
                    self.fft_window.close()

    def close_fft_win(self):
        self.fft_window = None
        self.but_fft_win.setChecked(False)
        qstyle_widget(self.but_fft_win, "normal")
示例#29
0
    def _construct_UI(self):
        """
        Intitialize the widget, consisting of:
        - Checkboxes for selecting the info to be displayed
        - A large text window for displaying infos about the filter design
          algorithm
        """
        bfont = QFont()
        bfont.setBold(True)

        # ============== UI Layout =====================================
        # widget / subwindow for filter infos
#        self.butFiltPerf = QToolButton("H(f)", self)
        self.butFiltPerf = QPushButton(self)
        self.butFiltPerf.setText("H(f)")
        self.butFiltPerf.setCheckable(True)
        self.butFiltPerf.setChecked(True)
        self.butFiltPerf.setToolTip("Display frequency response at test frequencies.")

        self.butDebug = QPushButton(self)
        self.butDebug.setText("Debug")
        self.butDebug.setCheckable(True)
        self.butDebug.setChecked(False)
        self.butDebug.setToolTip("Show debugging options.")

        self.butAbout = QPushButton("About", self)  # pop-up "About" window

        self.butSettings = QPushButton("Settings", self)  #
        self.butSettings.setCheckable(True)
        self.butSettings.setChecked(False)
        self.butSettings.setToolTip("Display and set some settings")

        layHControls1 = QHBoxLayout()
        layHControls1.addWidget(self.butFiltPerf)
        layHControls1.addWidget(self.butAbout)
        layHControls1.addWidget(self.butSettings)
        layHControls1.addWidget(self.butDebug)

        self.butDocstring = QPushButton("Doc$", self)
        self.butDocstring.setCheckable(True)
        self.butDocstring.setChecked(False)
        self.butDocstring.setToolTip("Display docstring from python filter method.")

        self.butRichText = QPushButton("RTF", self)
        self.butRichText.setCheckable(HAS_DOCUTILS)
        self.butRichText.setChecked(HAS_DOCUTILS)
        self.butRichText.setEnabled(HAS_DOCUTILS)
        self.butRichText.setToolTip("Render documentation in Rich Text Format.")

        self.butFiltDict = QPushButton("FiltDict", self)
        self.butFiltDict.setToolTip("Show filter dictionary for debugging.")
        self.butFiltDict.setCheckable(True)
        self.butFiltDict.setChecked(False)

        self.butFiltTree = QPushButton("FiltTree", self)
        self.butFiltTree.setToolTip("Show filter tree for debugging.")
        self.butFiltTree.setCheckable(True)
        self.butFiltTree.setChecked(False)

        layHControls2 = QHBoxLayout()
        layHControls2.addWidget(self.butDocstring)
        # layHControls2.addStretch(1)
        layHControls2.addWidget(self.butRichText)
        # layHControls2.addStretch(1)
        layHControls2.addWidget(self.butFiltDict)
        # layHControls2.addStretch(1)
        layHControls2.addWidget(self.butFiltTree)

        self.frmControls2 = QFrame(self)
        self.frmControls2.setLayout(layHControls2)
        self.frmControls2.setVisible(self.butDebug.isChecked())
        self.frmControls2.setContentsMargins(0, 0, 0, 0)

        lbl_settings_NFFT = QLabel(to_html("N_FFT =", frmt='bi'), self)
        self.led_settings_NFFT = QLineEdit(self)
        self.led_settings_NFFT.setText(str(params['N_FFT']))
        self.led_settings_NFFT.setToolTip("<span>Number of FFT points for frequency "
                                          "domain widgets.</span>")

        layGSettings = QGridLayout()
        layGSettings.addWidget(lbl_settings_NFFT, 1, 0)
        layGSettings.addWidget(self.led_settings_NFFT, 1, 1)

        self.frmSettings = QFrame(self)
        self.frmSettings.setLayout(layGSettings)
        self.frmSettings.setVisible(self.butSettings.isChecked())
        self.frmSettings.setContentsMargins(0, 0, 0, 0)

        layVControls = QVBoxLayout()
        layVControls.addLayout(layHControls1)
        layVControls.addWidget(self.frmControls2)
        layVControls.addWidget(self.frmSettings)

        self.frmMain = QFrame(self)
        self.frmMain.setLayout(layVControls)

        self.tblFiltPerf = QTableWidget(self)
        self.tblFiltPerf.setAlternatingRowColors(True)
#        self.tblFiltPerf.verticalHeader().setVisible(False)
        self.tblFiltPerf.horizontalHeader().setHighlightSections(False)
        self.tblFiltPerf.horizontalHeader().setFont(bfont)
        self.tblFiltPerf.verticalHeader().setHighlightSections(False)
        self.tblFiltPerf.verticalHeader().setFont(bfont)

        self.txtFiltInfoBox = QTextBrowser(self)
        self.txtFiltDict = QTextBrowser(self)
        self.txtFiltTree = QTextBrowser(self)

        layVMain = QVBoxLayout()
        layVMain.addWidget(self.frmMain)

#        layVMain.addLayout(self.layHControls)
        splitter = QSplitter(self)
        splitter.setOrientation(Qt.Vertical)
        splitter.addWidget(self.tblFiltPerf)
        splitter.addWidget(self.txtFiltInfoBox)
        splitter.addWidget(self.txtFiltDict)
        splitter.addWidget(self.txtFiltTree)
        # setSizes uses absolute pixel values, but can be "misused" by specifying values
        # that are way too large: in this case, the space is distributed according
        # to the _ratio_ of the values:
        splitter.setSizes([3000, 10000, 1000, 1000])
        layVMain.addWidget(splitter)

        layVMain.setContentsMargins(*params['wdg_margins'])

        self.setLayout(layVMain)

        # ----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.sig_rx.connect(self.process_sig_rx)
        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.butFiltPerf.clicked.connect(self._show_filt_perf)
        self.butAbout.clicked.connect(self._about_window)
        self.butSettings.clicked.connect(self._show_settings)
        self.led_settings_NFFT.editingFinished.connect(self._update_settings_nfft)
        self.butDebug.clicked.connect(self._show_debug)

        self.butFiltDict.clicked.connect(self._show_filt_dict)
        self.butFiltTree.clicked.connect(self._show_filt_tree)
        self.butDocstring.clicked.connect(self._show_doc)
        self.butRichText.clicked.connect(self._show_doc)
示例#30
0
文件: delay.py 项目: xfunture/pyfda
class Delay(QWidget):

    FRMT = 'zpk' # output format of delay filter widget

    info ="""
**Delay widget**

allows entering the number of **delays** :math:`N` :math:`T_S`. It is treated as a FIR filter,
the number of delays is directly translated to a number of poles (:math:`N > 0`) 
or zeros (:math:`N < 0`).

Obviously, there is no minimum design algorithm or no design algorithm at all :-)

    """

    sig_tx = pyqtSignal(object)

    def __init__(self):
        QWidget.__init__(self)

        self.N = 5

        self.ft = 'FIR'
        
        self.rt_dicts = ('com',)

        self.rt_dict = {
            'COM': {'man': {'fo':('a', 'N'),
                            'msg':('a', 
                                "<span>Enter desired filter order <b><i>N</i></b>, corner "
                                "frequencies of pass and stop band(s), <b><i>F<sub>PB</sub></i></b>"
                                "&nbsp; and <b><i>F<sub>SB</sub></i></b>&nbsp;, and relative weight "
                                "values <b><i>W&nbsp; </i></b> (1 ... 10<sup>6</sup>) to specify how well "
                                "the bands are approximated.</span>")
                            },
                },
            'LP': {'man':{'wspecs': ('u','W_PB','W_SB'),
                          'tspecs': ('u', {'frq':('a','F_PB','F_SB'), 
                                           'amp':('u','A_PB','A_SB')})
                          },
                },
            'HP': {'man':{'wspecs': ('u','W_SB','W_PB')},
                    },
            'BP': {
                    },
            'BS': {'man':{'wspecs': ('u','W_PB','W_SB','W_PB2'),
                          'tspecs': ('u', {'frq':('a','F_PB','F_SB','F_SB2','F_PB2'), 
                                           'amp':('u','A_PB','A_SB','A_PB2')})
                          }
                }
            }

        self.info_doc = []

    #--------------------------------------------------------------------------
    def construct_UI(self):
        """
        Create additional subwidget(s) needed for filter design:
        These subwidgets are instantiated dynamically when needed in 
        select_filter.py using the handle to the filter instance, fb.fil_inst.
        """
        self.lbl_delay = QLabel("Delays", self)
        self.lbl_delay.setObjectName('wdg_lbl_delays')
        self.led_delay = QLineEdit(self)
        self.led_delay.setText(str(self.N))
        self.led_delay.setObjectName('wdg_led_delay')
        self.led_delay.setToolTip("Number of delays, N > 0 produces poles, N < 0 zeros.")

        self.layHWin = QHBoxLayout()
        self.layHWin.setObjectName('wdg_layGWin')
        self.layHWin.addWidget(self.lbl_delay)
        self.layHWin.addWidget(self.led_delay)
        self.layHWin.setContentsMargins(0,0,0,0)
        # Widget containing all subwidgets (cmbBoxes, Labels, lineEdits)
        self.wdg_fil = QWidget(self)
        self.wdg_fil.setObjectName('wdg_fil')
        self.wdg_fil.setLayout(self.layHWin)

        #----------------------------------------------------------------------
        # SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.led_delay.editingFinished.connect(self._update_UI)
        # fires when edited line looses focus or when RETURN is pressed
        #----------------------------------------------------------------------

        self._load_dict() # get initial / last setting from dictionary
        self._update_UI()
        
    def _update_UI(self):
        """
        Update UI when line edit field is changed (here, only the text is read
        and converted to integer) and store parameter settings in filter 
        dictionary
        """
        self.N = safe_eval(self.led_delay.text(), self.N, 
                                      return_type='int')
        self.led_delay.setText(str(self.N))

        if not 'wdg_fil' in fb.fil[0]:
            fb.fil[0].update({'wdg_fil':{}})
        fb.fil[0]['wdg_fil'].update({'delay':
                                        {'N':self.N}
                                    })
        
        # sig_tx -> select_filter -> filter_specs   
        self.sig_tx.emit({'sender':__name__, 'filt_changed':'delay'})


    def _load_dict(self):
        """
        Reload parameter(s) from filter dictionary (if they exist) and set 
        corresponding UI elements. _load_dict() is called upon initialization
        and when the filter is loaded from disk.
        """
        if 'wdg_fil' in fb.fil[0] and 'delay' in fb.fil[0]['wdg_fil']:
            wdg_fil_par = fb.fil[0]['wdg_fil']['delay']
            if 'N' in wdg_fil_par:
                self.N = wdg_fil_par['N']
                self.led_delay.setText(str(self.N))


    def _get_params(self, fil_dict):
        """
        Translate parameters from the passed dictionary to instance
        parameters, scaling / transforming them if needed.
        """
        self.N     = fil_dict['N']  # filter order is translated to numb. of delays
                                        
        
    def _test_N(self):
        """
        Warn the user if the calculated order is too high for a reasonable filter
        design.
        """
        if self.N > 2000:
            return qfilter_warning(self, self.N, "Delay")
        else:
            return True

    def _save(self, fil_dict, arg=None):
        """
        Convert between poles / zeros / gain, filter coefficients (polynomes)
        and second-order sections and store all available formats in the passed
        dictionary 'fil_dict'.
        """
        if arg is None:
            arg = np.zeros(self.N)
        fil_save(fil_dict, arg, self.FRMT, __name__)

    def LPman(self, fil_dict):
        self._get_params(fil_dict)
        if not self._test_N():
            return -1
        self._save(fil_dict)


    def HPman(self, fil_dict):
        self._get_params(fil_dict)
        if not self._test_N():
            return -1
        self._save(fil_dict)
        
    def BPman(self, fil_dict):
        self._get_params(fil_dict)
        if not self._test_N():
            return -1
        self._save(fil_dict)

    def BSman(self, fil_dict):
        self._get_params(fil_dict)
        if not self._test_N():
            return -1
        self._save(fil_dict)